JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
New Strategies for Allergen T Cell Epitope Identification: Going beyond IgE.
Int. Arch. Allergy Immunol.
PUBLISHED: 11-15-2014
Show Abstract
Hide Abstract
Background: Type I allergy and allergic asthma are common diseases in the developed world associated with IgE antibodies and Th2 cell reactivity. To date, the only causative treatment for allergic disease is specific immunotherapy (SIT). Method: Here, we review recent works from our laboratory focused on identifying human T cell epitopes associated with allergic disease and their potential use as biomarkers or therapeutic targets for SIT. In previous studies, we have mapped T cell epitopes associated with the major 10 timothy grass (Tg) allergens, defined on the basis of human IgE reactivity by ELISPOT. Results: Interestingly, in about 33% of allergic donors, no T cell epitopes from overlapping peptides spanning the entire sequences of these allergens were identified despite vigorous T cell responses to the Tg extract. Using a bioinformatic-proteomic approach, we identified a set of 93 novel Tg proteins, many of which were found to elicit IL-5 production in T cells from allergic donors despite lacking IgE reactivity. Next, we assessed T cell responses to the novel Tg proteins in donors who had been treated with subcutaneous SIT. A subset of these proteins showed a strong reduction of IL-5 responses in donors who had received subcutaneous SIT compared to allergic donors, which correlated with patients' self-reported improvement of allergic symptoms. Conclusion: A bioinformatic-proteomic approach has successfully identified additional Tg-derived T cell targets independent of IgE reactivity. This method can be applied to other allergies potentially leading to the discovery of promising therapeutic targets for allergen-specific immunotherapy. © 2014 S. Karger AG, Basel.
Related JoVE Video
T Cell-Mediated Hypersensitivity Reactions to Drugs.
Annu. Rev. Med.
PUBLISHED: 11-12-2014
Show Abstract
Hide Abstract
The immunological mechanisms driving delayed hypersensitivity reactions (HSRs) to drugs mediated by drug-reactive T lymphocytes are exemplified by several key examples and their human leukocyte antigen (HLA) associations: abacavir and HLA-B*57:01, carbamazepine and HLA-B*15:02, allopurinol and HLA-B*58:01, and both amoxicillin-clavulanate and nevirapine with multiple class I and II alleles. For HLA-restricted drug HSRs, specific class I and/or II HLA alleles are necessary but not sufficient for tissue specificity and the clinical syndrome. Several models have been proposed to explain the immunopathogenesis of severe T cell-mediated drug HSRs, and our increased understanding of the risk factors and mechanisms involved in the development of these reactions will further the development of sensitive and specific strategies for preclinical screening that will lead to safer and more cost-effective drug design. Expected final online publication date for the Annual Review of Medicine Volume 66 is January 14, 2015. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
Related JoVE Video
CD4 T Cells Specific for a Latency-Associated ?-Herpesvirus Epitope Are Polyfunctional and Cytotoxic.
J. Immunol.
PUBLISHED: 11-08-2014
Show Abstract
Hide Abstract
The oncogenic ?-herpesviruses EBV and Kaposi sarcoma-associated herpesvirus are ubiquitous human pathogens that establish lifelong latent infections maintained by intermittent viral reactivation and reinfection. Effector CD4 T cells are critical for control of viral latency and in immune therapies for virus-associated tumors. In this study, we exploited ?HV68 infection of mice to enhance our understanding of the CD4 T cell response during ?-herpesvirus infection. Using a consensus prediction approach, we identified 16 new CD4 epitope-specific responses that arise during lytic infection. An additional epitope encoded by the M2 protein induced uniquely latency-associated CD4 T cells, which were not detected at the peak of lytic infection but only during latency and were not induced postinfection with a latency-deficient virus. M2-specific CD4 T cells were selectively cytotoxic, produced multiple antiviral cytokines, and sustained IL-2 production. Identification of latency-associated cytolytic CD4 T cells will aid in dissecting mechanisms of CD4 immune control of ?-herpesvirus latency and the development of therapeutic approaches to control viral reactivation and pathology.
Related JoVE Video
The human CD8+ T cell responses induced by a live attenuated tetravalent dengue vaccine are directed against highly conserved epitopes.
