JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
One Small Step for a Yeast - Microevolution within Macrophages Renders Candida glabrata Hypervirulent Due to a Single Point Mutation.
PLoS Pathog.
PUBLISHED: 10-01-2014
Show Abstract
Hide Abstract
Candida glabrata is one of the most common causes of candidemia, a life-threatening, systemic fungal infection, and is surpassed in frequency only by Candida albicans. Major factors contributing to the success of this opportunistic pathogen include its ability to readily acquire resistance to antifungals and to colonize and adapt to many different niches in the human body. Here we addressed the flexibility and adaptability of C. glabrata during interaction with macrophages with a serial passage approach. Continuous co-incubation of C. glabrata with a murine macrophage cell line for over six months resulted in a striking alteration in fungal morphology: The growth form changed from typical spherical yeasts to pseudohyphae-like structures - a phenotype which was stable over several generations without any selective pressure. Transmission electron microscopy and FACS analyses showed that the filamentous-like morphology was accompanied by changes in cell wall architecture. This altered growth form permitted faster escape from macrophages and increased damage of macrophages. In addition, the evolved strain (Evo) showed transiently increased virulence in a systemic mouse infection model, which correlated with increased organ-specific fungal burden and inflammatory response (TNF? and IL-6) in the brain. Similarly, the Evo mutant significantly increased TNF? production in the brain on day 2, which is mirrored in macrophages confronted with the Evo mutant, but not with the parental wild type. Whole genome sequencing of the Evo strain, genetic analyses, targeted gene disruption and a reverse microevolution experiment revealed a single nucleotide exchange in the chitin synthase-encoding CHS2 gene as the sole basis for this phenotypic alteration. A targeted CHS2 mutant with the same SNP showed similar phenotypes as the Evo strain under all experimental conditions tested. These results indicate that microevolutionary processes in host-simulative conditions can elicit adaptations of C. glabrata to distinct host niches and even lead to hypervirulent strains.
Related JoVE Video
Metabolism in Fungal Pathogenesis.
Cold Spring Harb Perspect Med
PUBLISHED: 09-04-2014
Show Abstract
Hide Abstract
Fungal pathogens must assimilate local nutrients to establish an infection in their mammalian host. We focus on carbon, nitrogen, and micronutrient assimilation mechanisms, discussing how these influence host-fungus interactions during infection. We highlight several emerging trends based on the available data. First, the perturbation of carbon, nitrogen, or micronutrient assimilation attenuates fungal pathogenicity. Second, the contrasting evolutionary pressures exerted on facultative versus obligatory pathogens have led to contemporary pathogenic fungal species that display differing degrees of metabolic flexibility. The evolutionarily ancient metabolic pathways are conserved in most fungal pathogen, but interesting gaps exist in some species (e.g., Candida glabrata). Third, metabolic flexibility is generally essential for fungal pathogenicity, and in particular, for the adaptation to contrasting host microenvironments such as the gastrointestinal tract, mucosal surfaces, bloodstream, and internal organs. Fourth, this metabolic flexibility relies on complex regulatory networks, some of which are conserved across lineages, whereas others have undergone significant evolutionary rewiring. Fifth, metabolic adaptation affects fungal susceptibility to antifungal drugs and also presents exciting opportunities for the development of novel therapies.
Related JoVE Video
In vivo imaging of disseminated murine Candida albicans infection reveals unexpected host sites of fungal persistence during antifungal therapy.
J. Antimicrob. Chemother.
PUBLISHED: 06-20-2014
Show Abstract
Hide Abstract
Candida albicans is an important fungal pathogen that can cause life-threatening disseminated infections. To determine the efficacy of therapy in murine models, a determination of renal fungal burden as cfu is commonly used. However, this approach provides only a snapshot of the current situation in an individual animal and cryptic sites of infection may easily be missed. Thus, we aimed to develop real-time non-invasive imaging to monitor infection in vivo.
Related JoVE Video
Systematic phenotyping of a large-scale Candida glabrata deletion collection reveals novel antifungal tolerance genes.
PLoS Pathog.
PUBLISHED: 06-01-2014
Show Abstract
Hide Abstract
The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes.
Related JoVE Video
Pathogenicity mechanisms and host response during oral Candida albicans infections.
Expert Rev Anti Infect Ther
PUBLISHED: 05-07-2014
Show Abstract
Hide Abstract
Oral candidiasis remains one of the most common forms of Candida infections and occurs if the balance between host, Candida and microbiota is disturbed, e.g., by broad spectrum antibiotics or immunosuppression. In recent years, identification of fungal factors contributing to host cell damage and new insights into host defense mechanisms have significantly extended our understanding of the pathogenesis of oral candidiasis. In this review, we will provide an overview of the pathogenicity mechanisms during oral Candida infections and discuss some approaches by which this knowledge could be transferred into therapeutic approaches.
Related JoVE Video
Histidine degradation via an aminotransferase increases the nutritional flexibility of Candida glabrata.
Eukaryotic Cell
PUBLISHED: 04-11-2014
Show Abstract
Hide Abstract
The ability to acquire nutrients during infections is an important attribute in microbial pathogenesis. Amino acids are a valuable source of nitrogen if they can be degraded by the infecting organism. In this work, we analyzed histidine utilization in the fungal pathogen of humans Candida glabrata. Hemiascomycete fungi, like C. glabrata or Saccharomyces cerevisiae, possess no gene coding for a histidine ammonia-lyase, which catalyzes the first step of a major histidine degradation pathway in most other organisms. We show that C. glabrata instead initializes histidine degradation via the aromatic amino acid aminotransferase Aro8. Although ARO8 is also present in S. cerevisiae and is induced by extracellular histidine, the yeast cannot use histidine as its sole nitrogen source, possibly due to growth inhibition by a downstream degradation product. Furthermore, C. glabrata relies only on Aro8 for phenylalanine and tryptophan utilization, since ARO8, but not its homologue ARO9, was transcriptionally activated in the presence of these amino acids. Accordingly, an ARO9 deletion had no effect on growth with aromatic amino acids. In contrast, in S. cerevisiae, ARO9 is strongly induced by tryptophan and is known to support growth on aromatic amino acids. Differences in the genomic structure of the ARO9 gene between C. glabrata and S. cerevisiae indicate a possible disruption in the regulatory upstream region. Thus, we show that, in contrast to S. cerevisiae, C. glabrata has adapted to use histidine as a sole source of nitrogen and that the aromatic amino acid aminotransferase Aro8, but not Aro9, is the enzyme required for this process.
Related JoVE Video
Differential role of NK cells against Candida albicans infection in immunocompetent or immunocompromised mice.
Eur. J. Immunol.
PUBLISHED: 03-13-2014
Show Abstract
Hide Abstract
Little is known regarding the role of NK cells during primary and secondary disseminated Candida albicans infection. We assessed the role of NK cells for host defense against candidiasis in immunocompetent, as well as immunodeficient, hosts. Surprisingly, depletion of NK cells in immunocompetent WT mice did not increase susceptibility to systemic candidiasis, suggesting that NK cells are redundant for antifungal defense in otherwise immunocompetent hosts. NK-cell-depleted mice were found to be protected as a consequence of attenuation of systemic inflammation. In contrast, the absence of NK cells in T/B/NK-cell-deficient NSG (NOD SCID gamma) mice led to an increased susceptibility to both primary and secondary systemic C. albicans infections compared with T/B-cell-deficient SCID mice. In conclusion, this study demonstrates that NK cells are an essential and nonredundant component of anti-C. albicans host defense in immunosuppressed hosts with defective T/B-lymphocyte immunity, while contributing to hyperinflammation in immunocompetent hosts. The discovery of the importance of NK cells in hosts with severe defects of adaptive immunity might have important consequences for the design of adjunctive immunotherapeutic approaches in systemic C. albicans infections targeting NK-cell function.
Related JoVE Video
A family of glutathione peroxidases contributes to oxidative stress resistance in Candida albicans.
Med. Mycol.
PUBLISHED: 03-07-2014
Show Abstract
Hide Abstract
Candida albicans is a well-adapted human commensal but is also a facultative pathogen that can cause superficial and systemic infections. Its remarkable capacity to thrive within the human host relies on its ability to adapt and respond to the local environment of different niches. C. albicans is able to cope with oxidative stress in a coordinated fashion via upregulation of different protective mechanisms. Here, we unravel the role of a family of glutathione peroxidase (GPx), designated Gpx31, Gpx32, and Gpx33, in oxidative stress resistance. We show that GPx activity in C. albicans is induced upon exposure to peroxides and that this enzymatic activity is required for full resistance to oxidative stress. The GPx activity relies on the presence of GPX31, with no apparent contribution from GPX32 and GPX33 during in vitro short-term (3 h) exposure to peroxides. However, a triple gpx31-33?/? mutant exhibited a more pronounced sensitivity than a single gpx31?/? mutant on solid media in the presence of oxidants, suggesting that GPX32 and GPX33 may be involved in long-term adaptation to oxidative stress. Interestingly, reintegration of a single allele of GPX31 was sufficient to restore the wild-type phenotype in both the single and triple mutants. We found that mutants lacking GPX31-33 were more susceptible to killing by phagocytic cells, suggesting that GPxs are required for full resistance to innate immune effector cells. Despite the sensitivity to oxidative stress and phagocytes, these mutants were not affected in their virulence in the chicken embryo model of candidiasis.
Related JoVE Video
Distinct roles of Candida albicans-specific genes in host-pathogen interactions.
