JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
DNA origami as an in vivo drug delivery vehicle for cancer therapy.
ACS Nano
PUBLISHED: 06-30-2014
Show Abstract
Hide Abstract
Many chemotherapeutics used for cancer treatments encounter issues during delivery to tumors in vivo and may have high levels of systemic toxicity due to their nonspecific distribution. Various materials have been explored to fabricate nanoparticles as drug carriers to improve delivery efficiency. However, most of these materials suffer from multiple drawbacks, such as limited biocompatibility and inability to engineer spatially addressable surfaces that can be utilized for multifunctional activity. Here, we demonstrate that DNA origami possessed enhanced tumor passive targeting and long-lasting properties at the tumor region. Particularly, the triangle-shaped DNA origami exhibits optimal tumor passive targeting accumulation. The delivery of the known anticancer drug doxorubicin into tumors by self-assembled DNA origami nanostructures was performed, and this approach showed prominent therapeutic efficacy in vivo. The DNA origami carriers were prepared through the self-assembly of M13mp18 phage DNA and hundreds of complementary DNA helper strands; the doxorubicin was subsequently noncovalently intercalated into these nanostructures. After conducting fluorescence imaging and safety evaluation, the doxorubicin-containing DNA origami exhibited remarkable antitumor efficacy without observable systemic toxicity in nude mice bearing orthotopic breast tumors labeled with green fluorescent protein. Our results demonstrated the potential of DNA origami nanostructures as innovative platforms for the efficient and safe drug delivery of cancer therapeutics in vivo.
Related JoVE Video
DNA nanostructure-based imaging probes and drug carriers.
ChemMedChem
PUBLISHED: 04-22-2014
Show Abstract
Hide Abstract
Self-assembled DNA nanostructures are well-defined nanoscale shapes, with uniform sizes, precise spatial addressability, and excellent biocompatibility. With these features, DNA nanostructures show great potential for biomedical applications; various DNA-based biomedical imaging probes or payload delivery carriers have been developed. In this review, we summarize the recent developments of DNA-based nanostructures as tools for diagnosis and cancer therapy. The biological effects that are brought about by DNA nanostructures are highlighted by in vitro and in vivo imaging, antitumor drug delivery, and immunostimulatory therapy. The challenges and perspectives of DNA nanostructures in the field of nanomedicine are discussed.
Related JoVE Video
Helical nanostructures based on DNA self-assembly.
Nanoscale
PUBLISHED: 04-16-2014
Show Abstract
Hide Abstract
Recent advances in design and fabrication of helical nanostructures based on DNA self-assembly are reviewed. These helical nanostructures are either constructed entirely by DNA or based on DNA guided metal nanoparticles self-assembly. Biophysical properties and optical responses of corresponding helical nanostructures are also discussed.
Related JoVE Video
Engineering DNA self-assemblies as templates for functional nanostructures.
Acc. Chem. Res.
PUBLISHED: 03-03-2014
Show Abstract
Hide Abstract
CONSPECTUS: DNA is a well-known natural molecule that carries genetic information. In recent decades, DNA has been used beyond its genetic role as a building block for the construction of engineering materials. Many strategies, such as tile assembly, scaffolded origami and DNA bricks, have been developed to design and produce 1D, 2D, and 3D architectures with sophisticated morphologies. Moreover, the spatial addressability of DNA nanostructures and sequence-dependent recognition enable functional elements to be precisely positioned and allow for the control of chemical and biochemical processes. The spatial arrangement of heterogeneous components using DNA nanostructures as the templates will aid in the fabrication of functional materials that are difficult to produce using other methods and can address scientific and technical challenges in interdisciplinary research. For example, plasmonic nanoparticles can be assembled into well-defined configurations with high resolution limit while exhibiting desirable collective behaviors, such as near-field enhancement. Conducting metallic or polymer patterns can be synthesized site-specifically on DNA nanostructures to form various controllable geometries, which could be used for electronic nanodevices. Biomolecules can be arranged into organized networks to perform programmable biological functionalities, such as distance-dependent enzyme-cascade activities. DNA nanostructures can carry multiple cytoactive molecules and cell-targeting groups simultaneously to address medical issues such as targeted therapy and combined administration. In this Account, we describe recent advances in the functionalization of DNA nanostructures in different fashions based on our research efforts in nanophotonics, nanoelectronics, and nanomedicine. We show that DNA origami nanostructures can guide the assembly of achiral, spherical, metallic nanoparticles into nature-mimicking chiral geometries through hybridization between complementary DNA strands on the surface of nanoparticles and DNA scaffolds, to generate circular dichroism (CD) response in the visible light region. We also show that DNA nanostructures, on which a HRP-mimicking DNAzyme acts as the catalyst, can direct the site-selective growth of conductive polymer nanomaterials with template configuration-dependent doping behaviors. We demonstrate that DNA origami nanostructures can act as an anticancer-drug carrier, loading drug through intercalation, and can effectively circumvent the drug resistance of cultured cancer cells. Finally, we show a label-free strategy for probing the location and stability of DNA origami nanocarriers in cellular environments by docking turn-off fluorescence dyes in DNA double helices. These functionalizations require further improvement and expansion for realistic applications. We discuss the future opportunities and challenges of DNA based assemblies. We expect that DNA nanostructures as engineering materials will stimulate the development of multidisciplinary and interdisciplinary research.
