JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
A genetic screen for high copy number suppressors of the synthetic lethality between elg1? and srs2? in yeast.
G3 (Bethesda)
PUBLISHED: 05-25-2013
Show Abstract
Hide Abstract
Elg1 and Srs2 are two proteins involved in maintaining genome stability in yeast. After DNA damage, the homotrimeric clamp PCNA, which provides stability and processivity to DNA polymerases and serves as a docking platform for DNA repair enzymes, undergoes modification by the ubiquitin-like molecule SUMO. PCNA SUMOylation helps recruit Srs2 and Elg1 to the replication fork. In the absence of Elg1, both SUMOylated PCNA and Srs2 accumulate at the chromatin fraction, indicating that Elg1 is required for removing SUMOylated PCNA and Srs2 from DNA. Despite this interaction, which suggests that the two proteins work together, double mutants elg1? srs2? have severely impaired growth as haploids and exhibit synergistic sensitivity to DNA damage and a synergistic increase in gene conversion. In addition, diploid elg1? srs2? double mutants are dead, which implies that an essential function in the cell requires at least one of the two gene products for survival. To gain information about this essential function, we have carried out a high copy number suppressor screen to search for genes that, when overexpressed, suppress the synthetic lethality between elg1? and srs2?. We report the identification of 36 such genes, which are enriched for functions related to DNA- and chromatin-binding, chromatin packaging and modification, and mRNA export from the nucleus.
Related JoVE Video
Genetic and physical interactions between the yeast ELG1 gene and orthologs of the Fanconi anemia pathway.
Cell Cycle
PUBLISHED: 04-25-2013
Show Abstract
Hide Abstract
Fanconi anemia (FA) is a human syndrome characterized by genomic instability and increased incidence of cancer. FA is a genetically heterogeneous disease caused by mutations in at least 15 different genes; several of these genes are conserved in the yeast Saccharomyces cerevisiae. Elg1 is also a conserved protein that forms an RFC-like complex, which interacts with SUMOylated PCNA. The mammalian Elg1 protein has been recently found to interact with the FA complex. Here we analyze the genetic interactions between elg1? and mutants of the yeast FA-like pathway. We show that Elg1 physically contacts the Mhf1/Mhf2 histone-like complex and genetically interacts with MPH1 (ortholog of the FANCM helicase) and CHL1 (ortholog of the FANCJ helicase) genes. We analyze the sensitivity of double, triple, quadruple and quintuple mutants to methylmethane sulfonate (MMS) and to hydroxyurea (HU). Our results show that genetic interactions depend on the type of DNA damaging agent used and show a hierarchy: Chl1 and Elg1 play major roles in the survival to these genotoxins and exhibit synthetic fitness reduction. Mph1 plays a lesser role, and the effect of the Mhf1/2 complex is seen only in the absence of Elg1 on HU-containing medium. Finally, we dissect the relationship between yeast FA-like mutants and the replication clamp, PCNA. Our results point to an intricate network of interactions rather than a single, linear repair pathway.
Related JoVE Video
Effect of nuclear architecture on the efficiency of double-strand break repair.
Nat. Cell Biol.
PUBLISHED: 01-23-2013
Show Abstract
Hide Abstract
The most dangerous insults to the genomes integrity are those that break both strands of the DNA. Double-strand breaks can be repaired by homologous recombination; in this conserved mechanism, a global genomic homology search finds sequences similar to those near the break, and uses them as a template for DNA synthesis and ligation. Chromosomes occupy restricted territories within the nucleus. We show that yeast genomic regions whose nuclear territories overlap recombine more efficiently than sequences located in spatially distant territories. Tethering of telomeres and centromeres reduces the efficiency of recombination between distant genomic loci, lowering the chances of non-allelic recombination. Our results challenge present models that posit an active scanning of the whole nuclear volume by the broken chromosomal end; they demonstrate that the search for homology is a limiting step in homologous recombination, and emphasize the importance of nuclear organization in genome maintenance.
Related JoVE Video
Elg1, the major subunit of an alternative RFC complex, interacts with SUMO-processing proteins.
Cell Cycle
PUBLISHED: 09-01-2011
Show Abstract
Hide Abstract
PCNA is a homotrimeric ring with important roles in DNA replication and repair. PCNA is loaded and unloaded by the RFC complex, which is composed of five subunits (Rfc1-5). Three additional complexes that share with RFC the small subunits (Rfc2-5) and contain alternative large subunits were found in yeast and other eukaryotes. We have recently reported that one of these, the Elg1-RFC complex, interacts with SUMOylated PCNA and may play a role in its unloading during DNA repair. Here we report that a yeast-two-hybrid screen with the N terminus of Elg1(which interacts with SUMOylated PCNA) uncovered interactions with proteins that belong to the SUMO pathway, including Slx5 and Slx8, which form an E3 ubiquitin ligase that ubiquitinates SUMOylated proteins. Mutations in SLX5 result in a genomic instability phenotype similar to that of elg1 mutants. The physical interaction between the N terminus of Elg1 and Slx5 is mediated by poly-SUMO chains but not by PCNA modifications, and requires Siz2, but not Siz1, activity. Thus our results highlight the many important roles played by Elg1, some of which are PCNA-dependent and some PCNA-independent.