Eukaryotic Cell
PUBLISHED: 03-07-2014
Show Abstract
Hide Abstract
Human fungal pathogens are distributed throughout their kingdom, suggesting that pathogenic potential evolved independently. Candida albicans is the most virulent member of the CUG clade of yeasts and a common cause of both superficial and invasive infections. We therefore hypothesized that C. albicans possesses distinct pathogenicity mechanisms. In silico genome subtraction and comparative transcriptional analysis identified a total of 65 C. albicans-specific genes (ASGs) expressed during infection. Phenotypic characterization of six ASG-null mutants demonstrated that these genes are dispensable for in vitro growth but play defined roles in host-pathogen interactions. Based on these analyses, we investigated two ASGs in greater detail. An orf19.6688? mutant was found to be fully virulent in a mouse model of disseminated candidiasis and to induce higher levels of the proinflammatory cytokine interleukin-1? (IL-1?) following incubation with murine macrophages. A pga16? mutant, on the other hand, exhibited attenuated virulence. Moreover, we provide evidence that secondary filamentation events (multiple hyphae emerging from a mother cell and hyphal branching) contribute to pathogenicity: PGA16 deletion did not influence primary hypha formation or extension following contact with epithelial cells; however, multiple hyphae and hyphal branching were strongly reduced. Significantly, these hyphae failed to damage host cells as effectively as the multiple hypha structures formed by wild-type C. albicans cells. Together, our data show that species-specific genes of a eukaryotic pathogen can play important roles in pathogenicity.
Related JoVE Video
Identification of Candida glabrata genes involved in pH modulation and modification of the phagosomal environment in macrophages.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Candida glabrata currently ranks as the second most frequent cause of invasive candidiasis. Our previous work has shown that C. glabrata is adapted to intracellular survival in macrophages and replicates within non-acidified late endosomal-stage phagosomes. In contrast, heat killed yeasts are found in acidified matured phagosomes. In the present study, we aimed at elucidating the processes leading to inhibition of phagosome acidification and maturation. We show that phagosomes containing viable C. glabrata cells do not fuse with pre-labeled lysosomes and possess low phagosomal hydrolase activity. Inhibition of acidification occurs independent of macrophage type (human/murine), differentiation (M1-/M2-type) or activation status (vitamin D3 stimulation). We observed no differential activation of macrophage MAPK or NF?B signaling cascades downstream of pattern recognition receptors after internalization of viable compared to heat killed yeasts, but Syk activation decayed faster in macrophages containing viable yeasts. Thus, delivery of viable yeasts to non-matured phagosomes is likely not triggered by initial recognition events via MAPK or NF?B signaling, but Syk activation may be involved. Although V-ATPase is abundant in C. glabrata phagosomes, the influence of this proton pump on intracellular survival is low since blocking V-ATPase activity with bafilomycin A1 has no influence on fungal viability. Active pH modulation is one possible fungal strategy to change phagosome pH. In fact, C. glabrata is able to alkalinize its extracellular environment, when growing on amino acids as the sole carbon source in vitro. By screening a C. glabrata mutant library we identified genes important for environmental alkalinization that were further tested for their impact on phagosome pH. We found that the lack of fungal mannosyltransferases resulted in severely reduced alkalinization in vitro and in the delivery of C. glabrata to acidified phagosomes. Therefore, protein mannosylation may play a key role in alterations of phagosomal properties caused by C. glabrata.
Related JoVE Video
Regulatory networks controlling nitrogen sensing and uptake in Candida albicans.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Nitrogen is one of the key nutrients for microbial growth. During infection, pathogenic fungi like C. albicans need to acquire nitrogen from a broad range of different and changing sources inside the host. Detecting the available nitrogen sources and adjusting the expression of genes for their uptake and degradation is therefore crucial for survival and growth as well as for establishing an infection. Here, we analyzed the transcriptional response of C. albicans to nitrogen starvation and feeding with the infection-relevant nitrogen sources arginine and bovine serum albumin (BSA), representing amino acids and proteins, respectively. The response to nitrogen starvation was marked by an immediate repression of protein synthesis and an up-regulation of general amino acid permeases, as well as an up-regulation of autophagal processes in its later stages. Feeding with arginine led to a fast reduction in expression of general permeases for amino acids and to resumption of protein synthesis. The response to BSA feeding was generally slower, and was additionally characterized by an up-regulation of oligopeptide transporter genes. From time-series data, we inferred network interaction models for genes relevant in nitrogen detection and uptake. Each individual network was found to be largely specific for the experimental condition (starvation or feeding with arginine or BSA). In addition, we detected several novel connections between regulator and effector genes, with putative roles in nitrogen uptake. We conclude that C. albicans adopts a particular nitrogen response network, defined by sets of specific gene-gene connections for each environmental condition. All together, they form a grid of possible gene regulatory networks, increasing the transcriptional flexibility of C. albicans.
Related JoVE Video
Immune Evasion, Stress Resistance, and Efficient Nutrient Acquisition Are Crucial for Intracellular Survival of Candida glabrata within Macrophages.
Eukaryotic Cell
PUBLISHED: 12-20-2013
Show Abstract
Hide Abstract
Candida glabrata is both a human fungal commensal and an opportunistic pathogen which can withstand activities of the immune system. For example, C. glabrata can survive phagocytosis and replicates within macrophages. However, the mechanisms underlying intracellular survival remain unclear. In this work, we used a functional genomic approach to identify C. glabrata determinants necessary for survival within human monocyte-derived macrophages by screening a set of 433 deletion mutants. We identified 23 genes which are required to resist killing by macrophages. Based on homologies to Saccharomyces cerevisiae orthologs, these genes are putatively involved in cell wall biosynthesis, calcium homeostasis, nutritional and stress response, protein glycosylation, or iron homeostasis. Mutants were further characterized using a series of in vitro assays to elucidate the genes functions in survival. We investigated different parameters of C. glabrata-phagocyte interactions: uptake by macrophages, replication within macrophages, phagosomal pH, and recognition of mutant cells by macrophages as indicated by production of reactive oxygen species and tumor necrosis factor alpha (TNF-?). We further studied the cell surface integrity of mutant cells, their ability to grow under nutrient-limited conditions, and their susceptibility to stress conditions mirroring the harsh environment inside a phagosome. Additionally, resistance to killing by neutrophils was analyzed. Our data support the view that immune evasion is a key aspect of C. glabrata virulence and that increased immune recognition causes increased antifungal activities by macrophages. Furthermore, stress resistance and efficient nutrient acquisition, in particular, iron uptake, are crucial for intraphagosomal survival of C. glabrata.
Related JoVE Video
Human Natural Killer Cells Acting as Phagocytes Against Candida albicans and Mounting an Inflammatory Response That Modulates Neutrophil Antifungal Activity.
J. Infect. Dis.
PUBLISHED: 10-25-2013
Show Abstract
Hide Abstract
Background.?Natural killer (NK) cells are innate lymphocytes with potent cytotoxic activity. Whereas activity of NK cells has been demonstrated against the fungal pathogens Aspergillus fumigatus and Cryptococcus neoformans, little was known about their interaction with Candida albicans.Methods.?Primary human NK cells were isolated from buffy coats, primed with a cytokine cocktail and used for confrontation assays with C. albicans. Interaction was monitored and quantified using live cell imaging, confocal microscopy, flow cytometry, and enzyme-linked immunosorbent assay.Results.?Human NK cells actively recognized C. albicans, resulting in degranulation and secretion of granulocyte-macrophage colony-stimulating factor, interferon ?, and tumor necrosis factor ? . Uniquely, activation of NK cells was triggered by actin-dependent phagocytosis. Antifungal activity of NK cells against C. albicans could be detected and mainly attributed to secreted perforin. However, NK cells were unable to inhibit filamentation of C. albicans. Human polymorphonuclear neutrophils (PMNs) counteracted the proinflammatory reaction of NK cells by preventing direct contact between NK cells and the fungal pathogen. Activation of PMNs was enhanced in the presence of NK cells, resulting in increased fungicidal activity.Conclusions.?Our results show a unique pattern of NK cell interaction with C. albicans, which involves direct proinflammatory activation and modulation of PMN activity. For the first time, phagocytosis of a pathogen is shown to contribute to NK cell activation.
Related JoVE Video
Epithelial invasion outcompetes hypha development during Candida albicans infection as revealed by an image-based systems biology approach.
Cytometry A
PUBLISHED: 10-04-2013
Show Abstract
Hide Abstract
Candida albicans is the most common opportunistic fungal pathogen of the human mucosal flora, frequently causing infections. The fungus is responsible for invasive infections in immunocompromised patients that can lead to sepsis. The yeast to hypha transition and invasion of host-tissue represent major determinants in the switch from benign colonizer to invasive pathogen. A comprehensive understanding of the infection process requires analyses at the quantitative level. Utilizing fluorescence microscopy with differential staining, we obtained images of C. albicans undergoing epithelial invasion during a time course of 6 h. An image-based systems biology approach, combining image analysis and mathematical modeling, was applied to quantify the kinetics of hyphae development, hyphal elongation, and epithelial invasion. The automated image analysis facilitates high-throughput screening and provided quantities that allow for the time-resolved characterization of the morphological and invasive state of fungal cells. The interpretation of these data was supported by two mathematical models, a kinetic growth model and a kinetic transition model, that were developed using differential equations. The kinetic growth model describes the increase in hyphal length and revealed that hyphae undergo mass invasion of epithelial cells following primary hypha formation. We also provide evidence that epithelial cells stimulate the production of secondary hyphae by C. albicans. Based on the kinetic transition model, the route of invasion was quantified in the state space of non-invasive and invasive fungal cells depending on their number of hyphae. This analysis revealed that the initiation of hyphae formation represents an ultimate commitment to invasive growth and suggests that in vivo, the yeast to hypha transition must be under exquisitely tight negative regulation to avoid the transition from commensal to pathogen invading the epithelium. © 2013 International Society for Advancement of Cytometry.
Related JoVE Video
Clotrimazole dampens vaginal inflammation and neutrophil infiltration in response to Candida albicans infection.
Antimicrob. Agents Chemother.
PUBLISHED: 07-29-2013
Show Abstract
Hide Abstract
The pathology of vulvovaginal candidiasis (VVC) caused by Candida albicans is associated with a nonprotective inflammatory response and is frequently treated with clotrimazole. We investigated the mechanisms by which clotrimazole resolves VVC. Low levels of clotrimazole, which do not block fungal growth, inhibit expression of a "danger response" transcription factor, c-Fos, block production of proinflammatory cytokines, and inhibit neutrophil infiltration to the site of infection.
