JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Characterization and transcription studies of a phytochelatin synthase gene from the solitary tunicate Ciona intestinalis exposed to cadmium.
Aquat. Toxicol.
PUBLISHED: 03-18-2014
Show Abstract
Hide Abstract
The major thiol-containing molecules involved in controlling the level of intracellular ROS in eukaryotes, acting as a nonenzymatic detoxification system, are metallothioneins (MTs), glutathione (GSH) and phytochelatins (PCs). Both MTs and GSH are well-known in the animal kingdom. PC was considered a prerogative of the plant kingdom but, in 2001, a phytochelatin synthase (PCS) gene was described in the nematode Caenorhabditis elegans; additional genes encoding this enzyme were later described in the earthworm Eisenia fetida and in the parasitic nematode Schistosoma mansoni but scanty data are available, up to now, for Deuterostomes. Here, we describe the molecular characteristics and transcription pattern, in the presence of Cd, of a PCS gene from the invertebrate chordate Ciona intestinalis, a ubiquitous solitary tunicate and demonstrate the presence of PCs in tissue extracts. We also studied mRNA localization by in situ hybridization. In addition, we analyzed the behavior of hemocytes and tunic cells consequent to Cd exposure as well as the transcription pattern of the Ciona orthologous for proliferating cell nuclear antigen (PCNA), usually considered a proliferation marker, and observed that cell proliferation occurs after 96h of Cd treatment. This matches the hypothesis of Cd-induced cell proliferation, as already suggested by previous data on the expression of a metallothionein gene in the same animal.
Related JoVE Video
Site-specific derivatization of avidin using microbial transglutaminase.
Bioconjug. Chem.
PUBLISHED: 02-11-2014
Show Abstract
Hide Abstract
Avidin conjugates have several important applications in biotechnology and medicine. In this work, we investigated the possibility to produce site-specific derivatives of avidin using microbial transglutaminase (TGase). TGase allows the modification of proteins at the level of Gln or Lys residues using as substrate an alkyl-amine or a Gln-mimicking moiety, respectively. The reaction is site-specific, since Gln and Lys derivatization occurs preferentially at residues embedded in flexible regions of protein substrates. An analysis of the X-ray structure of avidin allowed us to predict Gln126 and Lys127 as potential sites of TGase's attack, because these residues are located in the flexible/unfolded C-terminal region of the protein. Surprisingly, incubation of avidin with TGase in the presence of alkylamine containing substrates (dansylcadaverine, 5-hydroxytryptamine) revealed a very low level of derivatization of the Gln126 residue. Analysis of the TGase reaction on synthetic peptide analogues of the C-terminal portion of avidin indicated that the lack of reactivity of Gln126 was likely due to the fact that this residue is proximal to negatively charged carboxylate groups, thus hampering the interaction of the substrate at the negatively charged active site of TGase. On the other hand, incubation of avidin with TGase in the presence of carbobenzoxy-l-glutaminyl-glycine in order to derivatize Lys residue(s) resulted in a clean and high yield production of an avidin derivative, retaining the biotin binding properties and the quaternary structure of the native protein. Proteolytic digestion of the modified protein, followed by mass spectrometry, allowed us to identify Lys127 as the major site of reaction, together with a minor modification of Lys58. By using TGase, avidin was also conjugated via a Lys-Gln isopeptide bond to a protein containing a single reactive Gln residue, namely, Gln126 of granulocyte-macrophage colony-stimulating factor. TGase can thus be exploited for the site-specific derivatization of avidin with small molecules or proteins.
Related JoVE Video
Ectopic F0F 1 ATP synthase contains both nuclear and mitochondrially-encoded subunits.
J. Bioenerg. Biomembr.
PUBLISHED: 05-16-2013
Show Abstract
Hide Abstract
Over the past few years, several reports have described the presence of F0F1 ATP synthase subunits at the surface of hepatocytes, where the hydrolytic activity of F1 sector faces outside and triggers HDL endocytosis. An intriguing question is whether the ectopic enzyme has same subunit composition and molecular mass as that of the mitochondrial ATP synthase. Also due to the polar nature of hepatocytes, the enzyme may be localized to a particular cell boundary. Using different methods to prepare rat liver plasma membranes, which have been subjected to digitonin extraction, hr CN PAGE, immunoblotting, and mass spectrometry analysis, we demonstrate the presence of ecto-F0F1 complexes which have a similar molecular weight to the monomeric form of the mitochondrial complexes, containing both nuclear and mitochondrially-encoded subunits. This finding makes it unlikely that the enzyme assembles on the plasma membranes, but suggest it to be transported whole after being assembled in mitochondria by still unknown pathways. Moreover, the plasma membrane preparation enriched in basolateral proteins contains much higher amounts of complete and active F0F1 complexes, consistent with their specific function to modulate the HDL uptake on hepatocyte surface.