Related JoVE Video
3D plasmonic chiral colloids.
Nanoscale
PUBLISHED: 01-03-2014
Show Abstract
Hide Abstract
3D plasmonic chiral colloids are synthesized through deterministically grouping of two gold nanorod AuNRs on DNA origami. These nanorod crosses exhibit strong circular dichroism (CD) at optical frequencies which can be engineered through position tuning of the rods on the origami. Our experimental results agree qualitatively well with theoretical predictions.
Related JoVE Video
Precise organization of metal nanoparticles on DNA origami template.
Methods
PUBLISHED: 07-18-2013
Show Abstract
Hide Abstract
Nanoscale assemblies of metal nanoparticles in one dimension (1D) to three dimensions (3D) can exhibit novel phenomena that are not observed in the amorphous state. Bottom-up assembly technique is expected to overcome the resolution limit of top-down method and casts a new light on the nanofabrication field. DNA origami, which is mainly used to construct discrete and addressable nanostructures, can be utilized to assemble functional colloidal nanoparticles into delicate geometries with interesting properties. This review aims to summarize the methods that use DNA origami structures as templates to precisely organize metal nanoparticles, such as gold nanospheres (AuNSs) gold nanorods (AuNRs) and silver nanoparticles (AgNPs). The potential applications and the perspective are also discussed.
Related JoVE Video
Engineering the pH-Responsive Catalytic Behavior of AuNPs by DNA.
Small
PUBLISHED: 06-23-2013
Show Abstract
Hide Abstract
Noble metal nanoparticles have attracted much interest in the heterogeneous catalysis. Particularly, efficient manipulation of the responsive catalytic properties of the metal nanoparticles is an interesting topic. In this work, a simple and efficient strategy is developed to regulate the pH-responsive catalytic activities of glucose oxidase (GOx)-mimicking gold nanoparticles (AuNPs). Four DNA strands (regulating strands) that differ slightly in sequences are used to interact non-covalently with citrate-capped AuNPs, resulting in markedly distinct pH-dependent catalytic behavior of AuNPs. This is ascribed to the characteristic pH-induced conformational change of the DNA strands that leads to the different adsorption capability to the NPs surface, as demonstrated by pH-CD profiles of the respective DNA molecules. The pH-dependent catalysis of AuNPs is also encoded with structural information of the double-stranded DNA (including regulating strands and their complementary strands) that has conformation resistant or responsive to pH change. As a result, the catalysis can be programmed into an AND gate, a XNOR gate or a NOT gate, using pH and complementary strand as the inputs, the nanoparticle activity as the output and the regulating strands as the programs. This work can be expanded by engineering the catalytic behavior of noble metal nanoparticles to respond smartly to a variety of environmental stimuli, such as metal ions or light wavelengths. These results may provide insight into understanding ligand-regulated nanometallic catalysis.
Related JoVE Video
Three-dimensional plasmonic chiral tetramers assembled by DNA origami.
