JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Pseudomonas aeruginosa Induced Lung Injury Model.
J Vis Exp
PUBLISHED: 11-20-2014
Show Abstract
Hide Abstract
In order to study human acute lung injury and pneumonia, it is important to develop animal models to mimic various pathological features of this disease. Here we have developed a mouse lung injury model by intra-tracheal injection of bacteria Pseudomonas aeruginosa (P. aeruginosa or PA). Using this model, we were able to show lung inflammation at the early phase of injury. In addition, alveolar epithelial barrier leakiness was observed by analyzing bronchoalveolar lavage (BAL); and alveolar cell death was observed by Tunel assay using tissue prepared from injured lungs. At a later phase following injury, we observed cell proliferation required for the repair process. The injury was resolved 7 days from the initiation of P. aeruginosa injection. This model mimics the sequential course of lung inflammation, injury and repair during pneumonia. This clinically relevant animal model is suitable for studying pathology, mechanism of repair, following acute lung injury, and also can be used to test potential therapeutic agents for this disease.
Related JoVE Video
Microfluidic platform generates oxygen landscapes for localized hypoxic activation.
Lab Chip
PUBLISHED: 10-15-2014
Show Abstract
Hide Abstract
An open-well microfluidic platform generates an oxygen landscape using gas-perfused networks which diffuse across a membrane. The device enables real-time analysis of cellular and tissue responses to oxygen tension to define how cells adapt to heterogeneous oxygen conditions found in the physiological setting. We demonstrate that localized hypoxic activation of cells elicited specific metabolic and gene responses in human microvascular endothelial cells and bone marrow-derived mesenchymal stem cells. A robust demonstration of the compatibility of the device with standard laboratory techniques demonstrates the wide utility of the method. This platform is ideally suited to study real-time cell responses and cell-cell interactions within physiologically relevant oxygen landscapes.
Related JoVE Video
KIF13B regulates angiogenesis through Golgi to plasma membrane trafficking of VEGFR2.
J. Cell. Sci.
PUBLISHED: 08-15-2014
Show Abstract
Hide Abstract
Although the trafficking of newly synthesized VEGFR2 to the plasma membrane is a key determinant of angiogenesis, the molecular mechanisms of Golgi to plasma membrane trafficking are unknown. Here, we have identified a key role of the kinesin family plus-end molecular motor KIF13B in delivering VEGFR2 cargo from the Golgi to the endothelial cell surface. KIF13B is shown to interact directly with VEGFR2 on microtubules. We also observed that overexpression of truncated versions of KIF13B containing the binding domains that interact with VEGFR2 inhibited VEGF-induced capillary tube formation. KIF13B depletion prevented VEGF-mediated endothelial migration, capillary tube formation and neo-vascularization in mice. Impairment in trafficking induced by knockdown of KIF13B shunted VEGFR2 towards the lysosomal degradation pathway. Thus, KIF13B is an essential molecular motor required for the trafficking of VEGFR2 from the Golgi, and its delivery to the endothelial cell surface mediates angiogenesis.
Related JoVE Video
Cooperative signaling via transcription factors NF-?B and AP1/c-Fos mediates endothelial cell STIM1 expression and hyperpermeability in response to endotoxin.
J. Biol. Chem.
PUBLISHED: 07-11-2014
Show Abstract
Hide Abstract
Stromal interacting molecule 1 (STIM1) regulates store-operated Ca(2+) entry (SOCE). Here we show that STIM1 expression in endothelial cells (ECs) is increased during sepsis and, therefore, contributes to hyperpermeability. LPS induced STIM1 mRNA and protein expression in human and mouse lung ECs. The induced STIM1 expression was associated with augmented SOCE as well as a permeability increase in both in vitro and in vivo models. Because activation of both the NF-?B and p38 MAPK signaling pathways downstream of TLR4 amplifies vascular inflammation, we studied the influence of these two pathways on LPS-induced STIM1 expression. Inhibition of either NF-?B or p38 MAPK activation by pharmacological agents prevented LPS-induced STIM1 expression. Silencing of the NF-?B proteins (p65/RelA or p50/NF-?B1) or the p38 MAPK isoform p38? prevented LPS-induced STIM1 expression and increased SOCE in ECs. In support of these findings, we found NF-?B and AP1 binding sites in the 5'-regulatory region of human and mouse STIM1 genes. Further, we demonstrated that LPS induced time-dependent binding of the transcription factors NF-?B (p65/RelA) and AP1 (c-Fos/c-Jun) to the STIM1 promoter. Interestingly, silencing of c-Fos, but not c-Jun, markedly reduced LPS-induced STIM1 expression in ECs. We also observed that silencing of p38? prevented c-Fos expression in response to LPS in ECs, suggesting that p38? signaling mediates the expression of c-Fos. These results support the proposal that cooperative signaling of both NF-?B and AP1 (via p38?) amplifies STIM1 expression in ECs and, thereby, contributes to the lung vascular hyperpermeability response during sepsis.
Related JoVE Video
Differential role for p120-catenin in regulation of TLR4 signaling in macrophages.
J. Immunol.
PUBLISHED: 07-11-2014
Show Abstract
Hide Abstract
Activation of TLR signaling through recognition of pathogen-associated molecular patterns is essential for the innate immune response against bacterial and viral infections. We have shown that p120-catenin (p120) suppresses TLR4-mediated NF-?B signaling in LPS-challenged endothelial cells. In this article, we report that p120 differentially regulates LPS/TLR4 signaling in mouse bone marrow-derived macrophages. We observed that p120 inhibited MyD88-dependent NF-?B activation and release of TNF-? and IL-6, but enhanced TIR domain-containing adapter-inducing IFN-?-dependent IFN regulatory factor 3 activation and release of IFN-? upon LPS exposure. p120 silencing diminished LPS-induced TLR4 internalization, whereas genetic and pharmacological inhibition of RhoA GTPase rescued the decrease in endocytosis of TLR4 and TLR4-MyD88 signaling, and reversed the increase in TLR4-TIR domain-containing adapter-inducing IFN-? signaling induced by p120 depletion. Furthermore, we demonstrated that altered p120 expression in macrophages regulates the inflammatory phenotype of LPS-induced acute lung injury. These results indicate that p120 functions as a differential regulator of TLR4 signaling pathways by facilitating TLR4 endocytic trafficking in macrophages, and support a novel role for p120 in influencing the macrophages in the lung inflammatory response to endotoxin.
Related JoVE Video
Regulating the regulator of ROS production.
Cell Res.
PUBLISHED: 05-20-2014
Show Abstract
Hide Abstract
Balancing inflammatory reactive oxygen species (ROS) production is essential for safely eliminating pathogenic microbes. The newly described protein Negative Regulator of ROS (NRROS) dampens ROS production by restricting NOX2 availability, and thus "cools-off" inflammation.
Related JoVE Video
Combinatorial therapy with acetylation and methylation modifiers attenuates lung vascular hyperpermeability in endotoxemia-induced mouse inflammatory lung injury.
Am. J. Pathol.
PUBLISHED: 04-21-2014
Show Abstract
Hide Abstract
Impairment of tissue fluid homeostasis and migration of inflammatory cells across the vascular endothelial barrier are crucial factors in the pathogenesis of acute lung injury (ALI). The goal for treatment of ALI is to target pathways that lead to profound dysregulation of the lung endothelial barrier. Although studies have shown that chemical epigenetic modifiers can limit lung inflammation in experimental ALI models, studies to date have not examined efficacy of a combination of DNA methyl transferase inhibitor 5-Aza 2-deoxycytidine and histone deacetylase inhibitor trichostatin A (herein referred to as Aza+TSA) after endotoxemia-induced mouse lung injury. We tested the hypothesis that treatment with Aza+TSA after lipopolysaccharide induction of ALI through epigenetic modification of lung endothelial cells prevents inflammatory lung injury. Combinatorial treatment with Aza+TSA mitigated the increased endothelial permeability response after lipopolysaccharide challenge. In addition, we observed reduced lung inflammation and lung injury. Aza+TSA also significantly reduced mortality in the ALI model. The protection was ascribed to inhibition of the eNOS-Cav1-MLC2 signaling pathway and enhanced acetylation of histone markers on the vascular endothelial-cadherin promoter. In summary, these data show for the first time the efficacy of combinatorial Aza+TSA therapy in preventing ALI in lipopolysaccharide-induced endotoxemia and raise the possibility of an essential role of DNA methyl transferase and histone deacetylase in the mechanism of ALI.
Related JoVE Video
Endothelial progenitor cells and vascular repair.
Curr. Opin. Hematol.
PUBLISHED: 03-19-2014
Show Abstract
Hide Abstract
This review identifies recent advances in the field of vascular repair by regenerative endothelial cells and endothelial progenitor cells (EPCs).
Related JoVE Video
Evidence of a common mechanism of disassembly of adherens junctions through G?13 targeting of VE-cadherin.
J. Exp. Med.
PUBLISHED: 03-03-2014
Show Abstract
Hide Abstract
The heterotrimeric G protein G?13 transduces signals from G protein-coupled receptors (GPCRs) to induce cell spreading, differentiation, migration, and cell polarity. Here, we describe a novel GPCR-independent function of G?13 in regulating the stability of endothelial cell adherens junctions (AJs). We observed that the oxidant H2O2, which is released in response to multiple proinflammatory mediators, induced the interaction of G?13 with VE-cadherin. G?13 binding to VE-cadherin in turn induced Src activation and VE-cadherin phosphorylation at Tyr 658, the p120-catenin binding site thought to be responsible for VE-cadherin internalization. Inhibition of G?13-VE-cadherin interaction using an interfering peptide derived from the G?13 binding motif on VE-cadherin abrogated the disruption of AJs in response to inflammatory mediators. These studies identify a unique role of G?13 binding to VE-cadherin in mediating VE-cadherin internalization and endothelial barrier disruption and inflammation.
Related JoVE Video
Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils.
Nat Nanotechnol
PUBLISHED: 01-17-2014
Show Abstract
Hide Abstract
Inflammatory diseases such as acute lung injury and ischaemic tissue injury are caused by the adhesion of a type of white blood cell--polymorphonuclear neutrophils--to the lining of the circulatory system or vascular endothelium and unchecked neutrophil transmigration. Nanoparticle-mediated targeting of activated neutrophils on vascular endothelial cells at the site of injury may be a useful means of directly inactivating neutrophil transmigration and hence mitigating vascular inflammation. Here, we report a method employing drug-loaded albumin nanoparticles, which efficiently deliver drugs into neutrophils adherent to the surface of the inflamed endothelium. Using intravital microscopy of tumour necrosis factor-?-challenged mouse cremaster post-capillary venules, we demonstrate that fluorescently tagged albumin nanoparticles are largely internalized by neutrophils adherent to the activated endothelium via cell surface Fc? receptors. Administration of albumin nanoparticles loaded with the spleen tyrosine kinase inhibitor, piceatannol, which blocks 'outside-in' ?2 integrin signalling in leukocytes, detached the adherent neutrophils and elicited their release into the circulation. Thus, internalization of drug-loaded albumin nanoparticles into neutrophils inactivates the pro-inflammatory function of activated neutrophils, thereby offering a promising approach for treating inflammatory diseases resulting from inappropriate neutrophil sequestration and activation.
