JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Ghrelin requires p53 to stimulate lipid storage in fat and liver.
Endocrinology
PUBLISHED: 07-05-2013
Show Abstract
Hide Abstract
Ghrelin, a stomach-derived peptide, stimulates feeding behavior and adiposity. For its orexigenic action, ghrelin triggers a central SIRT1/p53/AMPK pathway. The tumor suppressor p53 also plays an important role in white adipose tissue (WAT), where it is up-regulated in the adipocytes of obese mice. It is not known, however, whether p53 has any role in mediating the peripheral action of ghrelin. In the present study, chronic peripheral ghrelin treatment resulted in increased body weight and fat-mass gain in wild-type mice. Correspondingly, mRNA levels of several adipogenic and fat-storage-promoting enzymes were up-regulated in WAT, whereas hepatic triglyceride content and lipogenic enzymes were also increased in wild-type mice following ghrelin treatment. In contrast, mice lacking p53 failed to respond to ghrelin treatment, with their body weight, fat mass, and adipocyte and hepatic metabolism remaining unchanged. Thus, our results show that p53 is necessary for the actions of ghrelin on WAT and liver, leading to changes in expression levels of lipogenic and adipogenic genes, and modifying body weight.
Related JoVE Video
Female Nur77-deficient mice show increased susceptibility to diet-induced obesity.
PLoS ONE
PUBLISHED: 01-14-2013
Show Abstract
Hide Abstract
Adipose tissue is essential in the regulation of body weight. The key process in fat catabolism and the provision of energy substrate during times of nutrient deprivation or enhanced energy demand is the hydrolysis of triglycerides and the release of fatty acids and glycerol. Nur77 is a member of the NR4A subfamily of nuclear receptors that plays an important metabolic role, modulating hepatic glucose metabolism and lipolysis in muscle. However, its endogenous role on white adipose tissue, as well as the gender dependency of these mechanisms, remains largely unknown. Male and female wild type and Nur77 deficient mice were fed with a high fat diet (45% calories from fat) for 4 months. Mice were analyzed in vivo with the indirect calorimetry system, and tissues were analyzed by real-time PCR and Western blot analysis. Female, but not male Nur77 deficient mice, gained more weight and fat mass when compared to wild type mice fed with high fat diet, which can be explained by decreased energy expenditure. The lack of Nur77 also led to a decreased pHSL/HSL ratio in white adipose tissue and increased expression of CIDEA in brown adipose tissue of female Nur77 deficient mice. Overall, these findings suggest that Nur77 is an important physiological modulator of lipid metabolism in adipose tissue and that there are gender differences in the sensitivity to deletion of the Nur77 signaling. The decreased energy expenditure and the actions of Nur77 on liver, muscle, brown and white adipose tissue contribute to the increased susceptibility to diet-induced obesity in females lacking Nur77.
Related JoVE Video
Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathways.
Gastroenterology
Show Abstract
Hide Abstract
Specific neuronal circuits modulate autonomic outflow to liver and white adipose tissue. Melanin-concentrating hormone (MCH)-deficient mice are hypophagic, lean, and do not develop hepatosteatosis when fed a high-fat diet. Herein, we sought to investigate the role of MCH, an orexigenic neuropeptide specifically expressed in the lateral hypothalamic area, on hepatic and adipocyte metabolism.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.