Nano Lett.
PUBLISHED: 04-22-2013
Show Abstract
Hide Abstract
Molecular chemistry offers a unique toolkit to draw inspiration for the design of artificial metamolecules. For a long time, optical circular dichroism has been exclusively the terrain of natural chiral molecules, which exhibit optical activity mainly in the UV spectral range, thus greatly hindering their significance for a broad range of applications. Here we demonstrate that circular dichroism can be generated with artificial plasmonic chiral nanostructures composed of the minimum number of spherical gold nanoparticles required for three-dimensional (3D) chirality. We utilize a rigid addressable DNA origami template to precisely organize four nominally identical gold nanoparticles into a three-dimensional asymmetric tetramer. Because of the chiral structural symmetry and the strong plasmonic resonant coupling between the gold nanoparticles, the 3D plasmonic assemblies undergo different interactions with left and right circularly polarized light, leading to pronounced circular dichroism. Our experimental results agree well with theoretical predictions. The simplicity of our structure geometry and, most importantly, the concept of resorting on biology to produce artificial photonic functionalities open a new pathway to designing smart artificial plasmonic nanostructures for large-scale production of optically active metamaterials.
Related JoVE Video
DNA-based self-assembly for functional nanomaterials.
Adv. Mater. Weinheim
PUBLISHED: 03-31-2013
Show Abstract
Hide Abstract
The unprecedented development of DNA nanotechnology has caused DNA self-assembly to attract close attention in many disciplines. In this research news article, the employment of DNA self-assembly in the fields of materials science and nanotechnology is described. DNA self-assembly can be used to prepare bulk-scale hydrogels and 3D macroscopic crystals with nanoscale internal structures, to induce the crystallization of nanoparticles, to template the fabrication of organic conductive nanomaterials, and to act as drug delivery vehicles for therapeutic agents. The properties and functions are fully tunable because of the designability and specificity of DNA assembly. Moreover, because of the intrinsic dynamics, DNA self-assembly can act as a program switch and can efficiently control stimuli responsiveness. We highlight the power of DNA self-assembly in the preparation and function regulation of materials, aiming to motivate future multidisciplinary and interdisciplinary research. Finally, we describe some of the challenges currently faced by DNA assembly that may affect the functional evolution of such materials, and we provide our insights into the future directions of several DNA self-assembly-based nanomaterials.
Related JoVE Video
Smart nanomachines based on DNA self-assembly.
Small
PUBLISHED: 03-14-2013
Show Abstract
Hide Abstract
DNA-based nanomachines are self-assembled DNA superstructures that harness chemical free energy to perform mechanical work. The development of DNA machines has benefited greatly from the achievements in both structural and dynamic DNA nanotechnology. In this review, the configurations of DNA machines, fuel systems, and operations are discussed to outline the evolving paths of DNA machines. The focus is on the smart mechanical behavior of DNA machines, from the standpoint of upgrading the complexity of DNA nanostructures, cooperative activation of multimachinary systems, and the establishment of a network of the mechanical states. In the end, the challenges are highlighted and possible solutions are proposed to push forward smart DNA nanomachines, with the goal of creating biomimicking systems. Insights are also provided into the potential applications of the DNA machines with designable intelligence.
Related JoVE Video
A facile and efficient method to modify gold nanorods with thiolated DNA at a low pH value.
Chem. Commun. (Camb.)
PUBLISHED: 02-21-2013
Show Abstract
Hide Abstract
We report a simple, rapid and efficient strategy for modification of gold nanorods (AuNRs) with thiolated DNA at low solution pH and high salt concentration. DNA functionalized AuNRs were then used to assemble with DNA modified gold nanoparticles to form discrete satellite nanostructures.
Related JoVE Video
Functional DNA nanostructures for photonic and biomedical applications.