Related JoVE Video
The transcription factor DREAM represses the deubiquitinase A20 and mediates inflammation.
Nat. Immunol.
PUBLISHED: 01-02-2014
Show Abstract
Hide Abstract
Here we found that the transcription repressor DREAM bound to the promoter of the gene encoding A20 to repress expression of this deubiquitinase that suppresses inflammatory NF-?B signaling. DREAM-deficient mice displayed persistent and unchecked A20 expression in response to endotoxin. DREAM functioned by transcriptionally repressing A20 through binding to downstream regulatory elements (DREs). In contrast, binding of the transcription factor USF1 to the DRE-associated E-box domain in the gene encoding A20 activated its expression in response to inflammatory stimuli. Our studies define the critical opposing functions of DREAM and USF1 in inhibiting and inducing A20 expression, respectively, and thereby the strength of NF-?B signaling. Targeting of DREAM to induce USF1-mediated A20 expression is therefore a potential anti-inflammatory strategy for the treatment of diseases associated with unconstrained NF-?B activity, such as acute lung injury.
Related JoVE Video
Therapeutic administration of the chemokine CXCL1/KC abrogates autoimmune inflammatory heart disease.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Myocarditis, often due to an aberrant immune response to infection, is a major cause of dilated cardiomyopathy. Microbial pattern recognition receptors, such as TLRs, orchestrate the cytokine and chemokine responses that augment or limit the severity of myocarditis. Using the mouse model of experimental autoimmune myocarditis (EAM), in which disease is induced by immunization with a heart-specific self peptide and the agonist to multiple TLRs, complete Freund's adjuvant, we found that increased serum concentrations of the chemokine CXCL1/KC correlated directly with decreased severity of myocarditis. To directly test whether CXCL1/KC caused the amelioration of myocarditis, we treated mice, after challenge with heart-specific self peptide, with exogenous recombinant CXCL1/KC. We found that the administration of recombinant mouse CXCL1/KC completely abrogated heart inflammatory infiltration and cardiomyocyte damage. Moreover, we show that TLR4 signaling is required to increase serum protein concentrations of CXCL1/KC in EAM, and we demonstrate that the administration of the TLR4 agonist LPS significantly decreased severity and prevalence of EAM and reduced the number of heart-specific self peptide reactive effector T cells. These findings reveal a novel function of CXCL1/KC in the context of organ-specific autoimmune disease that may prove useful for the treatment of inflammatory conditions that underlie human heart disease.
Related JoVE Video
Cooperative Interaction of trp Melastatin Channel TRPM2 with its Splice Variant TRPM2-S is Essential for Endothelial Cell Apoptosis.
Circ. Res.
PUBLISHED: 12-11-2013
Show Abstract
Hide Abstract
Oxidants generated by activated endothelial cells are known to induce apoptosis, a pathogenic feature of vascular injury and inflammation from multiple etiologies. The melastatin-family transient receptor potential 2 (TRPM2) channel is an oxidant-sensitive Ca(2+) permeable channel implicated in mediating apoptosis; however, the mechanisms of gating of the supra-normal Ca(2+) influx required for initiating of apoptosis are not understood.
Related JoVE Video
Caveolin-1 Tyr14 Phosphorylation Induces Interaction with TLR4 in Endothelial Cells and Mediates MyD88-Dependent Signaling and Sepsis-Induced Lung Inflammation.
J. Immunol.
PUBLISHED: 11-15-2013
Show Abstract
Hide Abstract
Activation of TLR4 by the endotoxin LPS is a critical event in the pathogenesis of Gram-negative sepsis. Caveolin-1, the signaling protein associated with caveolae, is implicated in regulating the lung inflammatory response to LPS; however, the mechanism is not understood. In this study, we investigated the role of caveolin-1 in regulating TLR4 signaling in endothelial cells. We observed that LPS interaction with CD14 in endothelial cells induced Src-dependent caveolin-1 phosphorylation at Tyr(14). Using a TLR4-MD2-CD14-transfected HEK-293 cell line and caveolin-1-deficient (cav-1(-/-)) mouse lung microvascular endothelial cells, we demonstrated that caveolin-1 phosphorylation at Tyr(14) following LPS exposure induced caveolin-1 and TLR4 interaction and, thereby, TLR4 activation of MyD88, leading to NF-?B activation and generation of proinflammatory cytokines. Exogenous expression of phosphorylation-deficient Y14F caveolin-1 mutant in cav-1(-/-) mouse pulmonary vasculature rendered the mice resistant to LPS compared with reintroduction of wild-type caveolin-1. Thus, caveolin-1 Y14 phosphorylation was required for the interaction with TLR4 and activation of TLR4-MyD88 signaling and sepsis-induced lung inflammation. Inhibiting caveolin-1 Tyr(14) phosphorylation and resultant inactivation of TLR4 signaling in pulmonary vascular endothelial cells represent a novel strategy for preventing sepsis-induced lung inflammation and injury.
Related JoVE Video
Reactive Oxygen Species in Inflammation and Tissue Injury.
Antioxid. Redox Signal.
PUBLISHED: 10-22-2013
Show Abstract
Hide Abstract
Abstract Reactive oxygen species (ROS) are key signaling molecules that play an important role in the progression of inflammatory disorders. An enhanced ROS generation by polymorphonuclear neutrophils (PMNs) at the site of inflammation causes endothelial dysfunction and tissue injury. The vascular endothelium plays an important role in passage of macromolecules and inflammatory cells from the blood to tissue. Under the inflammatory conditions, oxidative stress produced by PMNs leads to the opening of inter-endothelial junctions and promotes the migration of inflammatory cells across the endothelial barrier. The migrated inflammatory cells not only help in the clearance of pathogens and foreign particles but also lead to tissue injury. The current review compiles the past and current research in the area of inflammation with particular emphasis on oxidative stress-mediated signaling mechanisms that are involved in inflammation and tissue injury. Antioxid. Redox Signal. 00, 000-000.
Related JoVE Video
A critical role for Lyn kinase in strengthening endothelial integrity and barrier function.
Blood
PUBLISHED: 10-09-2013
Show Abstract
Hide Abstract
The Src family kinases (SFKs) c-Src and Yes mediate vascular leakage in response to various stimuli including lipopolysaccharide (LPS) and vascular endothelial growth factor (VEGF). Here, we define an opposing function of another SFK, Lyn, which in contrast to other SFKs, strengthens endothelial junctions and thereby restrains the increase in vascular permeability. Mice lacking Lyn displayed increased mortality in LPS-induced endotoxemia and increased vascular permeability in response to LPS or VEGF challenge compared with wild-type littermates. Lyn knockout mice repopulated with wild-type bone marrow-derived cells have higher vascular permeability than wild-type mice, suggesting a role of endothelial Lyn in the maintenance of the vascular barrier. Small interfering RNA-mediated down-regulation of Lyn disrupted endothelial barrier integrity, whereas expression of a constitutively active mutant of Lyn enhanced the barrier. However, down-regulation of Lyn did not affect LPS-induced endothelial permeability. We demonstrate that Lyn association with focal adhesion kinase (FAK) and phosphorylation of FAK at tyrosine residues 576/577 and 925 were required for Lyn-dependent stabilization of endothelial adherens junctions. Thus, in contrast to c-Src and Yes, which increase vascular permeability in response to stimuli, Lyn stabilizes endothelial junctions through phosphorylation of FAK. Therefore, therapeutics activating Lyn kinase may strengthen the endothelial barrier junction and hence have anti-inflammatory potential.
Related JoVE Video
Transcriptional regulation of endothelial cell and vascular development.
Circ. Res.
PUBLISHED: 05-11-2013
Show Abstract
Hide Abstract
The establishment and maintenance of the vascular system is critical for embryonic development and postnatal life. Defects in endothelial cell development and vessel formation and function lead to embryonic lethality and are important in the pathogenesis of vascular diseases. Here, we review the underlying molecular mechanisms of endothelial cell differentiation, plasticity, and the development of the vasculature. This review focuses on the interplay among transcription factors and signaling molecules that specify the differentiation of vascular endothelial cells. We also discuss recent progress on reprogramming of somatic cells toward distinct endothelial cell lineages and its promise in regenerative vascular medicine.
Related JoVE Video
Store-operated Ca2+ entry (SOCE) induced by protease-activated receptor-1 mediates STIM1 protein phosphorylation to inhibit SOCE in endothelial cells through AMP-activated protein kinase and p38? mitogen-activated protein kinase.
J. Biol. Chem.
PUBLISHED: 04-26-2013
Show Abstract
Hide Abstract
The Ca(2+) sensor STIM1 is crucial for activation of store-operated Ca(2+) entry (SOCE) through transient receptor potential canonical and Orai channels. STIM1 phosphorylation serves as an "off switch" for SOCE. However, the signaling pathway for STIM1 phosphorylation is unknown. Here, we show that SOCE activates AMP-activated protein kinase (AMPK); its effector p38? mitogen-activated protein kinase (p38? MAPK) phosphorylates STIM1, thus inhibiting SOCE in human lung microvascular endothelial cells. Activation of AMPK using 5-aminoimidazole-4-carboxamide-1-?-d-ribofuranoside (AICAR) resulted in STIM1 phosphorylation on serine residues and prevented protease-activated receptor-1 (PAR-1)-induced Ca(2+) entry. Furthermore, AICAR pretreatment blocked PAR-1-induced increase in the permeability of mouse lung microvessels. Activation of SOCE with thrombin caused phosphorylation of isoform ?1 but not ?2 of the AMPK catalytic subunit. Moreover, knockdown of AMPK?1 augmented SOCE induced by thrombin. Interestingly, SB203580, a selective inhibitor of p38 MAPK, blocked STIM1 phosphorylation and led to sustained STIM1-puncta formation and Ca(2+) entry. Of the three p38 MAPK isoforms expressed in endothelial cells, p38? knockdown prevented PAR-1-mediated STIM1 phosphorylation and potentiated SOCE. In addition, inhibition of the SOCE downstream target CaM kinase kinase ? (CaMKK?) or knockdown of AMPK?1 suppressed PAR-1-mediated phosphorylation of p38? and hence STIM1. Thus, our findings demonstrate that SOCE activates CaMKK?-AMPK?1-p38? MAPK signaling to phosphorylate STIM1, thereby suppressing endothelial SOCE and permeability responses.
Related JoVE Video
Activation of NLRP3 inflammasome in alveolar macrophages contributes to mechanical stretch-induced lung inflammation and injury.