Related JoVE Video
Factors supporting cysteine tolerance and sulfite production in Candida albicans.
Eukaryotic Cell
PUBLISHED: 02-15-2013
Show Abstract
Hide Abstract
The amino acid cysteine has long been known to be toxic at elevated levels for bacteria, fungi, and humans. However, mechanisms of cysteine tolerance in microbes remain largely obscure. Here we show that the human pathogenic yeast Candida albicans excretes sulfite when confronted with increasing cysteine concentrations. Mutant construction and phenotypic analysis revealed that sulfite formation from cysteine in C. albicans relies on cysteine dioxygenase Cdg1, an enzyme with similar functions in humans. Environmental cysteine induced not only the expression of the CDG1 gene in C. albicans, but also the expression of SSU1, encoding a putative sulfite efflux pump. Accordingly, the deletion of SSU1 resulted in enhanced sensitivity of the fungal cells to both cysteine and sulfite. To study the regulation of sulfite/cysteine tolerance in more detail, we screened a C. albicans library of transcription factor mutants in the presence of sulfite. This approach and subsequent independent mutant analysis identified the zinc cluster transcription factor Zcf2 to govern sulfite/cysteine tolerance, as well as cysteine-inducible SSU1 and CDG1 gene expression. cdg1? and ssu1? mutants displayed reduced hypha formation in the presence of cysteine, indicating a possible role of the newly proposed mechanisms of cysteine tolerance and sulfite secretion in the pathogenicity of C. albicans. Moreover, cdg1? mutants induced delayed mortality in a mouse model of disseminated infection. Since sulfite is toxic and a potent reducing agent, its production by C. albicans suggests diverse roles during host adaptation and pathogenicity.
Related JoVE Video
A core filamentation response network in Candida albicans is restricted to eight genes.
PLoS ONE
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
Although morphological plasticity is a central virulence trait of Candida albicans, the number of filament-associated genes and the interplay of mechanisms regulating their expression remain unknown. By correlation-based network modeling of the transcriptional response to different defined external stimuli for morphogenesis we identified a set of eight genes with highly correlated expression patterns, forming a core filamentation response. This group of genes included ALS3, ECE1, HGT2, HWP1, IHD1 and RBT1 which are known or supposed to encode for cell- wall associated proteins as well as the Rac1 guanine nucleotide exchange factor encoding gene DCK1 and the unknown function open reading frame orf19.2457. The validity of network modeling was confirmed using a dataset of advanced complexity that describes the transcriptional response of C. albicans during epithelial invasion as well as comparing our results with other previously published transcriptome studies. Although the set of core filamentation response genes was quite small, several transcriptional regulators are involved in the control of their expression, depending on the environmental condition.
Related JoVE Video
Secreted aspartic proteases of Candida albicans activate the NLRP3 inflammasome.
Eur. J. Immunol.
PUBLISHED: 01-31-2013
Show Abstract
Hide Abstract
In a recent report, we demonstrated that distinct members of the secreted aspartic protease (Sap) family of Candida albicans are able to induce secretion of proinflammatory cytokines by human monocytes, independently of their proteolytic activity and specific pH optima. In particular, C. albicans Sap2 and Sap6 potently induced IL-1?, TNF-?, and IL-6 production. Here, we demonstrate that Sap2 and Sap6 proteins trigger IL-1? and IL-18 production through inflammasome activation. This occurs via NLRP3 and caspase-1 activation, which cleaves pro-IL-1? into secreted bioactive IL-1?, a cytokine that was induced by Saps in monocytes, in monocyte-derived macrophages and in dendritic cells. Downregulation of NLRP3 by RNA interference strongly reduced the secretion of bioactive IL-1?. Inflammasome activation required Sap internalization via a clathrin-dependent mechanism, intracellular induction of K(+) efflux, and ROS production. Inflammasome activation of monocytes induced by Sap2 and Sap6 differed from that induced by LPS-ATP in several aspects. Our data reveal novel immunoregulatory mechanisms of C. albicans and suggest that Saps contribute to the pathogenesis of candidiasis by fostering rather than evading host immunity.
Related JoVE Video
Hsp21 potentiates antifungal drug tolerance in Candida albicans.
PLoS ONE
PUBLISHED: 01-15-2013
Show Abstract
Hide Abstract
Systemic infections of humans with the fungal pathogen Candida albicans are associated with a high mortality rate. Currently, efficient treatment of these infections is hampered by the relatively low number of available antifungal drugs. We recently identified the small heat shock protein Hsp21 in C. albicans and demonstrated its fundamental role for environmental stress adaptation and fungal virulence. Hsp21 was found in several pathogenic Candida species but not in humans. This prompted us to investigate the effects of a broad range of different antifungal drugs on an Hsp21-null C. albicans mutant strain. Our results indicate that combinatorial therapy targeting Hsp21, together with specific antifungal drug targets, has strong synergistic potential. In addition, we demonstrate that Hsp21 is required for tolerance to ethanol-induced stress and induction of filamentation in response to pharmacological inhibition of Hsp90. These findings might pave the way for the development of new treatment strategies against Candida infections.
Related JoVE Video
Two unlike cousins: Candida albicans and C. glabrata infection strategies.
Cell. Microbiol.
PUBLISHED: 01-14-2013
Show Abstract
Hide Abstract
Candida albicans and C. glabrata are the two most common pathogenic yeasts of humans, yet they are phylogenetically, genetically and phenotypically very different. In this review, we compare and contrast the strategies of C. albicans and C. glabrata to attach to and invade into the host, obtain nutrients and evade the host immune response. Although their strategies share some basic concepts, they differ greatly in their outcome. While C. albicans follows an aggressive strategy to subvert the host response and to obtain nutrients for its survival, C. glabrata seems to have evolved a strategy which is based on stealth, evasion and persistence, without causing severe damage in murine models. However, both fungi are successful as commensals and as pathogens of humans. Understanding these strategies will help in finding novel ways to fight Candida, and fungal infections in general.
Related JoVE Video
Candida albicans pathogenicity mechanisms.
Virulence
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
The polymorphic fungus Candida albicans is a member of the normal human microbiome. In most individuals, C. albicans resides as a lifelong, harmless commensal. Under certain circumstances, however, C. albicans can cause infections that range from superficial infections of the skin to life-threatening systemic infections. Several factors and activities have been identified which contribute to the pathogenic potential of this fungus. Among them are molecules which mediate adhesion to and invasion into host cells, the secretion of hydrolases, the yeast-to-hypha transition, contact sensing and thigmotropism, biofilm formation, phenotypic switching and a range of fitness attributes. Our understanding of when and how these mechanisms and factors contribute to infection has significantly increased during the last years. In addition, novel virulence mechanisms have recently been discovered. In this review we present an update on our current understanding of the pathogenicity mechanisms of this important human pathogen.
Related JoVE Video
Thriving within the host: Candida spp. interactions with phagocytic cells.
Med. Microbiol. Immunol.
PUBLISHED: 01-08-2013
Show Abstract
Hide Abstract
Certain Candida spp. (e.g. C. albicans, C. tropicalis, C. parapsilosis and C. glabrata) are not only well-adapted fungal commensals of humans, but are also able to cause superficial mucosal infections or even systemic disease. Professional phagocytes (neutrophils, macrophages and dendritic cells) constitute the first line of defence against Candida spp. Here, we review the interactions of phagocytes with pathogenic Candida spp., focusing on macrophages and neutrophils. We discuss the mechanisms involved in recognition, uptake and killing of these fungi. We go on to analyse the cellular responses of these yeasts towards phagocyte-imposed stresses, including metabolic flexibility, robust oxidative stress response and ability to cope with nitrosative stress. Finally, we address strategies that allow these opportunistic pathogens to thrive within the host, evading and escaping from the phagocyte attack.
Related JoVE Video
Serial passaging of Candida albicans in systemic murine infection suggests that the wild type strain SC5314 is well adapted to the murine kidney.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The opportunistic fungal pathogen Candida albicans has a remarkable ability to adapt to unfavorable environments by different mechanisms, including microevolution. For example, a previous study has shown that passaging through the murine spleen can cause new phenotypic characteristics. Since the murine kidney is the main target organ in murine Candida sepsis and infection of the spleen differs from the kidney in several aspects, we tested whether C. albicans SC5314 could evolve to further adapt to infection and persistence within the kidney. Therefore, we performed a long-term serial passage experiment through the murine kidney of using a low infectious dose. We found that the overall virulence of the commonly used wild type strain SC5314 did not change after eight passages and that the isolated pools showed only very moderate changes of phenotypic traits on the population level. Nevertheless, the last passage showed a higher phenotypic variability and a few individual strains exhibited phenotypic alterations suggesting that microevolution has occurred. However, the majority of the tested single strains were phenotypically indistinguishable from SC5314. Thus, our findings indicate that characteristics of SC5314 which are important to establish and maintain kidney infection over a prolonged time are already well developed.
Related JoVE Video
Global transcriptome sequencing identifies chlamydospore specific markers in Candida albicans and Candida dubliniensis.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Candida albicans and Candida dubliniensis are pathogenic fungi that are highly related but differ in virulence and in some phenotypic traits. During in vitro growth on certain nutrient-poor media, C. albicans and C. dubliniensis are the only yeast species which are able to produce chlamydospores, large thick-walled cells of unknown function. Interestingly, only C. dubliniensis forms pseudohyphae with abundant chlamydospores when grown on Staib medium, while C. albicans grows exclusively as a budding yeast. In order to further our understanding of chlamydospore development and assembly, we compared the global transcriptional profile of both species during growth in liquid Staib medium by RNA sequencing. We also included a C. albicans mutant in our study which lacks the morphogenetic transcriptional repressor Nrg1. This strain, which is characterized by its constitutive pseudohyphal growth, specifically produces masses of chlamydospores in Staib medium, similar to C. dubliniensis. This comparative approach identified a set of putatively chlamydospore-related genes. Two of the homologous C. albicans and C. dubliniensis genes (CSP1 and CSP2) which were most strongly upregulated during chlamydospore development were analysed in more detail. By use of the green fluorescent protein as a reporter, the encoded putative cell wall related proteins were found to exclusively localize to C. albicans and C. dubliniensis chlamydospores. Our findings uncover the first chlamydospore specific markers in Candida species and provide novel insights in the complex morphogenetic development of these important fungal pathogens.