Small
PUBLISHED: 01-15-2013
Show Abstract
Hide Abstract
DNA nanostructures, especially DNA origami, receive close interest because of the programmable control over their shape and size, precise spatial addressability, easy and high-yield preparation, mechanical flexibility, and biocompatibility. They have been used to organize a variety of nanoscale elements for specific functions, resulting in unprecedented improvements in the field of nanophotonics and nanomedical research. In this review, the discussion focuses on the employment of DNA nanostructures for the precise organization of noble metal nanoparticles to build interesting plasmonic nanoarchitectures, for the fabrication of visualized sensors and for targeted drug delivery. The effects offered by DNA nanostructures are highlighted in the areas of nanoantennas, collective plasmonic behaviors, single-molecule analysis, and cancer-cell targeting or killing. Finally, the challenges in the field of DNA nanotechnology for realistic application are discussed and insights for future directions are provided.
Related JoVE Video
Programmed colorimetric logic devices based on DNA-gold nanoparticle interactions.
Small
PUBLISHED: 01-04-2013
Show Abstract
Hide Abstract
A system including nucleic acid strands and unmodified gold nanopartcles is activated to perform programmed logic functions, using pH and DNA as inputs and the plasmonic-related color change of gold nanoparticles as the output. The complexity of the logic devices can be simply enhanced by appropriate engineering.
Related JoVE Video
Self-assembled catalytic DNA nanostructures for synthesis of para-directed polyaniline.
ACS Nano
PUBLISHED: 01-02-2013
Show Abstract
Hide Abstract
Templated synthesis has been considered as an efficient approach to produce polyaniline (PANI) nanostructures. The features of DNA molecules enable a DNA template to be an intriguing template for fabrication of emeraldine PANI. In this work, we assembled HRP-mimicking DNAzyme with different artificial DNA nanostructures, aiming to manipulate the molecular structures and morphologies of PANI nanostructures through the controlled DNA self-assembly. UV-vis absorption spectra were used to investigate the molecular structures of PANI and monitor kinetic growth of PANI. It was found that PANI was well-doped at neutral pH and the redox behaviors of the resultant PANI were dependent on the charge density of the template, which was controlled by the template configurations. CD spectra indicated that the PANI threaded tightly around the helical DNA backbone, resulting in the right handedness of PANI. These reveal the formation of the emeraldine form of PANI that was doped by the DNA. The morphologies of the resultant PANI were studied by AFM and SEM. It was concluded from the imaging and spectroscopic kinetic results that PANI grew preferably from the DNAzyme sites and then expanded over the template to form 1D PANI nanostructures. The strategy of the DNAzyme-DNA template assembly brings several advantages in the synthesis of para-coupling PANI, including the region-selective growth of PANI, facilitating the formation of a para-coupling structure and facile regulation. We believe this study contributes significantly to the fabrication of doped PANI nanopatterns with controlled complexity, and the development of DNA nanotechnology.
Related JoVE Video
Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures.
J. Am. Chem. Soc.
PUBLISHED: 12-13-2011
Show Abstract
Hide Abstract
Construction of three-dimensional (3D) plasmonic architectures using structural DNA nanotechnology is an emerging multidisciplinary area of research. This technology excels in controlling spatial addressability at sub-10 nm resolution, which has thus far been beyond the reach of traditional top-down techniques. In this paper, we demonstrate the realization of 3D plasmonic chiral nanostructures through programmable transformation of gold nanoparticle (AuNP)-dressed DNA origami. AuNPs were assembled along two linear chains on a two-dimensional rectangular DNA origami sheet with well-controlled positions and particle spacing. By rational rolling of the 2D origami template, the AuNPs can be automatically arranged in a helical geometry, suggesting the possibility of achieving engineerable chiral nanomaterials in the visible range.
Related JoVE Video
Direct imaging and chemical analysis of unstained DNA origami performed with a transmission electron microscope.
Chem. Commun. (Camb.)
PUBLISHED: 07-18-2011
Show Abstract
Hide Abstract
Here, we report a simple and rapid characterisation technique combining physical and chemical analysis for DNA origami with conventional TEM.
Related JoVE Video
Interconnecting gold islands with DNA origami nanotubes.
Nano Lett.