J. Immunol.
PUBLISHED: 02-22-2013
Show Abstract
Hide Abstract
Mechanical ventilation of lungs is capable of activating the innate immune system and inducing sterile inflammatory response. The proinflammatory cytokine IL-1? is among the definitive markers for accurately identifying ventilator-induced lung inflammation. However, mechanisms of IL-1? release during mechanical ventilation are unknown. In this study, we show that cyclic stretch activates the nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasomes and induces the release of IL-1? in mouse alveolar macrophages via caspase-1- and TLR4-dependent mechanisms. We also observed that NADPH oxidase subunit gp91(phox) was dispensable for stretch-induced cytokine production, whereas mitochondrial generation of reactive oxygen species was required for stretch-induced NLRP3 inflammasome activation and IL-1? release. Further, mechanical ventilation activated the NLRP3 inflammasomes in mouse alveolar macrophages and increased the production of IL-1? in vivo. IL-1? neutralization significantly reduced mechanical ventilation-induced inflammatory lung injury. These findings suggest that the alveolar macrophage NLRP3 inflammasome may sense lung alveolar stretch to induce the release of IL-1? and hence may contribute to the mechanism of lung inflammatory injury during mechanical ventilation.
Related JoVE Video
Bioluminescent detection of peroxynitrite with a boronic acid-caged luciferin.
Free Radic. Biol. Med.
PUBLISHED: 02-13-2013
Show Abstract
Hide Abstract
Peroxynitrite, a highly reactive biological oxidant, is formed under pathophysiologic conditions from the diffusion-limited reaction of nitric oxide and superoxide radical anion. Peroxynitrite has been implicated as the mediator of nitric oxide toxicity in many diseases and as an important signaling disrupting molecule (L. Liaudet et al., Front. Biosci.14, 4809-4814, 2009) [1]. Biosensors effective at capturing peroxynitrite in a specific and fast enough manner for detection, along with readouts compatible with in vivo studies, are lacking. Here we report that the boronic acid-based bioluminescent system PCL-1 (peroxy-caged luciferin-1), previously reported as a chemoselective sensor for hydrogen peroxide (G.C. Van de Bittner et al., Proc. Natl. Acad. Sci. USA107, 21316-21321, 2010) [2], reacts with peroxynitrite stoichiometrically with a rate constant of 9.8±0.3×10(5)M(-1)s(-1) and a bioluminescence detection limit of 16nM, compared to values of 1.2±0.3M(-1)s(-1) and 231nM for hydrogen peroxide. Further, we demonstrate bioluminescent detection of peroxynitrite in the presence of physiological competitors: carbon dioxide, glutathione, albumin, and catalase. We also demonstrate the utility of this method to assess peroxynitrite formation in mammalian cells by measuring peroxynitrite generated under normal culture conditions after stimulation of macrophages with bacterial endotoxin lipopolysaccharide. Thus, the PCL-1 method for measuring peroxynitrite generation shows superior selectivity over other oxidants under in vivo conditions.
Related JoVE Video
Flk1+ and VE-Cadherin+ Endothelial Cells Derived from iPSCs Recapitulates Vascular Development during Differentiation and Display Similar Angiogenic Potential as ESC-Derived Cells.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Induced pluripotent stem (iPS) cells have emerged as a source of potentially unlimited supply of autologous endothelial cells (ECs) for vascularization. However, the regenerative function of these cells relative to adult ECs and ECs derived from embryonic stem (ES) cells is unknown. The objective was to define the differentiation characteristics and vascularization potential of Fetal liver kinase (Flk)1(+) and Vascular Endothelial (VE)-cadherin(+) ECs derived identically from mouse (m)ES and miPS cells.
Related JoVE Video
The Ca(2+) sensor stromal interaction molecule 1 (STIM1) is necessary and sufficient for the store-operated Ca(2+) entry function of transient receptor potential canonical (TRPC) 1 and 4 channels in endothelial cells.
Mol. Pharmacol.
PUBLISHED: 12-30-2011
Show Abstract
Hide Abstract
We addressed the requirement for stromal interaction molecule 1 (STIM1), the endoplasmic reticulum (ER) Ca(2+)-sensor, and Orai1, a Ca(2+) selective channel, in regulating Ca(2+) entry through the store-operated channels mouse transient receptor potential canonical (TRPC) 4 or human TRPC1. Studies were made using murine and human lung endothelial cells (ECs) challenged with thrombin known to induce Ca(2+) entry via TRPC1/4. Deletion or knockdown of TRPC4 abolished Ca(2+) entry secondary to depletion of ER Ca(2+) stores, preventing the disruption of the endothelial barrier. Knockdown of STIM1 (but not of Orai1or Orai3) or expression of the dominant-negative STIM1(K684E-K685E) mutant in ECs also suppressed Ca(2+) entry secondary to store depletion. Ectopic expression of WT-STIM1 or WT-Orai1 in TRPC4(-/-)-ECs failed to rescue Ca(2+) entry; however, WT-TRPC4 expression in TRPC4(-/-)-ECs restored Ca(2+) entry indicating the requirement for TRPC4 in mediating store-operated Ca(2+) entry. Moreover, expression of the dominant-negative Orai1(R91W) mutant or Orai3(E81W) mutant in WT-ECs failed to prevent thrombin-induced Ca(2+) entry. In contrast, expression of the dominant-negative TRPC4(EE647-648KK) mutant in WT-ECs markedly reduced thrombin-induced Ca(2+) entry. In ECs expressing YFP-STIM1, ER-store Ca(2+) depletion induced formation of fluorescent membrane puncta in WT but not in TRPC4(-/-) cells, indicating that mobilization of STIM1 and engagement of its Ca(2+) sensing function required TRPC4 expression. Coimmunoprecipitation studies showed coupling of TRPC1 and TRPC4 with STIM1 on depletion of ER Ca(2+) stores. Thus, TRPC1 and TRPC4 can interact with STIM1 to form functional store-operated Ca(2+)-entry channels, which are essential for mediating Ca(2+) entry-dependent disruption of the endothelial barrier.
Related JoVE Video
Permeability of endothelial barrier: cell culture and in vivo models.
Methods Mol. Biol.
PUBLISHED: 08-30-2011
Show Abstract
Hide Abstract
The methods for assessment of endothelial barrier permeability are vital tools of experimental biology. They allow us to measure permeability of endothelial monolayer in cell culture and in lung vessels or to determine formation of tissue edema resulting from increased permeability of vasculature. This chapter provides an overview of the most common protocols.
Related JoVE Video
The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation.
Nat. Immunol.
PUBLISHED: 08-16-2011
Show Abstract
Hide Abstract
The NADPH oxidase activity of phagocytes and its generation of reactive oxygen species (ROS) is critical for host defense, but ROS overproduction can also lead to inflammation and tissue injury. Here we report that TRPM2, a nonselective and redox-sensitive cation channel, inhibited ROS production in phagocytic cells and prevented endotoxin-induced lung inflammation in mice. TRPM2-deficient mice challenged with endotoxin (lipopolysaccharide) had an enhanced inflammatory response and diminished survival relative to that of wild-type mice challenged with endotoxin. TRPM2 functioned by dampening NADPH oxidase-mediated ROS production through depolarization of the plasma membrane in phagocytes. As ROS also activate TRPM2, our findings establish a negative feedback mechanism for the inactivation of ROS production through inhibition of the membrane potential-sensitive NADPH oxidase.
Related JoVE Video
FoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by Pseudomonas aeruginosa.
J. Exp. Med.
PUBLISHED: 06-27-2011
Show Abstract
Hide Abstract
The alveolar epithelium is composed of the flat type I cells comprising 95% of the gas-exchange surface area and cuboidal type II cells comprising the rest. Type II cells are described as facultative progenitor cells based on their ability to proliferate and trans-differentiate into type I cells. In this study, we observed that pneumonia induced by intratracheal instillation of Pseudomonas aeruginosa (PA) in mice increased the expression of the forkhead transcription factor FoxM1 in type II cells coincidentally with the induction of alveolar epithelial barrier repair. FoxM1 was preferentially expressed in the Sca-1(+) subpopulation of progenitor type II cells. In mice lacking FoxM1 specifically in type II cells, type II cells showed decreased proliferation and impaired trans-differentiation into type I cells. Lungs of these mice also displayed defective alveolar barrier repair after injury. Expression of FoxM1 in the knockout mouse lungs partially rescued the defective trans-differentiation phenotype. Thus, expression of FoxM1 in type II cells is essential for their proliferation and transition into type I cells and for restoring alveolar barrier homeostasis after PA-induced lung injury.
Related JoVE Video
Regulation of dynamin-2 assembly-disassembly and function through the SH3A domain of intersectin-1s.
J. Cell. Mol. Med.
PUBLISHED: 06-16-2011
Show Abstract
Hide Abstract
Intersectin-1s (ITSN-1s), a five Src homology 3 (SH3) domain-containing protein, is critically required for caveolae and clathrin-mediated endocytosis (CME), due to its interactions with dynamin (dyn). Of the five SH3A-E domains, SH3A is unique because of its high affinity for dyn and potent inhibition of CME. However, the molecular mechanism by which SH3A integrates in the overall function of ITSN-1s to regulate the endocytic process is not understood. Using biochemical and functional approaches as well as high-resolution electron microscopy, we show that SH3A exogenously expressed in human lung endothelial cells caused abnormal endocytic structures, distorted caveolae clusters, frequent staining-dense rings around the caveolar necks and 60% inhibition of caveolae internalization. In vitro studies further revealed that SH3A, similar to full-length ITSN-1s stimulates dyn2 oligomerization and guanosine triphosphatase (GTP)ase activity, effects not detected when other SH3 domains of ITSN-1s were used as controls. Strikingly, in the presence of SH3A, dyn2-dyn2 interactions are stabilized and despite continuous GTP hydrolysis, dyn2 oligomers cannot disassemble. SH3A may hold up caveolae release from the plasma membrane and formation of free-transport vesicles, by prolonging the lifetime of assembled dyn2. Altogether, our results indicate that ITSN-1s, via its SH3A has the unique ability to regulate dyn2 assembly-disassembly and function during endocytosis.
Related JoVE Video
Caveolin-1-eNOS signaling promotes p190RhoGAP-A nitration and endothelial permeability.
J. Cell Biol.
PUBLISHED: 06-01-2011
Show Abstract
Hide Abstract
Endothelial barrier function is regulated by adherens junctions (AJs) and caveolae-mediated transcellular pathways. The opening of AJs that is observed in caveolin-1(-/-) (Cav-1(-/-)) endothelium suggests that Cav-1 is necessary for AJ assembly or maintenance. Here, using endothelial cells isolated from Cav-1(-/-) mice, we show that Cav-1 deficiency induced the activation of endothelial nitric oxide synthase (eNOS) and the generation of nitric oxide (NO) and peroxynitrite. We assessed S-nitrosylation and nitration of AJ-associated proteins to identify downstream NO redox signaling targets. We found that the GTPase-activating protein (GAP) p190RhoGAP-A was selectively nitrated at Tyr1105, resulting in impaired GAP activity and RhoA activation. Inhibition of eNOS or RhoA restored AJ integrity and diminished endothelial hyperpermeability in Cav-1(-/-) mice. Thrombin, a mediator of increased endothelial permeability, also induced nitration of p120-catenin-associated p190RhoGAP-A. Thus, eNOS-dependent nitration of p190RhoGAP-A represents a crucial mechanism for AJ disassembly and resultant increased endothelial permeability.