J. Virol.
PUBLISHED: 10-17-2014
Show Abstract
Hide Abstract
The incidence of infection with any of the four dengue virus serotypes (DENV 1-4) has increased dramatically in the last few decades, and the lack of a treatment or vaccine has contributed to significant morbidity and mortality worldwide. A recent comprehensive analysis of the human T cell response against wild-type DENV suggested an HLA-linked protective role for CD8(+) T cells. We have collected one-unit blood donations from study participants receiving the monovalent or tetravalent live attenuated DENV vaccine (DLAV), developed by the U.S. National Institutes of Health. PBMCs from these donors were screened in IFN? ELISPOT assays with pools of predicted, HLA matched, class I binding peptides covering the entire DENV proteome. Here, we characterize for the first time CD8(+) T cell responses after live attenuated dengue vaccination and show that CD8(+) T cell responses in vaccinees were readily detectable and comparable to natural dengue infection. Interestingly, while broad responses to structural and non-structural (NS) proteins were observed after monovalent vaccination, T cell responses following tetravalent vaccination were, dramatically, focused towards the highly conserved NS proteins. Epitopes were highly conserved in a vast variety of field isolates and able to elicit multifunctional T cell responses. Detailed knowledge of the T cell response will contribute to the identification of robust correlates of protection in natural immunity and following vaccination against DENV.
Related JoVE Video
The immune epitope database (IEDB) 3.0.
Nucleic Acids Res.
PUBLISHED: 10-11-2014
Show Abstract
Hide Abstract
The IEDB, www.iedb.org, contains information on immune epitopes-the molecular targets of adaptive immune responses-curated from the published literature and submitted by National Institutes of Health funded epitope discovery efforts. From 2004 to 2012 the IEDB curation of journal articles published since 1960 has caught up to the present day, with >95% of relevant published literature manually curated amounting to more than 15 000 journal articles and more than 704 000 experiments to date. The revised curation target since 2012 has been to make recent research findings quickly available in the IEDB and thereby ensure that it continues to be an up-to-date resource. Having gathered a comprehensive dataset in the IEDB, a complete redesign of the query and reporting interface has been performed in the IEDB 3.0 release to improve how end users can access this information in an intuitive and biologically accurate manner. We here present this most recent release of the IEDB and describe the user testing procedures as well as the use of external ontologies that have enabled it.
Related JoVE Video
The development and application of a quantitative peptide microarray based approach to protein interaction domain specificity space.
Mol. Cell Proteomics
PUBLISHED: 08-18-2014
Show Abstract
Hide Abstract
Protein interaction domain (PID) linear peptide motif interactions direct diverse cellular processes in a specific and coordinated fashion. PID specificity, or the interaction selectivity derived from affinity preferences between possible PID-peptide pairs is the basis of this ability. Here, we develop an integrated experimental and computational cellulose peptide conjugate microarray (CPCMA) based approach for the high throughput analysis of PID specificity that provides unprecedented quantitative resolution and reproducibility. As a test system, we quantify the specificity preferences of four Src Homology 2 (SH2) domains and 124 physiological phosphopeptides to produce a novel quantitative interactome. The quantitative dataset covers a broad affinity range, is highly precise, and agrees well with orthogonal biophysical validation, in vivo interactions and peptide library trained algorithm predictions. In contrast to preceding approaches, the CPCMAs proved capable of confidently assigning interactions into affinity categories, resolving the subtle affinity contributions of residue correlations, and yielded predictive peptide motif affinity matrices. Unique CPCMA enabled modes of systems level analysis reveal a physiological interactome with expected node degree value decreasing as a function of affinity, resulting in minimal high affinity binding overlap between domains; uncover that SH2 domains bind ligands with a similar average affinity yet strikingly different levels of promiscuity and binding dynamic range; and parse with unprecedented quantitative resolution contextual factors directing specificity. The CPCMA platform promises broad application within the fields of PID specificity, synthetic biology, specificity focused drug design, and network biology.
Related JoVE Video
In vivo RNA interference screens identify regulators of antiviral CD4(+) and CD8(+) T cell differentiation.
