JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
HZE ??Fe-ion irradiation induces endothelial dysfunction in rat aorta: role of xanthine oxidase.
Radiat. Res.
PUBLISHED: 07-25-2011
Show Abstract
Hide Abstract
Ionizing radiation has been implicated in the development of significant cardiovascular complications. Since radiation exposure is associated with space exploration, astronauts are potentially at increased risk of accelerated cardiovascular disease. This study investigated the effect of high atomic number, high-energy (HZE) iron-ion radiation on vascular and endothelial function as a model of space radiation. Rats were exposed to a single whole-body dose of iron-ion radiation at doses of 0, 0.5 or 1 Gy. In vivo aortic stiffness and ex vivo aortic tension responses were measured 6 and 8 months after exposure as indicators of chronic vascular injury. Rats exposed to 1 Gy iron ions demonstrated significantly increased aortic stiffness, as measured by pulse wave velocity. Aortic rings from irradiated rats exhibited impaired endothelial-dependent relaxation consistent with endothelial dysfunction. Acute xanthine oxidase (XO) inhibition or reactive oxygen species (ROS) scavenging restored endothelial-dependent responses to normal. In addition, XO activity was significantly elevated in rat aorta 4 months after whole-body irradiation. Furthermore, XO inhibition, initiated immediately after radiation exposure and continued until euthanasia, completely inhibited radiation-dependent XO activation. ROS production was elevated after 1 Gy irradiation while production of nitric oxide (NO) was significantly impaired. XO inhibition restored NO and ROS production. Finally, dietary XO inhibition preserved normal endothelial function and vascular stiffness after radiation exposure. These results demonstrate that radiation induced XO-dependent ROS production and nitroso-redox imbalance, leading to chronic vascular dysfunction. As a result, XO is a potential target for radioprotection. Enhancing the understanding of vascular radiation injury could lead to the development of effective methods to ameliorate radiation-induced vascular damage.
Related JoVE Video
Nitric oxide regulates tissue transglutaminase localization and function in the vasculature.
Amino Acids
PUBLISHED: 05-17-2011
Show Abstract
Hide Abstract
The multifunctional enzyme tissue transglutaminase (TG2) contributes to the development and progression of several cardiovascular diseases. Extracellular rather than intracellular TG2 is enzymatically active, however, the mechanism by which it is exported out of the cell remains unknown. Nitric oxide (NO) is shown to constrain TG2 externalization in endothelial and fibroblast cells. Here, we examined the role of both exogenous and endogenous (endothelial cell-derived) NO in regulating TG2 localization in vascular cells and tissue. NO synthase inhibition in endothelial cells (ECs) using N-nitro L-arginine methyl ester (L-NAME) led to a time-dependent decrease in S-nitrosation and increase in externalization of TG2. Laminar shear stress led to decreased extracellular TG2 in ECs. S-nitrosoglutathione treatment led to decreased activity and externalization of TG2 in human aortic smooth muscle and fibroblast (IMR90) cells. Co-culture of these cells with ECs resulted in increased S-nitrosation and decreased externalization and activity of TG2, which was reversed by L-NAME. Aged Fischer 344 rats had higher tissue scaffold-associated TG2 compared to young. NO regulates intracellular versus extracellular TG2 localization in vascular cells and tissue, likely via S-nitrosation. This in part, explains increased TG2 externalization and activity in aging aorta.
Related JoVE Video
Dietary inhibition of xanthine oxidase attenuates radiation-induced endothelial dysfunction in rat aorta.
J. Appl. Physiol.
PUBLISHED: 02-18-2010
Show Abstract
Hide Abstract
Radiation exposure is associated with the development of various cardiovascular diseases. Although irradiation is known to cause elevated oxidant stress and chronic inflammation, both of which are detrimental to vascular function, the molecular mechanisms remain incompletely understood. We previously demonstrated that radiation causes endothelial dysfunction and increased vascular stiffness by xanthine oxidase (XO) activation. In this study, we investigated whether dietary inhibition of XO protects against radiation-induced vascular injury. We exposed 4-mo-old rats to a single dose of 0 or 5 Gy gamma radiation. These rats received normal drinking water or water containing 1 mM oxypurinol, an XO inhibitor. We measured XO activity and superoxide production in rat aorta and demonstrated that both were significantly elevated 2 wk after radiation exposure. However, oxypurinol treatment in irradiated rats prevented aortic XO activation and superoxide elevation. We next investigated endothelial function through fluorescent measurement of nitric oxide (NO) and vascular tension dose responses. Radiation reduced endothelium-dependent NO production in rat aorta. Similarly, endothelium-dependent vasorelaxation in the aorta of irradiated rats was significantly attenuated compared with the control group. Dietary XO inhibition maintained NO production at control levels and prevented the development of endothelial dysfunction. Furthermore, pulse wave velocity, a measure of vascular stiffness, increased by 1 day postirradiation and remained elevated 2 wk after irradiation, despite unchanged blood pressures. In oxypurinol-treated rats, pulse wave velocities remained unchanged from baseline throughout the experiment, signifying preserved vascular health. These findings demonstrate that XO inhibition can offer protection from radiation-induced endothelial dysfunction and cardiovascular complications.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.