Related JoVE Video
Improvement of cardiac function in mouse myocardial infarction after transplantation of epigenetically-modified bone marrow progenitor cells.
PLoS ONE
PUBLISHED: 05-24-2011
Show Abstract
Hide Abstract
To study usefulness of bone marrow progenitor cells (BPCs) epigenetically altered by chromatin modifying agents in mediating heart repair after myocardial infarction in mice.
Related JoVE Video
Src phosphorylation of endothelial cell surface intercellular adhesion molecule-1 mediates neutrophil adhesion and contributes to the mechanism of lung inflammation.
Arterioscler. Thromb. Vasc. Biol.
PUBLISHED: 04-07-2011
Show Abstract
Hide Abstract
The goal of this study was to determine whether tumor necrosis factor ? (TNF?)-induced Src activation and intercellular adhesion molecule-1 (ICAM-1) phosphorylation rapidly increase endothelial cell adhesivity and polymorphonuclear leukocyte (PMN) sequestration independently of de novo ICAM-1 synthesis.
Related JoVE Video
Delivery of nanoparticle: complexed drugs across the vascular endothelial barrier via caveolae.
IUBMB Life
PUBLISHED: 03-31-2011
Show Abstract
Hide Abstract
The endothelial cell monolayer lining the vessel wall forms a size-selective, semi-permeable barrier between the blood and tissue that must be crossed by blood borne therapeutic agents to reach diseased extravascular tissue. Nanoparticles engineered to carry drugs present an opportunity to enhance the specificity and efficacy of drug delivery. Therefore, an understanding of how these engineered nanoparticles are transported across the vessel wall will help us to more fully exploit this powerful therapeutic technology. Vascular endothelial cells are rich in caveolae, cell surface invaginations 50-100 nm in diameter that mediate endocytosis of lipids, proteins, and viruses. Caveolar invaginations pinch off to form intracellular vesicles that can transport cargo across the cell and release the cargo into the extravascular space via exocytosis. Here, we will review the current concepts and state of development for delivering engineered nanoparticles across the endothelium via the caveolae-mediated pathway.
Related JoVE Video
Role of endothelial injury in disease mechanisms and contribution of progenitor cells in mediating endothelial repair.
Immunobiology
PUBLISHED: 03-01-2011
Show Abstract
Hide Abstract
Recent research on the endothelium demonstrates complex interactions of endothelial cells with circulating immune cells, mediators such as cytokines, hormones and growth factors, and with the underlying parenchymal cells. These disparate interactions are involved in promotion of vascular development; maintenance of tissue homeostasis; and regulation of vascular repair. Injury to the endothelial monolayer is the sine qua non of organ dysfunction with endothelial repair the necessary first step needed for recovery. Thus, the capacity of the endothelium to regenerate itself is a key determinant of organ repair and survival after injury. Using the example of the lung, we will review the current state of knowledge regarding the importance of endothelium in the above mentioned processes with a focus on the role of stem cells, both endogenous (i.e., localized within the vessel wall) as well as exogenous (i.e., arriving in the vessel wall from distant sites such as the bone marrow) in promoting endothelial repair and regeneration. The subject of endothelial regeneration and the ways in which stem and progenitor cells contribute to this process has promise in treating vascular diseases. As we will highlight in this review, some questions have been addressed but many more remain and need to be addressed before cell-based therapies become a viable option.
Related JoVE Video
Innate immune function of the adherens junction protein p120-catenin in endothelial response to endotoxin.
J. Immunol.
PUBLISHED: 01-28-2011
Show Abstract
Hide Abstract
Sepsis-induced acute lung injury is a common clinical disorder in critically ill patients that is associated with high mortality. In this study, we investigated the role of p120-catenin (p120), a constituent of endothelial adherens junctions, in regulating the innate immune function of lungs. In mice in which acute lung injury was induced by i.p. administration of LPS, we observed a rapid decrease in the expression of p120 in lungs. The p120 protein expression was correlated inversely with severity of inflammation. Suppression of p120 expression in lung endothelial cells in mice using small interfering RNA resulted in high sensitivity to endotoxin and greatly increased the mortality compared with controls. Knockdown of p120 also increased the expression of ICAM-1, neutrophil recruitment, production of cytokines TNF-? and IL-6, pulmonary transvascular protein permeability, and lung water content in response to LPS. We demonstrated that endothelial p120 modulates lung innate immune function by interfering with the association of TLR4 with its adaptor MyD88 to block TLR4 signaling and NF-?B activation in endothelial cells. In conclusion, these studies have uncovered a novel innate immune function of endothelial p120 in downregulating the lung inflammatory response to endotoxin through the suppression of TLR4 signaling.
Related JoVE Video
NANOG induction of fetal liver kinase-1 (FLK1) transcription regulates endothelial cell proliferation and angiogenesis.
Blood
PUBLISHED: 11-30-2010
Show Abstract
Hide Abstract
NANOG is a master transcription factor associated with the maintenance of stem cell pluripotency. Here, we demonstrate that transcription factor NANOG is expressed in cultured endothelial cells (ECs) and in a subset of tumor cell lines. Importantly, we provide evidence that WNT3A stimulation of ECs induces the transcription of NANOG which mediates the expression of vascular endothelial growth factor receptor-2, also known as fetal liver kinase-1 (FLK1). We defined ATTA as a minimal binding site for NANOG. Accordingly, a luciferase reporter assay showed that NANOG binds to and activates 4 ATTA binding sites identified in the FLK1 promoter after WNT3A stimulation. Consistent with this data, we found that, under basal conditions and in response to WNT3A stimulation, NANOG binding to these ATTA sequences markedly induced the expression of FLK1. Thus, our data indicate an essential role in angiogenesis for NANOG binding to these 4 ATTA sites. Surprisingly, NANOG depletion not only decreased FLK1 expression but also reduced cell proliferation and angiogenesis. These findings show the necessary and sufficient role of NANOG in inducing the transcription of FLK1 to regulate the angiogenic phenotypes of ECs.
Related JoVE Video
Regulation of cell cycle-specific gene expression in fission yeast by the Cdc14p-like phosphatase Clp1p.
J. Cell. Sci.
PUBLISHED: 11-23-2010
Show Abstract
Hide Abstract
Regulated gene expression makes an important contribution to cell cycle control mechanisms. In fission yeast, a group of genes is coordinately expressed during a late stage of the cell cycle (M phase and cytokinesis) that is controlled by common cis-acting promoter motifs named pombe cell cycle boxes (PCBs), which are bound by a trans-acting transcription factor complex, PCB binding factor (PBF). PBF contains at least three transcription factors, a MADS box protein Mbx1p and two forkhead transcription factors, Sep1p and Fkh2p. Here we show that the fission yeast Cdc14p-like phosphatase Clp1p (Flp1p) controls M-G1 specific gene expression through PBF. Clp1p binds in vivo both to Mbx1p, a MADS box-like transcription factor, and to the promoters of genes transcribed at this cell cycle time. Because Clp1p dephosphorylates Mbx1p in vitro, and is required for Mbx1p cell cycle-specific dephosphorylation in vivo, our observations suggest that Clp1p controls cell cycle-specific gene expression through binding to and dephosphorylating Mbx1p.
Related JoVE Video
Kruppel-like factor-4 transcriptionally regulates VE-cadherin expression and endothelial barrier function.
Circ. Res.
PUBLISHED: 08-19-2010
Show Abstract
Hide Abstract
Vascular endothelial (VE)-cadherin localized at adherens junctions (AJs) regulates endothelial barrier function. Because WNT (wingless) signaling-induced activation of the transcription factor Krüppel-like factor (KLF)4 may have an important role in mediating the expression of VE-cadherin and AJ integrity, we studied the function of KLF4 in regulating VE-cadherin expression and the control of endothelial barrier function.
Related JoVE Video
FoxM1 regulates re-annealing of endothelial adherens junctions through transcriptional control of beta-catenin expression.
J. Exp. Med.
PUBLISHED: 07-26-2010
Show Abstract
Hide Abstract
Repair of the injured vascular intima requires a series of coordinated events that mediate both endothelial regeneration and reannealing of adherens junctions (AJs) to form a restrictive endothelial barrier. The forkhead transcription factor FoxM1 is essential for endothelial proliferation after vascular injury. However, little is known about mechanisms by which FoxM1 regulates endothelial barrier reannealing. Here, using a mouse model with endothelial cell (EC)-restricted disruption of FoxM1 (FoxM1 CKO) and primary cultures of ECs with small interfering RNA (siRNA)-mediated knockdown of FoxM1, we demonstrate a novel requisite role of FoxM1 in mediating endothelial AJ barrier repair through the transcriptional control of beta-catenin. In the FoxM1 CKO lung vasculature, we observed persistent microvessel leakage characterized by impaired reannealing of endothelial AJs after endothelial injury. We also showed that FoxM1 directly regulated beta-catenin transcription and that reexpression of beta-catenin rescued the defective AJ barrier-reannealing phenotype of FoxM1-deficient ECs. Knockdown of beta-catenin mimicked the phenotype of defective barrier recovery seen in FoxM1-deficient ECs. These data demonstrate that FoxM1 is required for reannealing of endothelial AJs in order to form a restrictive endothelial barrier through transcriptional control of beta-catenin expression. Therefore, means of activating FoxM1-mediated endothelial repair represent a new therapeutic strategy for the treatment of inflammatory vascular diseases associated with persistent vascular barrier leakiness such as acute lung injury.
Related JoVE Video
Interaction of a specific population of human embryonic stem cell-derived progenitor cells with CD11b+ cells ameliorates sepsis-induced lung inflammatory injury.
Am. J. Pathol.
PUBLISHED: 05-15-2010
Show Abstract
Hide Abstract
Human embryonic stem cells differentiated under mesoderm-inducing conditions have important therapeutic properties in sepsis-induced lung injury in mice. Single cell suspensions obtained from day 7 human embryoid bodies (d7EBs) injected i.v. 1 hour after cecal ligation and puncture significantly reduced lung inflammation and edema as well as production of tumor necrosis factor-? and interferon-? in lungs compared with controls, whereas interleukin-10 production remained elevated. d7EB cell transplantation also reduced mortality to 50% from 90% in the control group. The protection was ascribed to d7EB cell interaction with lung resident CD11b+ cells, and was correlated with the ability of d7EB cells to reduce it also reduced production of proinflammatory cytokines by CD11+ cells, and to endothelial NO synthase-derived NO by d7EB cells, leading to inhibition of inducible macrophage-type NO synthase activation in CD11b+ cells. The protective progenitor cells were positive for the endothelial and hematopoietic lineage marker angiotensin converting enzyme (ACE). Only the ACE+ fraction modulated the proinflammatory profile of CD11b+ cells and reduced mortality in septic mice. In contrast to the nonprotective ACE-cell fraction, the ACE+ cell fraction also produced NO. These findings suggest that an ACE+ subset of human embryonic stem cell-derived progenitor cells has a highly specialized anti-inflammatory function that ameliorates sepsis-induced lung inflammation and reduces mortality.