Related JoVE Video
The role of Holliday junction resolvases in the repair of spontaneous and induced DNA damage.
Nucleic Acids Res.
PUBLISHED: 05-23-2011
Show Abstract
Hide Abstract
DNA double-strand breaks (DSBs) and other lesions occur frequently during cell growth and in meiosis. These are often repaired by homologous recombination (HR). HR may result in the formation of DNA structures called Holliday junctions (HJs), which need to be resolved to allow chromosome segregation. Whereas HJs are present in most HR events in meiosis, it has been proposed that in vegetative cells most HR events occur through intermediates lacking HJs. A recent screen in yeast has shown HJ resolution activity for a protein called Yen1, in addition to the previously known Mus81/Mms4 complex. Yeast strains deleted for both YEN1 and MMS4 show a reduction in growth rate, and are very sensitive to DNA-damaging agents. In addition, we investigate the genetic interaction of yen1 and mms4 with mutants defective in different repair pathways. We find that in the absence of Yen1 and Mms4 deletion of RAD1 or RAD52 have no further effect, whereas additional sensitivity is seen if RAD51 is deleted. Finally, we show that yeast cells are unable to carry out meiosis in the absence of both resolvases. Our results show that both Yen1 and Mms4/Mus81 play important (although not identical) roles during vegetative growth and in meiosis.
Related JoVE Video
Elg1, an alternative subunit of the RFC clamp loader, preferentially interacts with SUMOylated PCNA.
EMBO J.
PUBLISHED: 02-04-2010
Show Abstract
Hide Abstract
Replication-factor C (RFC) is a protein complex that loads the processivity clamp PCNA onto DNA. Elg1 is a conserved protein with homology to the largest subunit of RFC, but its function remained enigmatic. Here, we show that yeast Elg1 interacts physically and genetically with PCNA, in a manner that depends on PCNA modification, and exhibits preferential affinity for SUMOylated PCNA. This interaction is mediated by three small ubiquitin-like modifier (SUMO)-interacting motifs and a PCNA-interacting protein box close to the N-terminus of Elg1. These motifs are important for the ability of Elg1 to maintain genomic stability. SUMOylated PCNA is known to recruit the helicase Srs2, and in the absence of Elg1, Srs2 and SUMOylated PCNA accumulate on chromatin. Strains carrying mutations in both ELG1 and SRS2 exhibit a synthetic fitness defect that depends on PCNA modification. Our results underscore the importance of Elg1, Srs2 and SUMOylated PCNA in the maintenance of genomic stability.
Related JoVE Video
Analysis of repair mechanism choice during homologous recombination.
Nucleic Acids Res.
PUBLISHED: 06-23-2009
Show Abstract
Hide Abstract
Double-strand breaks (DSBs) occur frequently during cell growth. Due to the presence of repeated sequences in the genome, repair of a single DSB can result in gene conversion, translocation, deletion or tandem duplication depending on the mechanism and the sequence chosen as partner for the recombinational repair. Here, we study how yeast cells repair a single, inducible DSB when there are several potential donors to choose from, in the same chromosome and elsewhere in the genome. We systematically investigate the parameters that affect the choice of mechanism, as well as its genetic regulation. Our results indicate that intrachromosomal homologous sequences are always preferred as donors for repair. We demonstrate the occurrence of a novel tri-partite repair product that combines ectopic gene conversion and deletion. In addition, we show that increasing the distance between two repeated sequences enhances the dependence on Rad51 for colony formation after DSB repair. This is due to a role of Rad51 in the recovery from the checkpoint signal induced by the DSB. We suggest a model for the competition between the different homologous recombination pathways. Our model explains how different repair mechanisms are able to compensate for each other during DSB repair.
Related JoVE Video
The ELG1 clamp loader plays a role in sister chromatid cohesion.
PLoS ONE
PUBLISHED: 03-03-2009
Show Abstract
Hide Abstract
Mutations in the ELG1 gene of yeast lead to genomic instability, manifested in high levels of genetic recombination, chromosome loss, and gross chromosomal rearrangements. Elg1 shows similarity to the large subunit of the Replication Factor C clamp loader, and forms a RFC-like (RLC) complex in conjunction with the 4 small RFC subunits. Two additional RLCs exist in yeast: in one of them the large subunit is Ctf18, and in the other, Rad24. Ctf18 has been characterized as the RLC that functions in sister chromatid cohesion. Here we present evidence that the Elg1 RLC (but not Rad24) also plays an important role in this process. A genetic screen identified the cohesin subunit Mcd1/Scc1 and its loader Scc2 as suppressors of the synthetic lethality between elg1 and ctf4. We describe genetic interactions between ELG1 and genes encoding cohesin subunits and their accessory proteins. We also show that defects in Elg1 lead to higher precocious sister chromatid separation, and that Ctf18 and Elg1 affect cohesion via a joint pathway. Finally, we localize both Ctf18 and Elg1 to chromatin and show that Elg1 plays a role in the recruitment of Ctf18. Our results suggest that Elg1, Ctf4, and Ctf18 may coordinate the relative movement of the replication fork with respect to the cohesin ring.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.