Related JoVE Video
Fly cryptochrome and the visual system.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 03-27-2013
Show Abstract
Hide Abstract
Cryptochromes are flavoproteins, structurally and evolutionarily related to photolyases, that are involved in the development, magnetoreception, and temporal organization of a variety of organisms. Drosophila CRYPTOCHROME (dCRY) is involved in light synchronization of the master circadian clock, and its C terminus plays an important role in modulating light sensitivity and activity of the protein. The activation of dCRY by light requires a conformational change, but it has been suggested that activation could be mediated also by specific "regulators" that bind the C terminus of the protein. This C-terminal region harbors several protein-protein interaction motifs, likely relevant for signal transduction regulation. Here, we show that some functional linear motifs are evolutionarily conserved in the C terminus of cryptochromes and that class III PDZ-binding sites are selectively maintained in animals. A coimmunoprecipitation assay followed by mass spectrometry analysis revealed that dCRY interacts with Retinal Degeneration A (RDGA) and with Neither Inactivation Nor Afterpotential C (NINAC) proteins. Both proteins belong to a multiprotein complex (the Signalplex) that includes visual-signaling molecules. Using bioinformatic and molecular approaches, dCRY was found to interact with Neither Inactivation Nor Afterpotential C through Inactivation No Afterpotential D (INAD) in a light-dependent manner and that the CRY-Inactivation No Afterpotential D interaction is mediated by specific domains of the two proteins and involves the CRY C terminus. Moreover, an impairment of the visual behavior was observed in fly mutants for dCRY, indicative of a role, direct or indirect, for this photoreceptor in fly vision.
Related JoVE Video
The biological activities of protein/oleic acid complexes reside in the fatty acid.
Biochim. Biophys. Acta
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
A complex formed by human ?-lactalbumin (?-LA) and oleic acid (OA), named HAMLET, has been shown to have an apoptotic activity leading to the selective death of tumor cells. In numerous publications it has been reported that in the complex ?-LA is monomeric and adopts a partly folded or "molten globule" state, leading to the idea that partly folded proteins can have "beneficial effects". The protein/OA molar ratio initially has been reported to be 1:1, while recent data have indicated that the OA-complex is given by an oligomeric protein capable of binding numerous OA molecules per protein monomer. Proteolytic fragments of ?-LA, as well as other proteins unrelated to ?-LA, can form OA-complexes with biological activities similar to those of HAMLET, thus indicating that a generic protein can form a cytotoxic complex under suitable experimental conditions. Moreover, even the selective tumoricidal activity of HAMLET-like complexes has been questioned. There is recent evidence that the biological activity of long chain unsaturated fatty acids, including OA, can be ascribed to their effect of perturbing the structure of biological membranes and consequently the function of membrane-bound proteins. In general, it has been observed that the cytotoxic effects exerted by HAMLET-like complexes are similar to those reported for OA alone. Overall, these findings can be interpreted by considering that the protein moiety does not have a toxic effect on its own, but merely acts as a solubilising agent for the inherently toxic fatty acid.
Related JoVE Video
Conformational role for the C-terminal tail of the intrinsically disordered high mobility group A (HMGA) chromatin factors.
J. Proteome Res.
PUBLISHED: 05-20-2011
Show Abstract
Hide Abstract
The architectural factors HMGA are highly connected hubs in the chromatin network and affect key cellular functions. HMGA have a causal involvement in cancer development; in fact, truncated or chimeric HMGA forms, resulting from chromosomal rearrangements, lack the constitutively phosphorylated acidic C-terminal tail and display increased oncogenic potential, suggesting a functional role for this domain. HMGA belong to the intrinsically disordered protein category, and this prevents the use of classical approaches to obtain structural data. Therefore, we combined limited proteolysis, ion mobility separation-mass spectrometry (IMS-MS), and electrospray ionization-mass spectrometry (ESI-MS) to obtain structural information regarding full length and C-terminal truncated HMGA forms. Limited proteolysis indicates that HMGA acidic tail shields the inner portions of the protein. IMS-MS and ESI-MS show that HMGA proteins can assume a compact form and that the degree of compactness is dependent upon the presence of the acidic tail and its constitutive phosphorylations. Moreover, we demonstrate that C-terminal truncated forms and wild type proteins are post-translationally modified in a different manner. Therefore, we propose that the acidic tail and its phosphorylation could affect HMGA post-translational modification status and likely their activity. Finally, the mass spectrometry-based approach adopted here proves to be a valuable new tool to obtain structural data regarding intrinsically disordered proteins.