Related JoVE Video
Caveolin-1 deficiency dampens Toll-like receptor 4 signaling through eNOS activation.
Am. J. Pathol.
PUBLISHED: 03-19-2010
Show Abstract
Hide Abstract
Caveolin-1 (Cav1), the scaffolding protein of caveolae, has been shown to play an important role in host defense and inflammation. However, the underlying molecular basis for these actions remains elusive. Here, using double mutant mice with genetic deletions of Cav1 and NOS3, we show that chronic endothelial nitric oxide synthase (eNOS) activation secondary to loss of Cav1 serves a crucial immunomodulatory function through tyrosine nitration-mediated impairment of interleukin-1 receptor associated kinase (IRAK)4, a signaling component required for nuclear factor-kappaB activation and innate immunity. We observed an eNOS-dependent decrease in the plasma concentration of pro-inflammatory cytokines and marked improvement of survival in Cav1(-/-) mice following lipopolysaccharide challenge. Activation of eNOS secondary to loss of Cav1 resulted in decreased activation of nuclear factor-kappaB in response to lipopolysaccharide challenge, and thereby protected the animals from lipopolysaccharide-induced lung injury. IRAK4 was prominently nitrated in Cav1-deficient endothelial cells, whereas eNOS deletion in Cav1-deficient endothelial cells resulted in marked decrease of IRAK4 nitration and restored the inflammatory response after lipopolysaccharide challenge. Furthermore, in vitro nitration of IRAK4 resulted in impairment of the kinase activity. Thus, eNOS activation secondary to loss of Cav1 signals dampening of the innate immune response to lipopolysaccharide through IRAK4 nitration and the resultant impairment of kinase activity, and consequently mitigates inflammatory lung injury.
Related JoVE Video
A novel function of sphingosine kinase 1 suppression of JNK activity in preventing inflammation and injury.
J. Biol. Chem.
PUBLISHED: 03-18-2010
Show Abstract
Hide Abstract
The mechanism underlying the protective effect of sphingosine kinase 1 (SphK1) in inflammatory injury is not clear. We demonstrated using SphK1-null mice (SphK1(-/-)) the crucial role of SphK1 in suppressing lipopolysaccharide-induced neutrophil oxidant production and sequestration in lungs and mitigating lung inflammatory injury. This effect of SphK1 was independent of the production of sphingosine 1-phosphate, the product of SphK1 activity. The anti-inflammatory effect of SphK1 in the lipopolysaccharide model was mediated through SphK1 interaction with JNK. SphK1 stabilization of JNK in turn inhibited JNK binding to the JNK-interacting protein 3 (JIP3) and thus abrogated the activation of NADPH oxidase and oxidant generation and resultant NF-kappaB activation. Therefore, SphK1-mediated down-regulation of JNK activity serves to dampen inflammation and tissue injury.
Related JoVE Video
Role of protein kinase Czeta in thrombin-induced RhoA activation and inter-endothelial gap formation of human dermal microvessel endothelial cell monolayers.
Microvasc. Res.
PUBLISHED: 03-12-2010
Show Abstract
Hide Abstract
We studied the potential involvement of the Ca(2+)-independent atypical protein kinase C isoform PKCzeta in mediating the thrombin-induced increase in endothelial permeability. Studies were done using human dermal microvessel endothelial cells (HMEC), which we showed constitutively expressed PKCzeta. We quantified the patency of inter-endothelial junctions (IEJs) and endothelial barrier function by measuring transendothelial electrical resistance (TER) in confluent HMEC monolayers. In control monolayers, thrombin decreased TER by approximately 50%, indicating thrombin-dependent opening of IEJs. Thrombin also elicited increases in cytosolic Ca(2+) concentration [Ca(2+)](i), actin stress fiber formation, and myosin light chain (MLC) phosphorylation. Pan-PKC inhibitors, calphostin C and chelerythrine, abrogated these responses. Thrombin also decreased TER after depletion of conventional and novel Ca(2+)-dependent PKC isoforms using phorbol 12-myristate 13-acetate (PMA). In these PMA-treated cells, thrombin induced inter-endothelial gap formation, MLC phosphorylation, and actin stress fiber formation, but failed to increase [Ca(2+)](i). Inhibition of PKCzeta activation using the PKCzeta pseudosubstrate peptide (PSI), depletion of PKCzeta protein with siRNA, and competitive inhibition of PKCzeta activity using dominant-negative (dn) PKCzeta mutant all prevented the thrombin-induced decrease in TER and MLC phosphorylation. Expression of dn-PKCzeta also inhibited thrombin-induced RhoA activation. These findings reveal a novel Ca(2+)-independent, PKCzeta-dependent mechanism of thrombin-induced increase in endothelial permeability. The results raise the possibility that inhibition of PKCzeta may be a novel drug target for thrombin-induced inflammatory hyperpermeability.
Related JoVE Video
TRPM2 channel regulates endothelial barrier function.
Adv. Exp. Med. Biol.
PUBLISHED: 03-06-2010
Show Abstract
Hide Abstract
Oxidative [Au1]stress, through the production of oxygen metabolites such as hydrogen peroxide[Au2] (H(2)O(2)), increases vascular endothelial permeability and plays a crucial role in several lung diseases. The transient receptor potential (melastatin) 2 (TRPM2) is an oxidant-sensitive, nonselective cation channel that is widely expressed in mammalian tissues, including the vascular endothelium. We have demonstrated the involvement of TRPM2 in mediating oxidant-induced calcium entry and endothelial hyperpermeability in cultured pulmonary artery endothelial cells. Here, we provide evidence that neutrophil activation-dependent increase in endothelial permeability and neutrophil extravasation requires TRPM2 in cultured endothelial cells. In addition, protein kinase Calpha (PKCalpha) that rapidly colocalizes with the short (nonconducting) TRPM2 isoform after exposure to hydrogen peroxide positively regulates calcium entry through the functional TRPM2 channel. Thus, increase in lung microvessel permeability and neutrophil sequestration depends on the activation of endothelial TRPM2 by neutrophilic oxidants and on PKCalpha regulation of TRPM2 channel activity. Manipulating TRPM2 function in the endothelium may represent a novel strategy aimed to prevent oxidative stress-related vascular dysfunction.
Related JoVE Video
Regulation of endothelial permeability via paracellular and transcellular transport pathways.
Annu. Rev. Physiol.
PUBLISHED: 02-13-2010
Show Abstract
Hide Abstract
The endothelium functions as a semipermeable barrier regulating tissue fluid homeostasis and transmigration of leukocytes and providing essential nutrients across the vessel wall. Transport of plasma proteins and solutes across the endothelium involves two different routes: one transcellular, via caveolae-mediated vesicular transport, and the other paracellular, through interendothelial junctions. The permeability of the endothelial barrier is an exquisitely regulated process in the resting state and in response to extracellular stimuli and mediators. The focus of this review is to provide a comprehensive overview of molecular and signaling mechanisms regulating endothelial barrier permeability with emphasis on the cross-talk between paracellular and transcellular transport pathways.
Related JoVE Video
Lipid phosphate phosphatase 3 stabilization of beta-catenin induces endothelial cell migration and formation of branching point structures.
Mol. Cell. Biol.
PUBLISHED: 02-01-2010
Show Abstract
Hide Abstract
Endothelial cell (EC) migration, cell-cell adhesion, and the formation of branching point structures are considered hallmarks of angiogenesis; however, the underlying mechanisms of these processes are not well understood. Lipid phosphate phosphatase 3 (LPP3) is a recently described p120-catenin-associated integrin ligand localized in adherens junctions (AJs) of ECs. Here, we tested the hypothesis that LPP3 stimulates beta-catenin/lymphoid enhancer binding factor 1 (beta-catenin/LEF-1) to induce EC migration and formation of branching point structures. In subconfluent ECs, LPP3 induced expression of fibronectin via beta-catenin/LEF-1 signaling in a phosphatase and tensin homologue (PTEN)-dependent manner. In confluent ECs, depletion of p120-catenin restored LPP3-mediated beta-catenin/LEF-1 signaling. Depletion of LPP3 resulted in destabilization of beta-catenin, which in turn reduced fibronectin synthesis and deposition, which resulted in inhibition of EC migration. Accordingly, reexpression of beta-catenin but not p120-catenin in LPP3-depleted ECs restored de novo synthesis of fibronectin, which mediated EC migration and formation of branching point structures. In confluent ECs, however, a fraction of p120-catenin associated and colocalized with LPP3 at the plasma membrane, via the C-terminal cytoplasmic domain, thereby limiting the ability of LPP3 to stimulate beta-catenin/LEF-1 signaling. Thus, our study identified a key role for LPP3 in orchestrating PTEN-mediated beta-catenin/LEF-1 signaling in EC migration, cell-cell adhesion, and formation of branching point structures.
Related JoVE Video
TRP channels and the control of vascular function.
Curr Opin Pharmacol
PUBLISHED: 01-07-2010
Show Abstract
Hide Abstract
Mammalian TRP channels are grouped into six subfamilies (TRPC, TRPM, TRPV, TRPA, TRPP, and TRPML) based on the homology of the amino acid sequence. They are nonselective cation-permeable channels, most of which are permeable for Ca(2+). Growing evidence demonstrates important roles of TRP channel in controlling vascular function including endothelial permeability, responses to oxidative stress, myogenic tone, cellular proliferative activity, and thermoregulation. TRP channels are activated by a variety of stimuli, including calcium store depletion, mechanical perturbations, receptor activation, and changes in temperature and osmolarity. This diversity of activating mechanisms could be consistent with the potential multiple functions of the TRP superfamily. This review summarizes the burgeoning understanding of these cation channels in the control of vascular function.
Related JoVE Video
Ca2+ influx via TRPC channels induces NF-kappaB-dependent A20 expression to prevent thrombin-induced apoptosis in endothelial cells.
Am. J. Physiol., Cell Physiol.