Related JoVE Video
The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation.
J. Immunol.
PUBLISHED: 08-17-2011
Show Abstract
Hide Abstract
Although Candida glabrata is an important human pathogenic yeast, its pathogenicity mechanisms are largely unknown. Immune evasion strategies seem to play key roles during infection, since very little inflammation is observed in mouse models. Furthermore, C. glabrata multiplies intracellularly after engulfment by macrophages. In this study, we sought to identify the strategies that enable C. glabrata to survive phagosome biogenesis and antimicrobial activities within human monocyte-derived macrophages. We show that, despite significant intracellular proliferation, macrophage damage or apoptosis was not apparent, and production of reactive oxygen species was inhibited. Additionally, with the exception of GM-CSF, levels of pro- and anti-inflammatory cytokines were only marginally increased. We demonstrate that adhesion to and internalization by macrophages occur within minutes, and recruitment of endosomal early endosomal Ag 1 and lysosomal-associated membrane protein 1 indicates phagosome maturation. However, phagosomes containing viable C. glabrata, but not heat-killed yeasts, failed to recruit cathepsin D and were only weakly acidified. This inhibition of acidification did not require fungal viability, but it had a heat-sensitive surface attribute. Therefore, C. glabrata modifies the phagosome into a nonacidified environment and multiplies until the host cells finally lyse and release the fungi. Our results suggest persistence of C. glabrata within macrophages as a possible immune evasion strategy.
Related JoVE Video
Candida albicans adhesion to and invasion and damage of vaginal epithelial cells: stage-specific inhibition by clotrimazole and bifonazole.
Antimicrob. Agents Chemother.
PUBLISHED: 07-11-2011
Show Abstract
Hide Abstract
Clotrimazole and bifonazole are highly effective antifungal agents against mucosal Candida albicans infections. Here we examined the effects of low levels of clotrimazole and bifonazole on the ability of C. albicans to adhere, invade, and damage vaginal epithelial cells. Although adhesion and invasion were not affected, damage was greatly reduced upon azole treatment. This clearly indicates that low levels of azoles influence specific activities of C. albicans during distinct stages of vaginal epithelium infections.
Related JoVE Video
Host-pathogen interactions and virulence-associated genes during Candida albicans oral infections.
Int. J. Med. Microbiol.
PUBLISHED: 05-08-2011
Show Abstract
Hide Abstract
Oral infections with Candida albicans are very common diseases in even only mildly immunocompromised patients. By using genome-wide microarrays, in vitro infection models and samples from patients with pseudomembranous candidiasis, several genes have been identified which encode known and unknown fungal factors associated with oral infection. The expression of selected genes has been investigated via qRT-PCR in both in vitro models and in vivo samples from patients. Several lines of evidence suggest that fungal morphology plays a key role in adhesion to and invasion into oral epithelial cells and mutants lacking regulators of hyphal formation are attenuated in their ability to invade and damage epithelial cells. Adhesion is mediated by hyphal-associated factors such as Hwp1 and the Als adhesin family. Hyphal formation facilitates epithelial invasion via two routes: active penetration and induced endocytosis. While induced endocytosis is predominantly mediated by the adhesin and invasin Als3, active penetration seems to be supported by hydrolase activity and mechanical pressure. Expression profiles reflect the morphological switch and an adaptive response to neutral pH, non-glucose carbon sources, and nitrosative stress.
Related JoVE Video
Candida albicans interactions with epithelial cells and mucosal immunity.
Microbes Infect.
PUBLISHED: 05-05-2011
Show Abstract
Hide Abstract
Candida albicans interactions with epithelial cells are critical for commensal growth, fungal pathogenicity and host defence. This review will outline our current understanding of C. albicans-epithelial interactions and will discuss how this may lead to the induction of a protective mucosal immune response.
Related JoVE Video
Pathogenesis of Candida albicans infections in the alternative chorio-allantoic membrane chicken embryo model resembles systemic murine infections.
PLoS ONE
PUBLISHED: 04-13-2011
Show Abstract
Hide Abstract
Alternative models of microbial infections are increasingly used to screen virulence determinants of pathogens. In this study, we investigated the pathogenesis of Candida albicans and C. glabrata infections in chicken embryos infected via the chorio-allantoic membrane (CAM) and analyzed the virulence of deletion mutants. The developing immune system of the host significantly influenced susceptibility: With increasing age, embryos became more resistant and mounted a more balanced immune response, characterized by lower induction of proinflammatory cytokines and increased transcription of regulatory cytokines, suggesting that immunopathology contributes to pathogenesis. While many aspects of the chicken embryo response resembled murine infections, we also observed significant differences: In contrast to systemic infections in mice, IL-10 had a beneficial effect in chicken embryos. IL-22 and IL-17A were only upregulated after the peak mortality in the chicken embryo model occurred; thus, the role of the Th17 response in this model remains unclear. Abscess formation occurs frequently in murine models, whereas the avian response was dominated by granuloma formation. Pathogenicity of the majority of 15 tested C. albicans deletion strains was comparable to the virulence in mouse models and reduced virulence was associated with significantly lower transcription of proinflammatory cytokines. However, fungal burden did not correlate with virulence and for few mutants like bcr1? and tec1? different outcomes in survival compared to murine infections were observed. C. albicans strains locked in the yeast stage disseminated significantly more often from the CAM into the embryo, supporting the hypothesis that the yeast morphology is responsible for dissemination in systemic infections. These data suggest that the pathogenesis of C. albicans infections in the chicken embryo model resembles systemic murine infections but also differs in some aspects. Despite its limitations, it presents a useful alternative tool to pre-screen C. albicans strains to select strains for subsequent testing in murine models.
Related JoVE Video
Gene acquisition, duplication and metabolic specification: the evolution of fungal methylisocitrate lyases.
Environ. Microbiol.
PUBLISHED: 03-31-2011
Show Abstract
Hide Abstract
Gene duplication represents an evolutionary mechanism for expanding metabolic potential. Here we analysed the evolutionary relatedness of isocitrate and methylisocitrate lyases, which are key enzymes of the glyoxylate and methylcitrate cycle respectively. Phylogenetic analyses imply that ancient eukaryotes acquired an isocitrate lyase gene from a prokaryotic source, but it was lost in some eukaryotic lineages. However, protists, oomycetes and most fungi maintained this gene and successfully integrated the corresponding enzyme into the glyoxylate cycle. A second gene, encoding a highly related enzyme, is present in fungi, but absent from other eukaryotes. This methylisocitrate lyase is specifically involved in propionyl-CoA degradation via the methylcitrate cycle. Although bacteria possess methylisocitrate lyases with a structural fold similar to that of isocitrate lyases, their sequence identity to fungal methylisocitrate lyases is low. Phylogenetic analyses imply that fungal methylisocitrate lyases arose from gene duplication of an ancient isocitrate lyase gene from the basidiomycete lineage. Mutagenesis of active-site residues of a bacterial and fungal isocitrate lyase, which have been predicted to direct the substrate specificity of iso- and methylisocitrate lyases, experimentally confirmed the possibility of direct evolution of methylisocitrate lyases from isocitrate lyases. Thus, gene duplication has increased the metabolic capacity of fungi.
Related JoVE Video
Role of pH-regulated antigen 1 of Candida albicans in the fungal recognition and antifungal response of human neutrophils.
Mol. Immunol.
PUBLISHED: 03-08-2011
Show Abstract
Hide Abstract
Candida albicans is an opportunistic human-pathogenic fungus, which can cause superficial but also life-threatening invasive infections. The pH-regulated antigen 1 (Pra1) of C. albicans is a surface-associated and secreted protein highly expressed in the hyphal form. Pra1 can bind to complement receptor 3 (CD11b/CD18) and can mediate adhesion to and migration of human phagocytes. Here, we investigated the role of Pra1 in the activation of human neutrophils. A C. albicans mutant strain lacking Pra1 (pra1?) supported neutrophil migration to a lower extent than did the parental wild-type strain. A Pra1-overexpressing C. albicans strain enhanced neutrophil migration and adherence. While inactivated hyphae of the Pra1-overexpressing mutant with surface-associated Pra1 enhanced the production and release of reactive oxygen species, myeloperoxidase, lactoferrin, and interleukin 8 by neutrophils, such responses were reduced when stimulated with inactivated hyphae of the pra1? strain. However, Pra1-overexpressing living hyphae, which secrete large amounts of Pra1, also caused a reduced neutrophil activation, indicating that the release of extracellular Pra1 can inhibit the activation of these innate immune cells. Similarly, soluble recombinant Pra1 inhibited the neutrophil responses elicited by cell-wall bound Pra1. Finally, fungal cells lacking Pra1 were more efficiently killed by neutrophils. In conclusion, surface-exposed Pra1 plays a role in the recognition of C. albicans, especially hyphal cells, by human neutrophils and enhances neutrophil antimicrobial responses. However, the fungus can counteract some of these defense mechanisms by releasing soluble Pra1.
Related JoVE Video
The Candida albicans-specific gene EED1 encodes a key regulator of hyphal extension.
PLoS ONE
PUBLISHED: 02-02-2011
Show Abstract
Hide Abstract
The extension of germ tubes into elongated hyphae by Candida albicans is essential for damage of host cells. The C. albicans-specific gene EED1 plays a crucial role in this extension and maintenance of filamentous growth. eed1? cells failed to extend germ tubes into long filaments and switched back to yeast growth after 3 h of incubation during growth on plastic surfaces. Expression of EED1 is regulated by the transcription factor Efg1 and ectopic overexpression of EED1 restored filamentation in efg1?. Transcriptional profiling of eed1? during infection of oral tissue revealed down-regulation of hyphal associated genes including UME6, encoding another key transcriptional factor. Ectopic overexpression of EED1 or UME6 rescued filamentation and damage potential in eed1?. Transcriptional profiling during overexpression of UME6 identified subsets of genes regulated by Eed1 or Ume6. These data suggest that Eed1 and Ume6 act in a pathway regulating maintenance of hyphal growth thereby repressing hyphal-to-yeast transition and permitting dissemination of C. albicans within epithelial tissues.