Immunity
PUBLISHED: 08-04-2014
Show Abstract
Hide Abstract
Classical genetic approaches to examine the requirements of genes for T cell differentiation during infection are time consuming. Here we developed a pooled approach to screen 30-100+ genes individually in separate antigen-specific T cells during infection using short hairpin RNAs in a microRNA context (shRNAmir). Independent screens using T cell receptor (TCR)-transgenic CD4(+) and CD8(+) T cells responding to lymphocytic choriomeningitis virus (LCMV) identified multiple genes that regulated development of follicular helper (Tfh) and T helper 1 (Th1) cells, and short-lived effector and memory precursor cytotoxic T lymphocytes (CTLs). Both screens revealed roles for the positive transcription elongation factor (P-TEFb) component Cyclin T1 (Ccnt1). Inhibiting expression of Cyclin T1, or its catalytic partner Cdk9, impaired development of Th1 cells and protective short-lived effector CTL and enhanced Tfh cell and memory precursor CTL formation in vivo. This pooled shRNA screening approach should have utility in numerous immunological studies.
Related JoVE Video
Transcriptional profile of tuberculosis antigen-specific T cells reveals novel multifunctional features.
J. Immunol.
PUBLISHED: 08-04-2014
Show Abstract
Hide Abstract
In latent tuberculosis infection (LTBI) spread of the bacteria is contained by a persistent immune response, which includes CD4(+) T cells as important contributors. In this study we show that TB-specific CD4(+) T cells have a characteristic chemokine expression signature (CCR6(+)CXCR3(+)CCR4(-)), and that the overall number of these cells is significantly increased in LTBI donors compared with healthy subjects. We have comprehensively characterized the transcriptional signature of CCR6(+)CXCR3(+)CCR4(-) cells and found significant differences to conventional Th1, Th17, and Th2 cells, but no major changes between healthy and LTBI donors. CCR6(+)CXCR3(+)CCR4(-) cells display lineage-specific signatures of both Th1 and Th17 cells, but also have a unique gene expression program, including genes associated with susceptibility to TB, enhanced T cell activation, enhanced cell survival, and induction of a cytotoxic program akin to CTL cells. Overall, the gene expression signature of CCR6(+)CXCR3(+)CCR4(-) cells reveals characteristics important for controlling latent TB infections.
Related JoVE Video
Immunodominance changes as a function of the infecting dengue virus serotype and primary versus secondary infection.
J. Virol.
PUBLISHED: 07-23-2014
Show Abstract
Hide Abstract
Dengue virus (DENV) is the causative agent of dengue fever (DF). This disease can be caused by any of four DENV serotypes (DENV1 to -4) which share 67 to 75% sequence homology with one another. The effect of subsequent infections with different serotypes on the T cell repertoire is not fully understood. We utilized mice transgenic for human leukocyte antigens (HLA) lacking the alpha/beta interferon (IFN-?/?) receptor to study responses to heterologous DENV infection. First, we defined the primary T cell response to DENV3 in the context of a wide range of HLA molecules. The primary DENV3 immune response recognized epitopes derived from all 10 DENV proteins, with a significant fraction of the response specific for structural proteins. This is in contrast to primary DENV2 infection, in which structural proteins are a minor component of the response, suggesting differential antigen immunodominance as a function of the infecting serotype. We next investigated the effect of secondary heterologous DENV infection on the T cell repertoire. In the case of both DENV2/3 and DENV3/2 heterologous infections, recognition of conserved/cross-reactive epitopes was either constant or expanded compared to that in homologous infection. Furthermore, in heterologous infection, previous infection with a different serotype impaired the development of responses directed to serotype-specific but not conserved epitopes. Thus, a detrimental effect of previous heterotypic responses might not be due to dysfunctional and weakly cross-reactive epitopes dominating the response. Rather, responses to the original serotype might limit the magnitude of responses directed against epitopes that are either cross-reactive to or specific for the most recently infecting serotype.
Related JoVE Video
Potent neutralization of vaccinia virus by divergent murine antibodies targeting a common site of vulnerability in L1 protein.