PUBLISHED: 12-23-2009
Show Abstract
Hide Abstract
NF-kappaB signaling is known to induce the expression of antiapoptotic and proinflammatory genes in endothelial cells (ECs). We have shown recently that Ca(2+) influx through canonical transient receptor potential (TRPC) channels activates NF-kappaB in ECs. Here we show that Ca(2+) influx signal prevents thrombin-induced apoptosis by inducing NF-kappaB-dependent A20 expression in ECs. Knockdown of TRPC1 expressed in human umbilical vein ECs with small interfering RNA (siRNA) suppressed thrombin-induced Ca(2+) influx and NF-kappaB activation in ECs. Interestingly, we observed that thrombin induced >25% of cell death (apoptosis) in TRPC1-knockdown ECs whereas thrombin had no effect on control or control siRNA-transfected ECs. To understand the basis of EC survival, we performed gene microarray analysis using ECs. Thrombin stimulation increased only a set of NF-kappaB-regulated genes 3- to 14-fold over basal levels in ECs. Expression of the antiapoptotic gene A20 was the highest among these upregulated genes. Like TRPC1 knockdown, thrombin induced apoptosis in A20-knockdown ECs. To address the importance of Ca(2+) influx signal, we measured thrombin-induced A20 expression in control and TRPC1-knockdown ECs. Thrombin-induced p65/RelA binding to A20 promoter-specific NF-kappaB sequence and A20 protein expression were suppressed in TRPC1-knockdown ECs compared with control ECs. Furthermore, in TRPC1-knockdown ECs, thrombin induced the expression of proapoptotic proteins caspase-3 and BAX. Importantly, thrombin-induced apoptosis in TRPC1-knockdown ECs was prevented by adenovirus-mediated expression of A20. These results suggest that Ca(2+) influx via TRPC channels plays a critical role in the mechanism of cell survival signaling through A20 expression in ECs.
Related JoVE Video
Requisite role of the cholinergic alpha7 nicotinic acetylcholine receptor pathway in suppressing Gram-negative sepsis-induced acute lung inflammatory injury.
J. Immunol.
PUBLISHED: 11-30-2009
Show Abstract
Hide Abstract
Although activation of the alpha7 nicotinic acetylcholine receptor (alpha7 nAChR) modulates the response to sepsis, the role of this pathway in the development of sepsis-induced acute lung injury (ALI) is not known. In this study, we addressed the contribution of alpha7 nAChR in mediating endotoxin- and live Escherichia coli-induced ALI in mice. Because we found that alpha7 nAChR(+) alveolar macrophages and neutrophils were present in bronchoalveolar lavage and injured lungs of mice, we tested whether acetylcholine released by lung vagal innervation stimulated these effector cells and thereby down-regulated proinflammatory chemokine/cytokine generation. Administration of alpha7 nAChR agonists reduced bronchoalveolar lavage MIP-2 production and transalveolar neutrophil migration and reduced mortality in E. coli pneumonia mice, whereas vagal denervation increased MIP-2 production and airway neutrophil accumulation and increased mortality. In addition, alpha7 nAChR(-/-) mice developed severe lung injury and had higher mortality compared with alpha7 nAChR(+/+) mice. The immunomodulatory cholinergic alpha7 nAChR pathway of alveolar macrophages and neutrophils blocked LPS- and E. coli-induced ALI by reducing chemokine production and transalveolar neutrophil migration, suggesting that activation of alpha7 nAChR may be a promising strategy for treatment of sepsis-induced ALI.
Related JoVE Video
Size and dynamics of caveolae studied using nanoparticles in living endothelial cells.
ACS Nano
PUBLISHED: 11-19-2009
Show Abstract
Hide Abstract
Caveolae are plasma membrane invaginations prominent in all endothelial cells lining blood vessels. Caveolae characteristically bud to form free cytoplasmic vesicles capable of transporting carrier proteins such as albumin through the cell. However, caveolae size distribution and dynamics in living endothelial cells and ability of caveolae to internalize nanoparticles are not well understood. We demonstrate here the design of a dual-color nanoparticle pair to measure noninvasively caveolae size and dynamics. First, we coated nanoparticles with BSA (bovine serum albumin) to address whether albumin promoted their delivery. Albumin has been shown to bind to protein on endothelial cell surface localized in caveolae and activate albumin endocytosis. Imaging of BSA-coated nanoparticles varying from 20 to 100 nm in diameter in endothelial cells demonstrated that caveolae-mediated nanoparticle uptake was dependent on albumin coating of particles. We also showed that caveolae could accommodate up to 100 nm diameter nanoparticles, a size larger than the diameter of typical caveolae, suggesting compliant property of caveolae. Together, our results show the feasibility of tracking multicolored nanoparticles in living endothelial cells and potential usefulness for designing therapeutic nanoparticle cargo to cross the limiting vessel wall endothelial barrier.
Related JoVE Video
Bone marrow-derived progenitor cells prevent thrombin-induced increase in lung vascular permeability.
Am. J. Physiol. Lung Cell Mol. Physiol.
PUBLISHED: 10-30-2009
Show Abstract
Hide Abstract
Since thrombin activation of endothelial cells (ECs) is well-known to increase endothelial permeability by disassembly of adherens junctions (AJs) and actinomyosin contractility mechanism involving myosin light chain (MLC) phosphorylation, we investigated the effects of bone marrow-derived progenitor cells (BMPCs) on the thrombin-induced endothelial permeability response. We observed that addition of BMPCs to endothelial monolayers at a fixed ratio prevented the thrombin-induced decrease in transendothelial electrical resistance, a measure of AJ integrity, and increased mouse pulmonary microvessel filtration coefficient, a measure of transvascular liquid permeability. The barrier protection was coupled to increased vascular endothelial cadherin expression and increased Cdc42 activity in ECs. Using small interfering RNA (siRNA) to deplete Cdc42 in ECs, we demonstrated a key role of Cdc42 in signaling the BMPC-induced endothelial barrier protection. Endothelial integrity induced by BMPCs was also secondary to inhibition of MLC phosphorylation in ECs. Thus BMPCs interacting with ECs prevent thrombin-induced endothelial hyperpermeability by a mechanism involving AJ barrier annealing, inhibition of MLC phosphorylation, and activation of Cdc42.
Related JoVE Video
Requirement of alpha(4)beta(1) and alpha(5)beta(1) integrin expression in bone-marrow-derived progenitor cells in preventing endotoxin-induced lung vascular injury and edema in mice.
Stem Cells
PUBLISHED: 10-20-2009
Show Abstract
Hide Abstract
The goal of this study was to determine the role of integrin-mediated adhesion of bone-marrow-derived progenitor cells (BMPCs) as a requirement for the endothelial barrier protection in a lung injury model. C57BL mice were used as the source for BMPCs, which were characterized as CD34(+) and fetal liver kinase-1 (Flk1)(+) and also an expression of a repertoire of integrins. We used a mouse model of bacterial lipopolysaccharide (LPS)-induced lung vascular injury and edema formation to test the effects of BMPC integrin expression in preventing endothelial barrier injury. Adhesion of BMPCs to purified extracellular matrix proteins induced focal adhesion kinase (Fak) phosphorylation and formation of branching point structures in a alpha(4) and alpha(5) integrin-dependent manner. BMPCs expressing red fluorescent protein (RFP) were administered via the retro-orbital venous route in mice treated intraperitonially with LPS (7.5 mg/kg body weight). We observed increased retention of RFP-labeled Flk1(+) and CD34(+) BMPCs for up to 8 weeks in mice injured with LPS. BMPC transplantation increased survival by 50% (at 72-96 hours after LPS) and reduced lung vascular injury and extravascular water content induced by LPS. However, blocking with anti-alpha(4) or anti-alpha(5) integrin antibody or shRNA-mediated silencing of alpha(4) or alpha(5) integrins in donor BMPCs failed to prevent the vascular injury or edema formation and mortality. Thus, alpha(4) and alpha(5) integrin-dependent adhesion of BMPCs in lung tissue plays a critical role in preventing lung vascular injury and increasing survival in a mouse model of LPS-induced acute lung injury.
Related JoVE Video
A novel insight into the mechanism of pulmonary hypertension involving caveolin-1 deficiency and endothelial nitric oxide synthase activation.
Trends Cardiovasc. Med.
PUBLISHED: 08-20-2009
Show Abstract
Hide Abstract
Severe pulmonary hypertension (PH) is characterized by a progressive increase in pulmonary vascular resistance and vascular remodeling leading to right heart failure and early death. Our recent studies with the use of the novel mouse model with genetic deletions of caveolin-1 (Cav1) and endothelial nitric oxide synthase (eNOS) (NOS3) have demonstrated that persistent eNOS activation in Cav1(-/-) lungs results in tyrosine nitration of protein kinase G (PKG) and impairment of its activity, which thereby induces PH. The finding of eNOS activation and PKG nitration concomitant with Cav1 deficiency was recapitulated in lungs from patients with idiopathic pulmonary arterial hypertension. These data suggest targeting PKG nitration has potential value for the treatment of PH. Here, we will review the current knowledge about Cav1-regulated eNOS activity and its fundamental role in the pathogenesis of PH.
Related JoVE Video
Bone marrow progenitor cells induce endothelial adherens junction integrity by sphingosine-1-phosphate-mediated Rac1 and Cdc42 signaling.
Circ. Res.
PUBLISHED: 08-20-2009
Show Abstract
Hide Abstract
Little is known about the contribution of bone marrow-derived progenitor cells (BMPCs) in the regulation endothelial barrier function as defined by microvascular permeability alterations at the level of adherens junctions (AJs).
Related JoVE Video
LIM kinase 1 promotes endothelial barrier disruption and neutrophil infiltration in mouse lungs.
Circ. Res.
PUBLISHED: 08-13-2009
Show Abstract
Hide Abstract
Disruption of endothelial barrier function and neutrophil-mediated injury are two major mechanisms underlying the pathophysiology of sepsis-induced acute lung injury (ALI). Recently we reported that endotoxin induced activation of RhoA in mice lungs that led to the disruption of endothelial barrier and lung edema formation; however, the molecular mechanism of this phenomenon remained unknown.
Related JoVE Video
Intersectin-2L regulates caveola endocytosis secondary to Cdc42-mediated actin polymerization.
J. Biol. Chem.
PUBLISHED: 07-21-2009
Show Abstract
Hide Abstract
Here we addressed the role of intersectin-2L (ITSN-2L), a guanine nucleotide exchange factor for the Rho GTPase Cdc42, in the mechanism of caveola endocytosis in endothelial cells (ECs). Immunoprecipitation and co-localization studies showed that ITSN-2L associates with members of the Cdc42-WASp-Arp2/3 actin polymerization pathway. Expression of Dbl homology-pleckstrin homology (DH-PH) region of ITSN-2L (DH-PH(ITSN-2L)) induced specific activation of Cdc42, resulting in formation of extensive filopodia, enhanced cortical actin, as well as a shift from G-actin to F-actin. The "catalytically dead" DH-PH domain reversed these effects and induced significant stress fiber formation, without a detectable shift in actin pools. A biotin assay for caveola internalization indicated a significant decrease in the uptake of biotinylated proteins in DH-PH(ITSN-2L)-transfected cells compared with control and 1 microM jasplakinolide-treated cells. ECs depleted of ITSN-2L by small interfering RNA, however, showed decreased Cdc42 activation and actin remodeling similar to the defective DH-PH, resulting in 62% increase in caveola-mediated uptake compared with controls. Thus, ITSN-2L, a guanine nucleotide exchange factor for Cdc42, regulates different steps of caveola endocytosis in ECs by controlling the temporal and spatial actin polymerization and remodeling sub-adjacent to the plasma membrane.