Related JoVE Video
Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi.
Genome Biol.
PUBLISHED: 01-19-2011
Show Abstract
Hide Abstract
Millions of humans and animals suffer from superficial infections caused by a group of highly specialized filamentous fungi, the dermatophytes, which exclusively infect keratinized host structures. To provide broad insights into the molecular basis of the pathogenicity-associated traits, we report the first genome sequences of two closely phylogenetically related dermatophytes, Arthroderma benhamiae and Trichophyton verrucosum, both of which induce highly inflammatory infections in humans.
Related JoVE Video
From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells.
PLoS ONE
PUBLISHED: 01-18-2011
Show Abstract
Hide Abstract
Candida albicans frequently causes superficial infections by invading and damaging epithelial cells, but may also cause systemic infections by penetrating through epithelial barriers. C. albicans is an unusual pathogen because it can invade epithelial cells via two distinct mechanisms: induced endocytosis, analogous to facultative intracellular enteropathogenic bacteria, and active penetration, similar to plant pathogenic fungi. Here we investigated the molecular basis of C. albicans epithelial interactions. By systematically assessing the contributions of defined fungal pathways and factors to different stages of epithelial interactions, we provide an expansive portrait of the processes and activities involved in epithelial infection. We strengthen the concept that hyphal formation is critical for epithelial invasion. Importantly, our data support a model whereby initial epithelial invasion per se does not elicit host damage, but that C. albicans relies on a combination of contact-sensing, directed hyphal extension, active penetration and the expression of novel pathogenicity factors for further inter-epithelial invasion, dissemination and ultimate damage of host cells. Finally, we explore the transcriptional landscape of C. albicans during the early stages of epithelial interaction, and, via genetic analysis, identify ICL1 and PGA34 as novel oral epithelial pathogenicity factors.
Related JoVE Video
The pH-regulated antigen 1 of Candida albicans binds the human complement inhibitor C4b-binding protein and mediates fungal complement evasion.
J. Biol. Chem.
PUBLISHED: 01-06-2011
Show Abstract
Hide Abstract
Candida albicans binds and utilizes human complement inhibitors, such as C4b-binding protein (C4BP), Factor H, and FHL-1 for immune evasion. Here, we identify Candida pH-regulated antigen 1 (Pra1) as the first fungal C4BP-binding protein. Recombinant Pra1 binds C4BP, as shown by ELISA and isothermal titration calorimetry, and the Pra1-C4BP interaction is ionic in nature. The Pra1 binding domains within C4BP were localized to the complement control protein domain 4 (CCP4), CCP7, and CCP8. C4BP bound to Pra1 maintains complement-inhibitory activity. C4BP and Factor H bind simultaneously to Candida Pra1 and do not compete for binding at physiological levels. A Pra1-overexpressing C. albicans strain, which had about 2-fold Pra1 levels at the surface acquired also about 2-fold C4BP to the surface, compared with the wild type strain CAI4. A Pra1 knock-out strain showed ?22% reduced C4BP binding. C4BP captured by C. albicans from human serum inhibits C4b and C3b surface deposition and also maintains cofactor activity. In summary, Candida Pra1 represents the first fungal C4BP-binding surface protein. Pra1, via binding to C4BP, mediates human complement control, thereby favoring the immune and complement evasion of C. albicans.
Related JoVE Video
Proteolytic cleavage of covalently linked cell wall proteins by Candida albicans Sap9 and Sap10.
Eukaryotic Cell
PUBLISHED: 11-19-2010
Show Abstract
Hide Abstract
The cell wall of the human-pathogenic fungus Candida albicans is a robust but also dynamic structure which mediates adaptation to changing environmental conditions during infection. Sap9 and Sap10 are cell surface-associated proteases which function in C. albicans cell wall integrity and interaction with human epithelial cells and neutrophils. In this study, we have analyzed the enzymatic properties of Sap9 and Sap10 and investigated whether these proteases cleave proteins on the fungal cell surface. We show that Sap9 and Sap10, in contrast to other aspartic proteases, exhibit a near-neutral pH optimum of proteolytic activity and prefer the processing of peptides containing basic or dibasic residues. However, both proteases also cleaved at nonbasic sites, and not all tested peptides with dibasic residues were processed. By digesting isolated cell walls with Sap9 or Sap10, we identified the covalently linked cell wall proteins (CWPs) Cht2, Ywp1, Als2, Rhd3, Rbt5, Ecm33, and Pga4 as in vitro protease substrates. Proteolytic cleavage of the chitinase Cht2 and the glucan-cross-linking protein Pir1 by Sap9 was verified using hemagglutinin (HA) epitope-tagged versions of both proteins. Deletion of the SAP9 and SAP10 genes resulted in a reduction of cell-associated chitinase activity similar to that upon deletion of CHT2, suggesting a direct influence of Sap9 and Sap10 on Cht2 function. In contrast, cell surface changes elicited by SAP9 and SAP10 deletion had no major impact on the phagocytosis and killing of C. albicans by human macrophages. We propose that Sap9 and Sap10 influence distinct cell wall functions by proteolytic cleavage of covalently linked cell wall proteins.
Related JoVE Video
The Inflammatory response induced by aspartic proteases of Candida albicans is independent of proteolytic activity.
Infect. Immun.
PUBLISHED: 08-16-2010
Show Abstract
Hide Abstract
The secretion of aspartic proteases (Saps) has long been recognized as a virulence-associated trait of the pathogenic yeast Candida albicans. In this study, we report that different recombinant Saps, including Sap1, Sap2, Sap3, and Sap6, have differing abilities to induce secretion of proinflammatory cytokines by human monocytes. In particular Sap1, Sap2, and Sap6 significantly induced interleukin-1? (IL-1?), tumor necrosis factor alpha (TNF-?), and IL-6 production. Sap3 was able to stimulate the secretion of IL-1? and TNF-?. All Saps tested were able to induce Ca(2+) influx in monocytes. Treatment of these Saps with pepstatin A did not have any effect on cytokine secretion, indicating that their stimulatory potential was independent from their proteolytic activity. The capacity of Saps to induce inflammatory cytokine production was also independent from protease-activated receptor (PAR) activation and from the optimal pH for individual Sap activity. The interaction of Saps with monocytes induced Akt activation and phosphorylation of I?B?, which mediates translocation of NF-?B into the nucleus. Overall, these results suggest that individual Sap proteins can induce an inflammatory response and that this phenomenon is independent from the pH of a specific host niche and from Sap enzymatic activity. The inflammatory response is partially dependent on Sap denaturation and is triggered by the Akt/NF-?B activation pathway. Our data suggest a novel, activity-independent aspect of Saps during interactions of C. albicans with the host.
Related JoVE Video
Regulatory network modelling of iron acquisition by a fungal pathogen in contact with epithelial cells.
BMC Syst Biol
PUBLISHED: 06-28-2010
Show Abstract
Hide Abstract
Reverse engineering of gene regulatory networks can be used to predict regulatory interactions of an organism faced with environmental changes, but can prove problematic, especially when focusing on complicated multi-factorial processes. Candida albicans is a major human fungal pathogen. During the infection process, this fungus is able to adapt to conditions of very low iron availability. Such adaptation is an important virulence attribute of virtually all pathogenic microbes. Understanding the regulation of iron acquisition genes will extend our knowledge of the complex regulatory changes during the infection process and might identify new potential drug targets. Thus, there is a need for efficient modelling approaches predicting key regulatory events of iron acquisition genes during the infection process.
Related JoVE Video
Embryonated eggs as an alternative infection model to investigate Aspergillus fumigatus virulence.
Infect. Immun.
PUBLISHED: 04-26-2010
Show Abstract
Hide Abstract
Infection models are essential tools for studying microbial pathogenesis. Murine models are considered the "gold standard" for studying in vivo infections caused by Aspergillus species, such as A. fumigatus. Recently developed molecular protocols allow rapid construction of high numbers of fungal deletion mutants, and alternative infection models based on cell culture or invertebrates are widely used for screening such mutants to reduce the number of rodents in animal experiments. To bridge the gap between invertebrate models and mice, we have developed an alternative, low-cost, and easy-to-use infection model for Aspergillus species based on embryonated eggs. The outcome of infections in the egg model is dose and age dependent and highly reproducible. We show that the age of the embryos affects the susceptibility to A. fumigatus and that increased resistance coincides with altered chemokine production after infection. The progress of disease in the model can be monitored by using egg survival and histology. Based on pathological analyses, we hypothesize that invasion of embryonic membranes and blood vessels leads to embryonic death. Defined deletion mutant strains previously shown to be fully virulent or partially or strongly attenuated in a mouse model of bronchopulmonary aspergillosis showed comparable degrees of attenuation in the egg model. Addition of nutrients restored the reduced virulence of a mutant lacking a biosynthetic gene, and variations of the infectious route can be used to further analyze the role of distinct genes in our model. Our results suggest that embryonated eggs can be a very useful alternative infection model to study A. fumigatus virulence and pathogenicity.
Related JoVE Video
Interaction of pathogenic yeasts with phagocytes: survival, persistence and escape.
Curr. Opin. Microbiol.
PUBLISHED: 04-08-2010
Show Abstract
Hide Abstract
Pathogenic yeasts, either from the environment or the normal flora, have to face phagocytic cells that constitute the first line of defence during infection. In order to evade or counteract attack by phagocytes, pathogenic yeasts have acquired a repertoire of strategies to survive, colonize and infect the host. In this review we focus on the interaction of yeasts, such as Candida, Histoplasma or Cryptococcus species, with macrophages or neutrophils. We discuss strategies used by these fungi to prevent phagocytosis or to counteract phagocytic activities. We go on to describe the strategies that permit intracellular survival within phagocytes and that may eventually lead to damage of and escape from the phagocyte.