Related JoVE Video
?-Lactalbumin forms with oleic acid a high molecular weight complex displaying cytotoxic activity.
Biochemistry
PUBLISHED: 09-09-2010
Show Abstract
Hide Abstract
?-Lactalbumin (LA) forms with oleic acid (OA) a complex which has been reported to induce the selective death of tumor cells. However, the mechanism by which this complex kills a wide range of tumor cell lines is as yet largely unknown. The difficulty in rationalizing the cytotoxic effects of the LA/OA complex can be due to the fact that the molecular aspects of the interaction between the protein and the fatty acid are still poorly understood, in particular regarding the oligomeric state of the protein and the actual molar ratio of OA over protein in the complex. Here, the effect of LA addition to an OA aqueous solution has been examined by dynamic light scattering measurements and transmission electron microscopy. Upon protein addition, the aggregation state of the rather insoluble OA is dramatically changed, and more water-soluble and smaller aggregates of the fatty acid are formed. A mixture of LA and an excess of OA forms a high molecular weight complex that can be isolated by size-exclusion chromatography and that displays cellular toxicity toward Jurkat cells. On the basis of gel filtration data, cross-linking experiments with glutaraldehyde, and OA titration, we evaluated that the isolated LA/OA complex is given by 4-5 protein molecules that bind 68-85 OA molecules. The protein in the complex adopts a molten globule-like conformation, and it interacts with the fatty acid mostly through its ?-helical domain, as indicated by circular dichroism measurements and limited proteolysis experiments. Overall, we interpret our and previous data as indicating that the cellular toxicity of a LA/OA complex is due to the effect of a protein moiety in significantly enhancing the water solubility of the cytotoxic OA and, therefore, that the protein/OA complex can serve mainly as a carrier of the toxic fatty acid in a physiological milieu.
Related JoVE Video
Oxidative stress by monoamine oxidases is causally involved in myofiber damage in muscular dystrophy.
Hum. Mol. Genet.
PUBLISHED: 08-17-2010
Show Abstract
Hide Abstract
Several studies documented the key role of oxidative stress and abnormal production of reactive oxygen species (ROS) in the pathophysiology of muscular dystrophies (MDs). The sources of ROS, however, are still controversial as well as their major molecular targets. This study investigated whether ROS produced in mitochondria by monoamine oxidase (MAO) contributes to MD pathogenesis. Pargyline, an MAO inhibitor, reduced ROS accumulation along with a beneficial effect on the dystrophic phenotype of Col6a1(-/-) mice, a model of Bethlem myopathy and Ullrich congenital MD, and mdx mice, a model of Duchenne MD. Based on our previous observations on oxidative damage of myofibrillar proteins in heart failure, we hypothesized that MAO-dependent ROS might impair contractile function in dystrophic muscles. Indeed, oxidation of myofibrillar proteins, as probed by formation of disulphide cross-bridges in tropomyosin, was detected in both Col6a1(-/-) and mdx muscles. Notably, pargyline significantly reduced myofiber apoptosis and ameliorated muscle strength in Col6a1(-/-) mice. This study demonstrates a novel and determinant role of MAO in MDs, adding evidence of the pivotal role of mitochondria and suggesting a therapeutic potential for MAO inhibition.
Related JoVE Video
The oleic acid complexes of proteolytic fragments of alpha-lactalbumin display apoptotic activity.
FEBS J.
PUBLISHED: 11-26-2009
Show Abstract
Hide Abstract
The complexes formed by partially folded human and bovine alpha-lactalbumin with oleic acid (OA) have been reported to display selective apoptotic activity against tumor cells. These complexes were named human (HAMLET) or bovine (BAMLET) alpha-lactalbumin made lethal to tumor cells. Here, we analyzed the OA complexes formed by fragments of bovine alpha-lactalbumin obtained by limited proteolysis of the protein. Specifically, the fragments investigated were 53-103 and the two-chain fragment species 1-40/53-123 and 1-40/104-123, these last being the N-terminal fragment 1-40 covalently linked via disulfide bridges to the C-terminal fragment 53-123 or 104-123. The OA complexes were obtained by mixing the fatty acid and the fragments in solution (10-fold and 15-fold molar excess of OA over protein fragment) or by chromatography of the fragments loaded onto an OA-conditioned anion exchange column and salt-induced elution of the OA complexes. Upon binding to OA, all fragments acquire an enhanced content of alpha-helical secondary structure. All OA complexes of the fragment species showed apoptotic activity for Jurkat tumor cells comparable to that displayed by the OA complex of the intact protein. We conclude that the entire sequence of the protein is not required to form an apoptotic OA complex, and we suggest that the apoptotic activity of a protein-OA complex does not imply specific binding of the protein.