Related JoVE Video
Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway.
J. Immunol.
PUBLISHED: 06-05-2009
Show Abstract
Hide Abstract
Bacterial LPS induces rapid thrombocytopenia, hypotension, and sepsis. Although growing evidence suggests that platelet activation plays a critical role in LPS-induced thrombocytopenia and tissue damage, the mechanism of LPS-mediated platelet activation is unclear. In this study, we show that LPS stimulates platelet secretion of dense and alpha granules as indicated by ATP release and P-selectin expression, and thus enhances platelet activation induced by low concentrations of platelet agonists. Platelets express components of the LPS receptor-signaling complex, including TLR (TLR4), CD14, MD2, and MyD88, and the effect of LPS on platelet activation was abolished by an anti-TLR4-blocking Ab or TLR4 knockout, suggesting that the effect of LPS on platelet aggregation requires the TLR4 pathway. Furthermore, LPS-potentiated thrombin- and collagen-induced platelet aggregation and FeCl(3)-induced thrombus formation were abolished in MyD88 knockout mice. LPS also induced cGMP elevation and the stimulatory effect of LPS on platelet aggregation was abolished by inhibitors of NO synthase and the cGMP-dependent protein kinase (PKG). LPS-induced cGMP elevation was inhibited by an anti-TLR4 Ab or by TLR4 deficiency, suggesting that activation of the cGMP/protein kinase G pathway by LPS involves the TLR4 pathway. Taken together, our data indicate that LPS stimulates platelet secretion and potentiates platelet aggregation through a TLR4/MyD88- and cGMP/PKG-dependent pathway.
Related JoVE Video
Caveolin-1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release-induced Ca2+ entry in endothelial cells.
Am. J. Physiol., Cell Physiol.
PUBLISHED: 04-28-2009
Show Abstract
Hide Abstract
Caveolin-1 (Cav-1) regulates agonist-induced Ca(2+) entry in endothelial cells; however, how Cav-1 regulates this process is poorly understood. Here, we describe that Cav-1 scaffold domain (NH(2)-terminal residues 82-101; CSD) interacts with transient receptor potential canonical channel 1 (TRPC1) and inositol 1,4,5-trisphosphate receptor 3 (IP(3)R3) to regulate Ca(2+) entry. We have shown previously that the TRPC1 COOH-terminal residues 781-789 bind to CSD. In the present study, we show that the TRPC1 COOH-terminal residues 781-789 truncated (TRPC1-CDelta781-789) mutant expression abolished Ca(2+) store release-induced Ca(2+) influx in human dermal microvascular endothelial cell line (HMEC) and human embryonic kidney (HEK-293) cells. To understand the basis of loss of Ca(2+) influx, we determined TRPC1 binding to IP(3)R3. We observed that the wild-type (WT)-TRPC1 but not TRPC1-CDelta781-789 effectively interacted with IP(3)R3. Similarly, WT-TRPC1 interacted with Cav-1, whereas TRPC1-CDelta781-789 binding to Cav-1 was markedly suppressed. We also assessed the direct binding of Cav-1 with TRPC1 and observed that the WT-Cav-1 but not the Cav-1DeltaCSD effectively interacted with TRPC1. Since the interaction between TRPC1 and Cav-1DeltaCSD was reduced, we measured Ca(2+) store release-induced Ca(2+) influx in Cav-1DeltaCSD-transfected cells. Surprisingly, Cav-1DeltaCSD expression showed a gain-of-function in Ca(2+) entry in HMEC and HEK-293 cells. We observed a similar gain-of-function in Ca(2+) entry when Cav-1DeltaCSD was expressed in lung endothelial cells of Cav-1 knockout mice. Immunoprecipitation results revealed that WT-Cav-1 but not Cav-1DeltaCSD interacted with IP(3)R3. Furthermore, we observed using confocal imaging the colocalization of IP(3)R3 with WT-Cav-1 but not with Cav-1DeltaCSD on Ca(2+) store release in endothelial cells. These findings suggest that CSD interacts with TRPC1 and IP(3)R3 and thereby regulates Ca(2+) store release-induced Ca(2+) entry in endothelial cells.
Related JoVE Video
NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology.
Antioxid. Redox Signal.
PUBLISHED: 04-17-2009
Show Abstract
Hide Abstract
Reactive oxygen species (ROS) including superoxide (O(2)(.-)) and hydrogen peroxide (H(2)O(2)) are produced endogenously in response to cytokines, growth factors; G-protein coupled receptors, and shear stress in endothelial cells (ECs). ROS function as signaling molecules to mediate various biological responses such as gene expression, cell proliferation, migration, angiogenesis, apoptosis, and senescence in ECs. Signal transduction activated by ROS, "oxidant signaling," has received intense investigation. Excess amount of ROS contribute to various pathophysiologies, including endothelial dysfunction, atherosclerosis, hypertension, diabetes, and acute respiratory distress syndrome (ARDS). The major source of ROS in EC is a NADPH oxidase. The prototype phagaocytic NADPH oxidase is composed of membrane-bound gp91phox and p22hox, as well as cytosolic subunits such as p47(phox), p67(phox) and small GTPase Rac. In ECs, in addition to all the components of phagocytic NADPH oxidases, homologues of gp91(phox) (Nox2) including Nox1, Nox4, and Nox5 are expressed. The aim of this review is to provide an overview of the emerging area of ROS derived from NADPH oxidase and oxidant signaling in ECs linked to physiological and pathophysiological functions. Understanding these mechanisms may provide insight into the NADPH oxidase and oxidant signaling components as potential therapeutic targets.
Related JoVE Video
Tiam1 and Rac1 are required for platelet-activating factor-induced endothelial junctional disassembly and increase in vascular permeability.
J. Biol. Chem.
PUBLISHED: 04-14-2009
Show Abstract
Hide Abstract
It is known that platelet-activating factor (PAF) induces severe endothelial barrier leakiness, but the signaling mechanisms remain unclear. Here, using a wide range of biochemical and morphological approaches applied in both mouse models and cultured endothelial cells, we addressed the mechanisms of PAF-induced disruption of interendothelial junctions (IEJs) and of increased endothelial permeability. The formation of interendothelial gaps filled with filopodia and lamellipodia is the cellular event responsible for the disruption of endothelial barrier. We observed that PAF ligation of its receptor induced the activation of the Rho GTPase Rac1. Following PAF exposure, both Rac1 and its guanine nucleotide exchange factor Tiam1 were found associated with a membrane fraction from which they co-immunoprecipitated with PAF receptor. In the same time frame with Tiam1-Rac1 translocation, the junctional proteins ZO-1 and VE-cadherin were relocated from the IEJs, and formation of numerous interendothelial gaps was recorded. Notably, the response was independent of myosin light chain phosphorylation and thus distinct from other mediators, such as histamine and thrombin. The changes in actin status are driven by the PAF-induced localized actin polymerization as a consequence of Rac1 translocation and activation. Tiam1 was required for the activation of Rac1, actin polymerization, relocation of junctional associated proteins, and disruption of IEJs. Thus, PAF-induced IEJ disruption and increased endothelial permeability requires the activation of a Tiam1-Rac1 signaling module, suggesting a novel therapeutic target against increased vascular permeability associated with inflammatory diseases.
Related JoVE Video
Persistent eNOS activation secondary to caveolin-1 deficiency induces pulmonary hypertension in mice and humans through PKG nitration.
J. Clin. Invest.
PUBLISHED: 04-08-2009
Show Abstract
Hide Abstract
Pulmonary hypertension (PH) is an unremitting disease defined by a progressive increase in pulmonary vascular resistance leading to right-sided heart failure. Using mice with genetic deletions of caveolin 1 (Cav1) and eNOS (Nos3), we demonstrate here that chronic eNOS activation secondary to loss of caveolin-1 can lead to PH. Consistent with a role for eNOS in the pathogenesis of PH, the pulmonary vascular remodeling and PH phenotype of Cav1-/- mice were absent in Cav1-/-Nos3-/- mice. Further, treatment of Cav1-/- mice with either MnTMPyP (a superoxide scavenger) or l-NAME (a NOS inhibitor) reversed their pulmonary vascular pathology and PH phenotype. Activation of eNOS in Cav1-/- lungs led to the impairment of PKG activity through tyrosine nitration. Moreover, the PH phenotype in Cav1-/- lungs could be rescued by overexpression of PKG-1. The clinical relevance of the data was indicated by the observation that lung tissue from patients with idiopathic pulmonary arterial hypertension demonstrated increased eNOS activation and PKG nitration and reduced caveolin-1 expression. Together, these data show that loss of caveolin-1 leads to hyperactive eNOS and subsequent tyrosine nitration-dependent impairment of PKG activity, which results in PH. Thus, targeting of PKG nitration represents a potential novel therapeutic strategy for the treatment of PH.
Related JoVE Video
Role of H(2)O(2)-activated TRPM2 calcium channel in oxidant-induced endothelial injury.
Thromb. Haemost.
PUBLISHED: 04-08-2009
Show Abstract
Hide Abstract
The transient receptor potential (melastatin) 2 (TRPM2), is an oxidant-activated non-selective cation channel that is widely expressed in mammalian tissues including the vascular endothelium. Oxidative stress, through the generation of oxygen metabolites including H(2)O(2), stimulates intracellular ADP-ribose formation which, in turn, opens TRPM2 channels. These channels act as an endogenous redox sensor for mediating oxidative stress/ROS-induced Ca(2+) entry and the subsequent specific Ca(2+)-dependent cellular reactions such as endothelial hyperpermeability and apoptosis. This review summarizes recent findings on the mechanism by which oxidants induce TRPM2 activation, the role of these channels in the signalling vascular endothelial dysfunctions, and the modulation of oxidant-induced TRPM2 activation by PKCalpha and phospho-tyrosine phosphates L1.
Related JoVE Video
NF-kappaB regulates thrombin-induced ICAM-1 gene expression in cooperation with NFAT by binding to the intronic NF-kappaB site in the ICAM-1 gene.