Related JoVE Video
Candida glabrata tryptophan-based pigment production via the Ehrlich pathway.
Mol. Microbiol.
PUBLISHED: 02-24-2010
Show Abstract
Hide Abstract
Pigments contribute to the pathogenicity of many fungi, mainly by protecting fungal cells from host defence activities. Here, we have dissected the biosynthetic pathway of a tryptophan-derived pigment of the human pathogen Candida glabrata, identified key genes involved in pigment production and have begun to elucidate the possible biological function of the pigment. Using transcriptional analyses and a transposon insertion library, we have identified genes associated with pigment production. Targeted deletion mutants revealed that the pigment is a by-product of the Ehrlich pathway of tryptophan degradation: a mutant lacking a tryptophan-upregulated aromatic aminotransferase (Aro8) displayed significantly reduced pigmentation and a recombinantly expressed version of this protein was sufficient for pigment production in vitro. Pigment production is tightly regulated as the synthesis is affected by the presence of alternative nitrogen sources, carbon sources, cyclic AMP and oxygen. Growth of C. glabrata on pigment inducing medium leads to an increased resistance to hydrogen peroxide, an effect which was not observed with a mutant defective in pigmentation. Furthermore, pigmented yeast cells had a higher survival rate when exposed to human neutrophils and caused increased damage in a monolayer model of human epithelia, indicating a possible role of pigmentation during interactions with host cells.
Related JoVE Video
Hgc1 mediates dynamic Candida albicans-endothelium adhesion events during circulation.
Eukaryotic Cell
PUBLISHED: 12-18-2009
Show Abstract
Hide Abstract
Common iatrogenic procedures can result in translocation of the human pathogenic fungus Candida albicans from mucosal surfaces to the bloodstream. Subsequent disseminated candidiasis and infection of deep-seated organs may occur if the fungus is not eliminated by blood cells. In these cases, fungal cells adhere to the endothelial cells of blood vessels, penetrate through endothelial layers, and invade deeper tissue. In this scenario, endothelial adhesion events must occur during circulation under conditions of physiological blood pressure. To investigate the fungal and host factors which contribute to this essential step of disseminated candidiasis, we have developed an in vitro circulatory C. albicans-endothelium interaction model. We demonstrate that both C. albicans yeast and hyphae can adhere under flow at a pressure similar to capillary blood pressure. Serum factors significantly enhanced the adhesion potential of viable but not killed C. albicans cells to endothelial cells. During circulation, C. albicans cells produced hyphae and the adhesion potential first increased, then decreased with time. We provide evidence that a specific temporal event in the yeast-to-hyphal transition, regulated by the G(1) cyclin Hgc1, is critical for C. albicans-endothelium adhesion during circulation.
Related JoVE Video
Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes.
Cell. Microbiol.
PUBLISHED: 10-27-2009
Show Abstract
Hide Abstract
The human pathogenic fungus Candida albicans can cause systemic infections by invading epithelial barriers to gain access to the bloodstream. One of the main reservoirs of C. albicans is the gastrointestinal tract and systemic infections predominantly originate from this niche. In this study, we used scanning electron and fluorescence microscopy, adhesion, invasion and damage assays, fungal mutants and a set of fungal and host cell inhibitors to investigate the interactions of C. albicans with oral epithelial cells and enterocytes. Our data demonstrate that adhesion, invasion and damage by C. albicans depend not only on fungal morphology and activity, but also on the epithelial cell type and the differentiation stage of the epithelial cells, indicating that epithelial cells differ in their susceptibility to the fungus. C. albicans can invade epithelial cells by induced endocytosis and/or active penetration. However, depending on the host cell faced by the fungus, these routes are exploited to a different extent. While invasion into oral cells occurs via both routes, invasion into intestinal cells occurs only via active penetration.
Related JoVE Video
Candida albicans releases soluble factors that potentiate cytokine production by human cells through a protease-activated receptor 1- and 2-independent pathway.
Infect. Immun.
PUBLISHED: 10-26-2009
Show Abstract
Hide Abstract
The innate immune system recognizes pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRR) and transduces downstream signaling to activate the host defense. Here we report that in addition to direct PAMP-PRR interactions, live Candida albicans cells can release soluble factors to actively potentiate interleukin-6 (IL-6) and IL-8 production induced in human mononuclear cells by the fungi. Although protease-activated receptor 1 (PAR1) and PAR2 ligation can moderately upregulate Toll-like receptor 4 (TLR4)-mediated IL-8 production, no effect on the C. albicans-induced cytokine was apparent. Similarly, the blockade of PAR signaling did not reverse the potentiation of cytokine production induced by soluble factors released by C. albicans. In conclusion, C. albicans releases soluble factors that potentiate cytokine release in a PAR1/2-independent manner. Thus, human PAR1 and PAR2 have a redundant role in the activation of human cells by C. albicans.
Related JoVE Video
The glycosylphosphatidylinositol-anchored protease Sap9 modulates the interaction of Candida albicans with human neutrophils.
Infect. Immun.
PUBLISHED: 10-05-2009
Show Abstract
Hide Abstract
Human polymorphonuclear neutrophils (PMNs) play a major role in the immune defense against invasive Candida albicans infection. This fungal pathogen produces a set of aspartic proteases that directly contributes to virulence properties such as adhesion, tissue invasion, and immune evasion. We show here that, in contrast to other secreted proteases, the cell surface-associated isoform Sap9 has a major impact on the recognition of C. albicans by PMNs. SAP9 is required for the induction of PMN chemotaxis toward C. albicans filaments, an essential prerequisite of effective PMN activation. Furthermore, deletion of SAP9 leads to a mitigated release of reactive oxygen intermediates (ROI) in human PMNs and decreases C. albicans-induced apoptosis triggered by ROI formation. In confrontation assays, killing of a SAP9 deletion mutant is reduced in comparison to wild-type C. albicans. These data clearly implicate Sap9 protease activity in the initiation of protective innate immunity and suggest novel molecular mechanisms in C. albicans-host interaction leading to neutrophil activation.
Related JoVE Video
Candida albicans iron acquisition within the host.
FEMS Yeast Res.
PUBLISHED: 08-21-2009
Show Abstract
Hide Abstract
As a commensal and opportunistic pathogen, Candida albicans possesses a range of determinants that contribute to survival, persistence and virulence. Among this repertoire of fitness and virulence attributes are iron acquisition factors and pathways, which allow fungal cells to gain this essential mineral in the iron-poor environment of the host. The aim of this review is to present the strategies used by C. albicans to exploit host iron reservoirs and their impact on C. albicans pathogenicity. Because iron in the human host is mostly linked to host proteins, pathogens such as C. albicans must possess mechanisms to gain iron from these proteins. Here, we introduce the most important groups of human proteins, including haemoglobin, transferrin, lactoferrin and ferritin, which contain iron and that are potential iron sources for invading microorganisms. We then summarize and discuss the known and proposed strategies by which C. albicans exploits or may exploit iron from host proteins and compare these with strategies from other pathogenic microorganisms.
Related JoVE Video
The yeast Candida albicans evades human complement attack by secretion of aspartic proteases.
Mol. Immunol.
PUBLISHED: 07-21-2009
Show Abstract
Hide Abstract
Candida albicans, which represents one of the most important human pathogenic yeasts, is directly attacked by the host innate immune system upon infection. However this pathogen has developed multiple strategies to escape host immune defense. Here, we show that C. albicans secreted proteases interfere and inactivate host innate immune effector components, such as complement proteins. Secreted aspartic proteases (Saps) in the culture supernatant of C. albicans cells and also recombinant Sap1, Sap2 and Sap3 degrade host complement components C3b, C4b and C5 and also inhibit terminal complement complex (TCC) formation. This proteolytic activity is specific to the three recombinant and wild type Sap proteins. The triple knock out C. albicans strain Delta sap1-3 and also the non-pathogenic yeast S. cerevisiae lack such degrading activities. The complement inhibitory role of Sap1, Sap2 and Sap3 was confirmed in hemolysis assays with rabbit erythrocytes and normal human plasma. Secretion of complement degrading proteases provides a highly efficient complement defense response of this human pathogenic yeast that acts after the immediate acquisition of host complement regulators to the cell surface.
Related JoVE Video
Identifying infection-associated genes of Candida albicans in the postgenomic era.
FEMS Yeast Res.
PUBLISHED: 04-27-2009
Show Abstract
Hide Abstract
The human pathogenic yeast Candida albicans can cause an unusually broad range of infections reflecting a remarkable potential to adapt to various microniches within the human host. The exceptional adaptability of C. albicans is mediated by rapid alterations in gene expression in response to various environmental stimuli and this transcriptional flexibility can be monitored with tools such as microarrays. Using such technology it is possible to (1) capture a genome-wide portrait of the transcriptome that mirrors the environmental conditions, (2) identify known genes, signalling pathways and transcription factors involved in pathogenesis, (3) identify new patterns of gene expression and (4) identify previously uncharacterized genes that may be associated with infection. In this review, we describe the molecular dissection of three distinct stages of infections, covering both superficial and invasive disease, using in vitro, ex vivo and in vivo infection models and microarrays.
Related JoVE Video
Evolution of pathogenicity and sexual reproduction in eight Candida genomes.
Nature
PUBLISHED: 02-22-2009
Show Abstract
Hide Abstract
Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine-to-serine genetic-code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the Candida albicans gene catalogue, identifying many new genes.
Related JoVE Video
A novel immune evasion strategy of candida albicans: proteolytic cleavage of a salivary antimicrobial peptide.