Related JoVE Video
Transglutaminase-mediated PEGylation of proteins: direct identification of the sites of protein modification by mass spectrometry using a novel monodisperse PEG.
Bioconjug. Chem.
PUBLISHED: 02-04-2009
Show Abstract
Hide Abstract
Poly(ethylene glycol) (PEG) has been widely used to prolong the residence time of proteins in blood and to decrease their immunogenicity and antigenicity. A drawback of this polymer lies in its polydispersity that makes difficult the identification of the sites of protein modification. This is a mandatory requirement if a PEGylated protein should be approved as a drug. Here, a fast and reliable method is proposed to characterize proteins conjugated at the level of glutamine (Gln) residues using microbial transglutaminase (TGase). The novelty resides in the use of a monodisperse Boc-PEG-NH(2) for the derivatization that allows the direct identification of the sites of PEGylation by electrospray ionization mass spectrometry (ESI-MS). The procedure has been tested on three model proteins, namely, human granulocyte colony-stimulating factor, human growth hormone, and horse heart apomyoglobin. The Gln residues linked to the polymer chain were easily identified by ESI-MS and tandem MS analyses, demonstrating the advantage of using a monodisperse polymer in combination with mass spectrometry for an easy characterization of conjugated proteins. Interestingly, the PEGylation reaction led to the production only of mono- and bis-derivative products, indicating that the TGase-mediated PEGylation can be extremely selective and thus very useful for the derivatization of protein drugs.
Related JoVE Video
Local unfolding is required for the site-specific protein modification by transglutaminase.
Biochemistry
Show Abstract
Hide Abstract
The transglutaminase (TGase) from Streptomyces mobaraensis catalyzes transamidation reactions in a protein substrate leading to the modification of the side chains of Gln and Lys residues according to the A-CONH(2) + H(2)N-B ? A-CONH-B + NH(3) reaction, where both A and B can be a protein or a ligand. A noteworthy property of TGase is its susbstrate specificity, so that often only a few specific Gln or Lys residues can be modified in a globular protein. The molecular features of a globular protein dictating the site-specific reactions mediated by TGase are yet poorly understood. Here, we have analyzed the reactivity toward TGase of apomyoglobin (apoMb), ?-lactalbumin (?-LA), and fragment 205-316 of thermolysin. These proteins are models of protein structure and folding that have been studied previously using the limited proteolysis technique to unravel regions of local unfolding in their amino acid sequences. The three proteins were modified by TGase at the level of Gln or Lys residues with dansylcadaverine or carbobenzoxy-l-glutaminylglycine, respectively. Despite these model proteins containing several Gln and Lys residues, the sites of TGase derivatization occur over restricted chain regions of the protein substrates. In particular, the TGase-mediated modifications occur in the "helix F" region in apoMb, in the ?-domain in apo-?-LA in its molten globule state, and in the N-terminal region in fragment 205-316 of thermolysin. Interestingly, the sites of limited proteolysis are located in the same chain regions of these proteins, thus providing a clear-cut demonstration that chain flexibility or local unfolding overwhelmingly dictates the site-specific modification by both TGase and a protease.
Related JoVE Video
Identifying disordered regions in proteins by limited proteolysis.
Methods Mol. Biol.
Show Abstract
Hide Abstract
Limited proteolysis experiments can be successfully used to detect sites of disorder in otherwise folded globular proteins. The approach relies on the fact that the proteolysis of a polypeptide substrate requires its binding in an extended conformation at the proteases active site and thus an enhanced backbone flexibility or local unfolding of the site of proteolytic attack. A striking correlation was found between sites of limited proteolysis and sites of enhanced chain flexibility of the polypeptide chain, this last evaluated by the crystallographically determined B-factor. In numerous cases, it has been shown that limited proteolysis occurs at chain regions characterized by missing electron density and thus being disordered. Therefore, limited proteolysis is a simple and reliable experimental technique that can detect sites of disorder in proteins, thus complementing the results that can be obtained by the use of other physicochemical and computational approaches.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.