Physiol. Genomics
PUBLISHED: 04-07-2009
Show Abstract
Hide Abstract
Activation of NF-kappaB is essential for protease-activated receptor-1 (PAR-1)-mediated ICAM-1 expression in endothelial cells. Here we show that PAR-1 activation induces binding of both p65/RelA and NFATc1 to the NF-kappaB binding site localized in intron-1 of the ICAM-1 gene to initiate transcription in endothelial cells. We discovered the presence of two NF-kappaB binding sites in intron-1 (+70, NF-kappaB site 1; +611, NF-kappaB site 2) of the human ICAM-1 gene. Chromatin immunoprecipitation results showed that thrombin induced binding of p65/RelA and of NFATc1 specifically to intronic NF-kappaB site 1 of the ICAM-1 gene. Electrophoretic mobility shift and supershift assays confirmed the binding of p65/RelA and NFATc1 to the intronic NF-kappaB site 1 in thrombin-stimulated cells. Thrombin increased the expression of ICAM-1-promoter-intron 1-reporter (-1,385 to +234) construct approximately 25-fold and mutation of intronic NF-kappaB site 1 markedly reduced thrombin-induced reporter expression. Moreover, inhibition of calcineurin, knockdown of either NFATc1 or p65/RelA with siRNA significantly reduced thrombin-induced ICAM-1 expression and polymorphonuclear leukocyte adhesion to endothelial cells. In contrast, NFATc1 knockdown had no effect on TNF-alpha-induced ICAM-1 expression. Thus these results suggest that p65/RelA and NFATc1 bind to the intronic NF-kappaB site 1 sequence to induce optimal transcription of the ICAM-1 gene in response to thrombin in endothelial cells.
Related JoVE Video
A non-redundant role for MKP5 in limiting ROS production and preventing LPS-induced vascular injury.
EMBO J.
PUBLISHED: 04-01-2009
Show Abstract
Hide Abstract
There are at least 11 mitogen-activated protein kinase (MAPK) phosphatases (MKPs) and only 3 major groups of MAPKs, raising the question of whether these phosphatases have non-redundant functions in vivo. Using a modified mouse model of local Shwartzman reaction, we found that deletion of the MKP5 gene, but not the MKP1 gene, led to robust and accelerated vascular inflammatory responses to a single dose of LPS injection. Depletion of neutrophils significantly reduced the vascular injury in Mkp5(-/-) mice, whereas adoptive transfer of Mkp5(-/-) neutrophils replicated the LPS-induced skin lesions in wild-type recipients. Neutrophils isolated from Mkp5(-/-) mice exhibited augmented p38 MAPK activation and increased superoxide generation on activation. The p38 MAPK inhibitor, SB203580, significantly reduced p47(phox) phosphorylation and diminished superoxide production in neutrophils. p38 MAPK phosphorylated mouse p47(phox), and deletion of the p47(phox) gene ablated the LPS-induced vascular injury in Mkp5(-/-) mice. Collectively, these results show an earlier unrecognized and non-redundant function of MKP5 in restraining p38 MAPK-mediated neutrophil oxidant production, thereby preventing LPS-induced vascular injury.
Related JoVE Video
Ca2+ entry via TRPC channels is necessary for thrombin-induced NF-kappaB activation in endothelial cells through AMP-activated protein kinase and protein kinase Cdelta.
J. Biol. Chem.
PUBLISHED: 02-25-2009
Show Abstract
Hide Abstract
The transient receptor potential canonical (TRPC) family channels are proposed to be essential for store-operated Ca2+ entry in endothelial cells. Ca2+ signaling is involved in NF-kappaB activation, but the role of store-operated Ca2+ entry is unclear. Here we show that thrombin-induced Ca2+ entry and the resultant AMP-activated protein kinase (AMPK) activation targets the Ca2+-independent protein kinase Cdelta (PKCdelta) to mediate NF-kappaB activation in endothelial cells. We observed that thrombin-induced p65/RelA, AMPK, and PKCdelta activation were markedly reduced by knockdown of the TRPC isoform TRPC1 expressed in human endothelial cells and in endothelial cells obtained from Trpc4 knock-out mice. Inhibition of Ca2+/calmodulin-dependent protein kinase kinase beta downstream of the Ca2+ influx or knockdown of the downstream Ca2+/calmodulin-dependent protein kinase kinase beta target kinase, AMPK, also prevented NF-kappaB activation. Further, we observed that AMPK interacted with PKCdelta and phosphorylated Thr505 in the activation loop of PKCdelta in thrombin-stimulated endothelial cells. Expression of a PKCdelta-T505A mutant suppressed the thrombin-induced but not the TNF-alpha-induced NF-kappaB activation. These findings demonstrate a novel mechanism for TRPC channels to mediate NF-kappaB activation in endothelial cells that involves the convergence of the TRPC-regulated signaling at AMPK and PKCdelta and that may be a target of interference of the inappropriate activation of NF-kappaB associated with thrombosis.
Related JoVE Video
VE-cadherin signaling induces EB3 phosphorylation to suppress microtubule growth and assemble adherens junctions.
Mol. Cell
Show Abstract
Hide Abstract
Vascular endothelial (VE)-cadherin homophilic adhesion controls endothelial barrier permeability through assembly of adherens junctions (AJs). We observed that loss of VE-cadherin-mediated adhesion induced the activation of Src and phospholipase C (PLC)?2, which mediated Ca(2+) release from endoplasmic reticulum (ER) stores, resulting in activation of calcineurin (CaN), a Ca(2+)-dependent phosphatase. Downregulation of CaN activity induced phosphorylation of serine 162 in end binding (EB) protein 3. This phospho-switch was required to destabilize the EB3 dimer, suppress microtubule (MT) growth, and assemble AJs. The phospho-defective S162A EB3 mutant, in contrast, induced MT growth in confluent endothelial monolayers and disassembled AJs. Thus, VE-cadherin outside-in signaling regulates cytosolic Ca(2+) homeostasis and EB3 phosphorylation, which are required for assembly of AJs. These results identify a pivotal function of VE-cadherin homophilic interaction in modulating endothelial barrier through the tuning of MT dynamics.
Related JoVE Video
TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation.
J. Exp. Med.
Show Abstract
Hide Abstract
Lung vascular endothelial barrier disruption and the accompanying inflammation are primary pathogenic features of acute lung injury (ALI); however, the basis for the development of both remains unclear. Studies have shown that activation of transient receptor potential canonical (TRPC) channels induces Ca(2+) entry, which is essential for increased endothelial permeability. Here, we addressed the role of Toll-like receptor 4 (TLR4) intersection with TRPC6-dependent Ca(2+) signaling in endothelial cells (ECs) in mediating lung vascular leakage and inflammation. We find that the endotoxin (lipopolysaccharide; LPS) induces Ca(2+) entry in ECs in a TLR4-dependent manner. Moreover, deletion of TRPC6 renders mice resistant to endotoxin-induced barrier dysfunction and inflammation, and protects against sepsis-induced lethality. TRPC6 induces Ca(2+) entry in ECs, which is secondary to the generation of diacylglycerol (DAG) induced by LPS. Ca(2+) entry mediated by TRPC6, in turn, activates the nonmuscle myosin light chain kinase (MYLK), which not only increases lung vascular permeability but also serves as a scaffold to promote the interaction of myeloid differentiation factor 88 and IL-1R-associated kinase 4, which are required for NF-?B activation and lung inflammation. Our findings suggest that TRPC6-dependent Ca(2+) entry into ECs, secondary to TLR4-induced DAG generation, participates in mediating both lung vascular barrier disruption and inflammation induced by endotoxin.
Related JoVE Video
A critical role for phosphatidylinositol (3,4,5)-trisphosphate-dependent Rac exchanger 1 in endothelial junction disruption and vascular hyperpermeability.
Circ. Res.
Show Abstract
Hide Abstract
The small GTPase Rac is critical to vascular endothelial functions, yet its regulation in endothelial cells remains unclear. Understanding the upstream pathway may delineate Rac activation mechanisms and its role in maintaining vascular endothelial barrier integrity.
Related JoVE Video
ICAM-1-activated Src and eNOS signaling increase endothelial cell surface PECAM-1 adhesivity and neutrophil transmigration.
Blood
Show Abstract
Hide Abstract
Polymorphonuclear neutrophil (PMN) extravasation requires selectin-mediated tethering, intercellular adhesion molecule-1 (ICAM-1)-dependent firm adhesion, and platelet/endothelial cell adhesion molecule 1 (PECAM-1)-mediated transendothelial migration. An important unanswered question is whether ICAM-1-activated signaling contributes to PMN transmigration mediated by PECAM-1. We tested this concept and the roles of endothelial nitric oxide synthase (eNOS) and Src activated by PMN ligation of ICAM-1 in mediating PECAM-1-dependent PMN transmigration. We observed that lung PMN infiltration in vivo induced in carrageenan-injected WT mice was significantly reduced in ICAM-1(-/-) and eNOS(-/-) mice. Crosslinking WT mouse ICAM-1 expressed in human endothelial cells (ECs), but not the phospho-defective Tyr(518)Phe ICAM-1 mutant, induced SHP-2-dependent Src Tyr530 dephosphorylation that resulted in Src activation. ICAM-1 activation also stimulated phosphorylation of Akt (p-Ser473) and eNOS (p-Ser1177), thereby increasing NO production. PMN migration across EC monolayers was abolished in cells expressing the Tyr(518)Phe ICAM-1 mutant or by pretreatment with either the Src inhibitor PP2 or eNOS inhibitor L-NAME. Importantly, phospho-ICAM-1 induction of Src signaling induced PECAM-1 Tyr686 phosphorylation and increased EC surface anti-PECAM-1 mAb-binding activity. These results collectively show that ICAM-1-activated Src and eNOS signaling sequentially induce PECAM-1-mediated PMN transendothelial migration. Both Src and eNOS inhibition may be important therapeutic targets to prevent or limit vascular inflammation.
Related JoVE Video
PKC? activation of p120-catenin serine 879 phospho-switch disassembles VE-cadherin junctions and disrupts vascular integrity.
Circ. Res.
Show Abstract
Hide Abstract
Adherens junctions (AJs) are the primary intercellular junctions in microvessels responsible for endothelial barrier function. Homophilic adhesion of vascular endothelial (VE) cadherin forms AJs, which are stabilized by binding of p120-catenin (p120). p120 dissociation from VE-cadherin results in loss of VE-cadherin homotypic interaction and AJ disassembly; however, the signaling mechanisms regulating p120 dissociation from VE-cadherin are not understood.
Related JoVE Video
Bidirectional regulation of neutrophil migration by mitogen-activated protein kinases.
Nat. Immunol.
Show Abstract
Hide Abstract
To kill invading bacteria, neutrophils must interpret spatial cues, migrate and reach target sites. Although the initiation of chemotactic migration has been extensively studied, little is known about its termination. Here we found that two mitogen-activated protein kinases (MAPKs) had opposing roles in neutrophil trafficking. The extracellular signal-regulated kinase Erk potentiated activity of the G protein-coupled receptor kinase GRK2 and inhibited neutrophil migration, whereas the MAPK p38 acted as a noncanonical GRK that phosphorylated the formyl peptide receptor FPR1 and facilitated neutrophil migration by blocking GRK2 function. Therefore, the dynamic balance between Erk and p38 controlled neutrophil stop and go activity, which ensured that neutrophils reached their final destination as the first line of host defense.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.