PLoS ONE
PUBLISHED: 01-05-2009
Show Abstract
Hide Abstract
Oropharyngeal candidiasis is an opportunistic infection considered to be a harbinger of AIDS. The etiologic agent Candida albicans is a fungal species commonly colonizing human mucosal surfaces. However, under conditions of immune dysfunction, colonizing C. albicans can become an opportunistic pathogen causing superficial or even life-threatening infections. The reasons behind this transition, however, are not clear. In the oral cavity, salivary antimicrobial peptides are considered to be an important part of the host innate defense system in the prevention of microbial colonization. Histatin-5 specifically has exhibited potent activity against C. albicans. Our previous studies have shown histatin-5 levels to be significantly reduced in the saliva of HIV+ individuals, indicating an important role for histatin-5 in keeping C. albicans in its commensal stage. The versatility in the pathogenic potential of C. albicans is the result of its ability to adapt through the regulation of virulence determinants, most notably of which are proteolytic enzymes (Saps), involved in tissue degradation. In this study, we show that C. albicans cells efficiently and rapidly degrade histatin-5, resulting in loss of its anti-candidal potency. In addition, we demonstrate that this cellular activity is due to proteolysis by a member of the secreted aspartic proteases (Sap) family involved in C. albicans pathogenesis. Specifically, the proteolysis was attributed to Sap9, in turn identifying histatin-5 as the first host-specific substrate for that isoenzyme. These findings demonstrate for the first time the ability of a specific C. albicans enzyme to degrade and deactivate a host antimicrobial peptide involved in the protection of the oral mucosa against C. albicans, thereby providing new insights into the factors directing the transition of C. albicans from commensal to pathogen, with important clinical implications for alternative therapy. This report characterizes the first defined mechanism behind the enhanced susceptibility of HIV+ individuals to oral candidiasis since the emergence of HIV.
Related JoVE Video
Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress.
PLoS ONE
Show Abstract
Hide Abstract
Neutrophils are key players during Candida albicans infection. However, the relative contributions of neutrophil activities to fungal clearance and the relative importance of the fungal responses that counteract these activities remain unclear. We studied the contributions of the intra- and extracellular antifungal activities of human neutrophils using diagnostic Green Fluorescent Protein (GFP)-marked C. albicans strains. We found that a carbohydrate starvation response, as indicated by up-regulation of glyoxylate cycle genes, was only induced upon phagocytosis of the fungus. Similarly, the nitrosative stress response was only observed in internalised fungal cells. In contrast, the response to oxidative stress was observed in both phagocytosed and non-phagocytosed fungal cells, indicating that oxidative stress is imposed both intra- and extracellularly. We assessed the contributions of carbohydrate starvation, oxidative and nitrosative stress as antifungal activities by analysing the resistance to neutrophil killing of C. albicans mutants lacking key glyoxylate cycle, oxidative and nitrosative stress genes. We found that the glyoxylate cycle plays a crucial role in fungal resistance against neutrophils. The inability to respond to oxidative stress (in cells lacking superoxide dismutase 5 or glutathione reductase 2) renders C. albicans susceptible to neutrophil killing, due to the accumulation of reactive oxygen species (ROS). We also show that neutrophil-derived nitric oxide is crucial for the killing of C. albicans: a yhb1?/? mutant, unable to detoxify NO•, was more susceptible to neutrophils, and this phenotype was rescued by the nitric oxide scavenger carboxy-PTIO. The stress responses of C. albicans to neutrophils are partially regulated via the stress regulator Hog1 since a hog1?/? mutant was clearly less resistant to neutrophils and unable to respond properly to neutrophil-derived attack. Our data indicate that an appropriate fungal response to all three antifungal activities, carbohydrate starvation, nitrosative stress and oxidative stress, is essential for full wild type resistance to neutrophils.
Related JoVE Video
Secreted aspartic protease cleavage of Candida albicans Msb2 activates Cek1 MAPK signaling affecting biofilm formation and oropharyngeal candidiasis.
PLoS ONE
Show Abstract
Hide Abstract
Perception of external stimuli and generation of an appropriate response are crucial for host colonization by pathogens. In pathogenic fungi, mitogen activated protein kinase (MAPK) pathways regulate dimorphism, biofilm/mat formation, and virulence. Signaling mucins, characterized by a heavily glycosylated extracellular domain, a transmembrane domain, and a small cytoplasmic domain, are known to regulate various signaling pathways. In Candida albicans, the mucin Msb2 regulates the Cek1 MAPK pathway. We show here that Msb2 is localized to the yeast cell wall and is further enriched on hyphal surfaces. A msb2?/? strain formed normal hyphae but had biofilm defects. Cek1 (but not Mkc1) phosphorylation was absent in the msb2?/? mutant. The extracellular domain of Msb2 was shed in cells exposed to elevated temperature and carbon source limitation, concomitant with germination and Cek1 phosphorylation. Msb2 shedding occurred differentially in cells grown planktonically or on solid surfaces in the presence of cell wall and osmotic stressors. We further show that Msb2 shedding and Cek1 phosphorylation were inhibited by addition of Pepstatin A (PA), a selective inhibitor of aspartic proteases (Saps). Analysis of combinations of Sap protease mutants identified a sap8?/? mutant with reduced MAPK signaling along with defects in biofilm formation, thereby suggesting that Sap8 potentially serves as a major regulator of Msb2 processing. We further show that loss of either Msb2 (msb2?/?) or Sap8 (sap8?/?) resulted in higher C. albicans surface ?-glucan exposure and msb2?/? showed attenuated virulence in a murine model of oral candidiasis. Thus, Sap-mediated proteolytic cleavage of Msb2 is required for activation of the Cek1 MAPK pathway in response to environmental cues including those that induce germination. Inhibition of Msb2 processing at the level of Saps may provide a means of attenuating MAPK signaling and reducing C. albicans virulence.
Related JoVE Video
Transcriptomics in human blood incubation reveals the importance of oxidative stress response in Saccharomyces cerevisiae clinical strains.
BMC Genomics
Show Abstract
Hide Abstract
In recent years an increasing number of yeast infections in humans have been related to certain clinical isolates of Saccharomyces cerevisiae. Some clinical strains showed in vivo and in vitro virulence traits and were able to cause death in mice whereas other clinical strains were avirulent.
Related JoVE Video
A peptide derived from the highly conserved protein GAPDH is involved in tissue protection by different antifungal strategies and epithelial immunomodulation.
J. Invest. Dermatol.
Show Abstract
Hide Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has an important role not only in glycolysis but also in nonmetabolic processes, including transcription activation and apoptosis. We report the isolation of a human GAPDH (hGAPDH) (2-32) fragment peptide from human placental tissue exhibiting antimicrobial activity. The peptide was internalized by cells of the pathogenic yeast Candida albicans and initiated a rapid apoptotic mechanism, leading to killing of the fungus. Killing was dose-dependent, with 10??g?ml (3.1??M) and 100??g?ml hGAPDH (2-32) depolarizing 45% and 90% of the fungal cells in a population, respectively. Experimental C. albicans infection induced epithelial hGAPDH (2-32) expression. Addition of the peptide significantly reduced the tissue damage as compared with untreated experimental infection. Secreted aspartic proteinase (Sap) activity of C. albicans was inhibited by the fragment at higher concentrations, with a median effective dose of 160?mg?l(-1) (50??M) for Sap1p and 200?mg?l(-1) (63??M) for Sap2p, whereas Sap3 was not inhibited at all. Interestingly, hGAPDH (2-32) induced significant epithelial IL-8 and GM-CSF secretion and stimulated Toll-like receptor 4 expression at low concentrations independently of the presence of C. albicans, without any toxic mucosal effects. In the future, the combination of different antifungal strategies, e.g., a conventional fungicidal with immunomodulatory effects and the inhibition of fungal virulence factors, might be a promising treatment option.
Related JoVE Video
Candida albicans scavenges host zinc via Pra1 during endothelial invasion.
PLoS Pathog.
Show Abstract
Hide Abstract
The ability of pathogenic microorganisms to assimilate essential nutrients from their hosts is critical for pathogenesis. Here we report endothelial zinc sequestration by the major human fungal pathogen, Candida albicans. We hypothesised that, analogous to siderophore-mediated iron acquisition, C. albicans utilises an extracellular zinc scavenger for acquiring this essential metal. We postulated that such a "zincophore" system would consist of a secreted factor with zinc-binding properties, which can specifically reassociate with the fungal cell surface. In silico analysis of the C. albicans secretome for proteins with zinc binding motifs identified the pH-regulated antigen 1 (Pra1). Three-dimensional modelling of Pra1 indicated the presence of at least two zinc coordination sites. Indeed, recombinantly expressed Pra1 exhibited zinc binding properties in vitro. Deletion of PRA1 in C. albicans prevented fungal sequestration and utilisation of host zinc, and specifically blocked host cell damage in the absence of exogenous zinc. Phylogenetic analysis revealed that PRA1 arose in an ancient fungal lineage and developed synteny with ZRT1 (encoding a zinc transporter) before divergence of the Ascomycota and Basidiomycota. Structural modelling indicated physical interaction between Pra1 and Zrt1 and we confirmed this experimentally by demonstrating that Zrt1 was essential for binding of soluble Pra1 to the cell surface of C. albicans. Therefore, we have identified a novel metal acquisition system consisting of a secreted zinc scavenger ("zincophore"), which reassociates with the fungal cell. Furthermore, functional similarities with phylogenetically unrelated prokaryotic systems indicate that syntenic zinc acquisition loci have been independently selected during evolution.
Related JoVE Video
Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans.
PLoS ONE
Show Abstract
Hide Abstract
Small heat shock proteins (sHsps) have multiple cellular functions. However, the biological function of sHsps in pathogenic microorganisms is largely unknown. In the present study we identified and characterized the novel sHsp Hsp21 of the human fungal pathogen Candida albicans. Using a reverse genetics approach we demonstrate the importance of Hsp21 for resistance of C. albicans to specific stresses, including thermal and oxidative stress. Furthermore, a hsp21?/? mutant was defective in invasive growth and formed significantly shorter filaments compared to the wild type under various filament-inducing conditions. Although adhesion to and invasion into human-derived endothelial and oral epithelial cells was unaltered, the hsp21?/? mutant exhibited a strongly reduced capacity to damage both cell lines. Furthermore, Hsp21 was required for resisting killing by human neutrophils. Measurements of intracellular levels of stress protective molecules demonstrated that Hsp21 is involved in both glycerol and glycogen regulation and plays a major role in trehalose homeostasis in response to elevated temperatures. Mutants defective in trehalose and, to a lesser extent, glycerol synthesis phenocopied HSP21 deletion in terms of increased susceptibility to environmental stress, strongly impaired capacity to damage epithelial cells and increased sensitivity to the killing activities of human primary neutrophils. Via systematic analysis of the three main C. albicans stress-responsive kinases (Mkc1, Cek1, Hog1) under a range of stressors, we demonstrate Hsp21-dependent phosphorylation of Cek1 in response to elevated temperatures. Finally, the hsp21?/? mutant displayed strongly attenuated virulence in two in vivo infection models. Taken together, Hsp21 mediates adaptation to specific stresses via fine-tuning homeostasis of compatible solutes and activation of the Cek1 pathway, and is crucial for multiple stages of C. albicans pathogenicity. Hsp21 therefore represents the first reported example of a small heat shock protein functioning as a virulence factor in a eukaryotic pathogen.