PUBLISHED: 11-11-2010
Show Abstract
Hide Abstract
Scaffolded DNA origami has recently emerged as a versatile, programmable method to fold DNA into arbitrarily shaped nanostructures that are spatially addressable, with sub-10-nm resolution. Toward functional DNA nanotechnology, one of the key challenges is to integrate the bottom-up self-assembly of DNA origami with the top-down lithographic methods used to generate surface patterning. In this report we demonstrate that fixed length DNA origami nanotubes, modified with multiple thiol groups near both ends, can be used to connect surface patterned gold islands (tens of nanometers in diameter) fabricated by electron beam lithography (EBL). Atomic force microscopic imaging verified that the DNA origami nanotubes can be efficiently aligned between gold islands with various interisland distances and relative locations. This development represents progress toward the goal of bridging bottom-up and top-down assembly approaches.
Related JoVE Video
Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared.
J. Am. Chem. Soc.
PUBLISHED: 04-07-2010
Show Abstract
Hide Abstract
We demonstrate the synthesis of near-IR-emitting zinc blende CdTe/CdS tetrahedral-shaped nanocrystals with a magic-sized (approximately 0.8 nm radius) CdTe core and a thick CdS shell (up to 5 nm). These high-quality water-soluble nanocrystals were obtained by a simple but reliable aqueous method at low temperature. During the growth of the shell over the magic core, the core/shell nanocrystals change from type I to type II, as revealed by their enormous photoluminescence (PL) emission peak shift (from 480 to 820 nm) and significant increase in PL lifetime (from approximately 1 to approximately 245 ns). These thick-shell nanocrystals have a high PL quantum yield, high photostability, compact size (hydrodynamic diameter less than 11.0 nm), and reduced blinking behavior. The magic-core/thick-shell nanocrystals may represent an important step toward the synthesis and application of next-generation colloidal nanocrystals from solar cell conversion to intracellular imaging.
Related JoVE Video
Gold nanoparticle self-similar chain structure organized by DNA origami.
J. Am. Chem. Soc.
PUBLISHED: 02-19-2010
Show Abstract
Hide Abstract
Here we demonstrate Au nanoparticle self-similar chain structure organized by triangle DNA origami with well-controlled orientation and <10 nm spacing. We show for the first time that a large DNA complex (origami) and multiple AuNP conjugates can be well-assembled and purified with reliable yields. The assembled structure could be used to generate high local-field enhancement. The same method can be used to precisely localize multiple components on a DNA template for potential applications in nanophotonic, nanomagnetic, and nanoelectronic devices.
Related JoVE Video
Visualization of the intracellular location and stability of DNA origami with a label-free fluorescent probe.
Chem. Commun. (Camb.)
Show Abstract
Hide Abstract
We report a label-free fluorescent strategy to study the distribution and stability of DNA origami nanostructures in live, cellular systems, using carbazole-based biscyanine as a probe molecule which has the characteristic property of restriction of intramolecular rotation (RIR) induced emission.
Related JoVE Video
DNA origami as a carrier for circumvention of drug resistance.
J. Am. Chem. Soc.
Show Abstract
Hide Abstract
Although a multitude of promising anti-cancer drugs have been developed over the past 50 years, effective delivery of the drugs to diseased cells remains a challenge. Recently, nanoparticles have been used as drug delivery vehicles due to their high delivery efficiencies and the possibility to circumvent cellular drug resistance. However, the lack of biocompatibility and inability to engineer spatially addressable surfaces for multi-functional activity remains an obstacle to their widespread use. Here we present a novel drug carrier system based on self-assembled, spatially addressable DNA origami nanostructures that confronts these limitations. Doxorubicin, a well-known anti-cancer drug, was non-covalently attached to DNA origami nanostructures through intercalation. A high level of drug loading efficiency was achieved, and the complex exhibited prominent cytotoxicity not only to regular human breast adenocarcinoma cancer cells (MCF 7), but more importantly to doxorubicin-resistant cancer cells, inducing a remarkable reversal of phenotype resistance. With the DNA origami drug delivery vehicles, the cellular internalization of doxorubicin was increased, which contributed to the significant enhancement of cell-killing activity to doxorubicin-resistant MCF 7 cells. Presumably, the activity of doxorubicin-loaded DNA origami inhibits lysosomal acidification, resulting in cellular redistribution of the drug to action sites. Our results suggest that DNA origami has immense potential as an efficient, biocompatible drug carrier and delivery vehicle in the treatment of cancer.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.