Related JoVE Video
Importance of the Candida albicans cell wall during commensalism and infection.
Curr. Opin. Microbiol.
Show Abstract
Hide Abstract
An imbalance of the normal microbial flora, breakage of epithelial barriers or dysfunction of the immune system favour the transition of the human pathogenic yeast Candida albicans from a commensal to a pathogen. C. albicans has evolved to be adapted as a commensal on mucosal surfaces. As a commensal it has also acquired attributes, which are necessary to avoid or overcome the host defence mechanisms. The human host has also co-evolved to recognize and eliminate potential fungal invaders. Many of the fungal genes that have been the focus of this co-evolutionary process encode cell wall components. In this review, we will discuss the transition from commensalism to pathogenesis, the key players of the fungal cell surface that are important for this transition, the role of the morphology and the mechanisms of host recognition and response.
Related JoVE Video
Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process.
PLoS ONE
Show Abstract
Hide Abstract
Candida albicans frequently causes superficial infections by invading and damaging epithelial cells, but may also cause systemic infections by penetrating through epithelial barriers. C. albicans is a remarkable pathogen because it can invade epithelial cells via two distinct mechanisms: induced endocytosis, analogous to facultative intracellular enteropathogenic bacteria, and active penetration, similar to plant pathogenic fungi. Here we investigated the contributions of the two invasion routes of C. albicans to epithelial invasion. Using selective cellular inhibition approaches and differential fluorescence microscopy, we demonstrate that induced endocytosis contributes considerably to the early time points of invasion, while active penetration represents the dominant epithelial invasion route. Although induced endocytosis depends mainly on Als3-E-cadherin interactions, we observed E-cadherin independent induced endocytosis. Finally, we provide evidence of a protective role for serum factors in oral infection: human serum strongly inhibited C. albicans adhesion to, invasion and damage of oral epithelial cells.
Related JoVE Video
Complement plays a central role in Candida albicans-induced cytokine production by human PBMCs.
Eur. J. Immunol.
Show Abstract
Hide Abstract
In experimental studies, the role of complement in antifungal host defense has been attributed to its opsonizing capability. In this study, we report that in humans an activated complement system mainly augments Candida albicans-induced host proinflammatory cytokine production via C5a-C5aR signaling, while phagocytosis and intracellular killing of Candida are not influenced. By blocking the C5a-C5aR signaling pathway, either with anti-C5a antagonist antibodies or with the C5aR antagonist W-54001, C. albicans-induced IL-6 and IL-1? levels were significantly reduced. Recombinant C5a augmented cytokine production. In addition, using serum from patients with various complement deficiencies, we demonstrated a crucial role of C5, but not C6 or the membrane attack complex, in C. albicans-induced IL-6 and IL-1? production in monocytes. These findings reveal a central role of anaphylatoxin C5a in augmenting host proinflammatory cytokine production upon contact with C. albicans, and define the role of the complement system in anti-Candida host defense in humans.
Related JoVE Video
The novel Candida albicans transporter Dur31 Is a multi-stage pathogenicity factor.
PLoS Pathog.
Show Abstract
Hide Abstract
Candida albicans is the most frequent cause of oral fungal infections. However, the exact pathogenicity mechanisms that this fungus employs are largely unknown and many of the genes expressed during oral infection are uncharacterized. In this study we sought to functionally characterize 12 previously unknown function genes associated with oral candidiasis. We generated homozygous knockout mutants for all 12 genes and analyzed their interaction with human oral epithelium in vitro. Eleven mutants caused significantly less epithelial damage and, of these, deletion of orf19.6656 (DUR31) elicited the strongest reduction in pathogenicity. Interestingly, DUR31 was not only involved in oral epithelial damage, but in multiple stages of candidiasis, including surviving attack by human neutrophils, endothelial damage and virulence in vivo. In silico analysis indicated that DUR31 encodes a sodium/substrate symporter with 13 transmembrane domains and no human homologue. We provide evidence that Dur31 transports histatin 5. This is one of the very first examples of microbial driven import of this highly cytotoxic antimicrobial peptide. Also, in contrast to wild type C. albicans, dur31?/? was unable to actively increase local environmental pH, suggesting that Dur31 lies in the extracellular alkalinization hyphal auto-induction pathway; and, indeed, DUR31 was required for morphogenesis. In agreement with this observation, dur31?/? was unable to assimilate the polyamine spermidine.
Related JoVE Video
An Interspecies Regulatory Network Inferred from Simultaneous RNA-seq of Candida albicans Invading Innate Immune Cells.
Front Microbiol
Show Abstract
Hide Abstract
The ability to adapt to diverse micro-environmental challenges encountered within a host is of pivotal importance to the opportunistic fungal pathogen Candida albicans. We have quantified C. albicans and M. musculus gene expression dynamics during phagocytosis by dendritic cells in a genome-wide, time-resolved analysis using simultaneous RNA-seq. A robust network inference map was generated from this dataset using NetGenerator, predicting novel interactions between the host and the pathogen. We experimentally verified predicted interdependent sub-networks comprising Hap3 in C. albicans, and Ptx3 and Mta2 in M. musculus. Remarkably, binding of recombinant Ptx3 to the C. albicans cell wall was found to regulate the expression of fungal Hap3 target genes as predicted by the network inference model. Pre-incubation of C. albicans with recombinant Ptx3 significantly altered the expression of Mta2 target cytokines such as IL-2 and IL-4 in a Hap3-dependent manner, further suggesting a role for Mta2 in host-pathogen interplay as predicted in the network inference model. We propose an integrated model for the functionality of these sub-networks during fungal invasion of immune cells, according to which binding of Ptx3 to the C. albicans cell wall induces remodeling via fungal Hap3 target genes, thereby altering the immune response to the pathogen. We show the applicability of network inference to predict interactions between host-pathogen pairs, demonstrating the usefulness of this systems biology approach to decipher mechanisms of microbial pathogenesis.
Related JoVE Video
Embryonated chicken eggs as alternative infection model for pathogenic fungi.
Methods Mol. Biol.
Show Abstract
Hide Abstract
Embryonated eggs have been used as infection models for decades in virology and bacteriology. However, they can also be used as an attractive alternative infection model for studying fungal pathogenesis. Here, we discuss some general aspects which need to be considered when working with embryonated eggs as infection models. Furthermore, we provide detailed protocols and technical tips for infection of embryonated eggs with Aspergillus fumigatus and Candida albicans via the chorioallantois membrane, as well as sampling methods for downstream analyses.
Related JoVE Video
Isolation and amplification of fungal RNA for microarray analysis from host samples.
Methods Mol. Biol.
Show Abstract
Hide Abstract
Transcriptional profiling is a powerful tool to investigate the interplay between pathogens and their hosts. For several pathogenic fungi, like Candida albicans, genome-wide microarrays are now available, and alternative methods, such as Serial Analysis of Gene Expression (SAGE) or RNASeq, are becoming increasingly widespread. In other chapters of this book, in vitro models for studying fungal infections are described. Here, we provide information on methods to isolate fungal RNA from these models and to investigate transcriptional changes during experimental infections. The protocols focus on C. albicans but are applicable to many other fungi with minor modifications.
Related JoVE Video
Persistence versus escape: Aspergillus terreus and Aspergillus fumigatus employ different strategies during interactions with macrophages.
PLoS ONE
Show Abstract
Hide Abstract
Invasive bronchopulmonary aspergillosis (IBPA) is a life-threatening disease in immunocompromised patients. Although Aspergillus terreus is frequently found in the environment, A. fumigatus is by far the main cause of IBPA. However, once A. terreus establishes infection in the host, disease is as fatal as A. fumigatus infections. Thus, we hypothesized that the initial steps of disease establishment might be fundamentally different between these two species. Since alveolar macrophages represent one of the first phagocytes facing inhaled conidia, we compared the interaction of A. terreus and A. fumigatus conidia with alveolar macrophages. A. terreus conidia were phagocytosed more rapidly than A. fumigatus conidia, possibly due to higher exposure of ?-1,3-glucan and galactomannan on the surface. In agreement, blocking of dectin-1 and mannose receptors significantly reduced phagocytosis of A. terreus, but had only a moderate effect on phagocytosis of A. fumigatus. Once phagocytosed, and in contrast to A. fumigatus, A. terreus did not inhibit acidification of phagolysosomes, but remained viable without signs of germination both in vitro and in immunocompetent mice. The inability of A. terreus to germinate and pierce macrophages resulted in significantly lower cytotoxicity compared to A. fumigatus. Blocking phagolysosome acidification by the v-ATPase inhibitor bafilomycin increased A. terreus germination rates and cytotoxicity. Recombinant expression of the A. nidulans wA naphthopyrone synthase, a homologue of A. fumigatus PksP, inhibited phagolysosome acidification and resulted in increased germination, macrophage damage and virulence in corticosteroid-treated mice. In summary, we show that A. terreus and A. fumigatus have evolved significantly different strategies to survive the attack of host immune cells. While A. fumigatus prevents phagocytosis and phagolysosome acidification and escapes from macrophages by germination, A. terreus is rapidly phagocytosed, but conidia show long-term persistence in macrophages even in immunocompetent hosts.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.