J. Virol.
PUBLISHED: 07-16-2014
Show Abstract
Hide Abstract
Vaccinia virus (VACV) L1 is an important target for viral neutralization and has been included in multicomponent DNA or protein vaccines against orthopoxviruses. To further understand the protective mechanism of the anti-L1 antibodies, we generated five murine anti-L1 monoclonal antibodies (MAbs), which clustered into 3 distinct epitope groups. While two groups of anti-L1 failed to neutralize, one group of 3 MAbs potently neutralized VACV in an isotype- and complement-independent manner. This is in contrast to neutralizing antibodies against major VACV envelope proteins, such as H3, D8, or A27, which failed to completely neutralize VACV unless the antibodies are of complement-fixing isotypes and complement is present. Compared to nonneutralizing anti-L1 MAbs, the neutralization antibodies bound to the recombinant L1 protein with a significantly higher affinity and also could bind to virions. By using a variety of techniques, including the isolation of neutralization escape mutants, hydrogen/deuterium exchange mass spectrometry, and X-ray crystallography, the epitope of the neutralizing antibodies was mapped to a conformational epitope with Asp35 as the key residue. This epitope is similar to the epitope of 7D11, a previously described potent VACV neutralizing antibody. The epitope was recognized mainly by CDR1 and CDR2 of the heavy chain, which are highly conserved among antibodies recognizing the epitope. These antibodies, however, had divergent light-chain and heavy-chain CDR3 sequences. Our study demonstrates that the conformational L1 epitope with Asp35 is a common site of vulnerability for potent neutralization by a divergent group of antibodies.
Related JoVE Video
Related JoVE Video
Dataset size and composition impact the reliability of performance benchmarks for peptide-MHC binding predictions.
BMC Bioinformatics
PUBLISHED: 04-21-2014
Show Abstract
Hide Abstract
It is important to accurately determine the performance of peptide:MHC binding predictions, as this enables users to compare and choose between different prediction methods and provides estimates of the expected error rate. Two common approaches to determine prediction performance are cross-validation, in which all available data are iteratively split into training and testing data, and the use of blind sets generated separately from the data used to construct the predictive method. In the present study, we have compared cross-validated prediction performances generated on our last benchmark dataset from 2009 with prediction performances generated on data subsequently added to the Immune Epitope Database (IEDB) which served as a blind set.
Related JoVE Video
Broadly reactive human CD8 T cells that recognize an epitope conserved between VZV, HSV and EBV.
PLoS Pathog.
PUBLISHED: 03-01-2014
Show Abstract
Hide Abstract
Human herpesviruses are important causes of potentially severe chronic infections for which T cells are believed to be necessary for control. In order to examine the role of virus-specific CD8 T cells against Varicella Zoster Virus (VZV), we generated a comprehensive panel of potential epitopes predicted in silico and screened for T cell responses in healthy VZV seropositive donors. We identified a dominant HLA-A*0201-restricted epitope in the VZV ribonucleotide reductase subunit 2 and used a tetramer to analyze the phenotype and function of epitope-specific CD8 T cells. Interestingly, CD8 T cells responding to this VZV epitope also recognized homologous epitopes, not only in the other ?-herpesviruses, HSV-1 and HSV-2, but also the ?-herpesvirus, EBV. Responses against these epitopes did not depend on previous infection with the originating virus, thus indicating the cross-reactive nature of this T cell population. Between individuals, the cells demonstrated marked phenotypic heterogeneity. This was associated with differences in functional capacity related to increased inhibitory receptor expression (including PD-1) along with decreased expression of co-stimulatory molecules that potentially reflected their stimulation history. Vaccination with the live attenuated Zostavax vaccine did not efficiently stimulate a proliferative response in this epitope-specific population. Thus, we identified a human CD8 T cell epitope that is conserved in four clinically important herpesviruses but that was poorly boosted by the current adult VZV vaccine. We discuss the concept of a "pan-herpesvirus" vaccine that this discovery raises and the hurdles that may need to be overcome in order to achieve this.
Related JoVE Video
Using a combined computational-experimental approach to predict antibody-specific B cell epitopes.
Structure
PUBLISHED: 01-23-2014
Show Abstract
Hide Abstract
Antibody epitope mapping is crucial for understanding B cell-mediated immunity and required for characterizing therapeutic antibodies. In contrast to T cell epitope mapping, no computational tools are in widespread use for prediction of B cell epitopes. Here, we show that, utilizing the sequence of an antibody, it is possible to identify discontinuous epitopes on its cognate antigen. The predictions are based on residue-pairing preferences and other interface characteristics. We combined these antibody-specific predictions with results of cross-blocking experiments that identify groups of antibodies with overlapping epitopes to improve the predictions. We validate the high performance of this approach by mapping the epitopes of a set of antibodies against the previously uncharacterized D8 antigen, using complementary techniques to reduce method-specific biases (X-ray crystallography, peptide ELISA, deuterium exchange, and site-directed mutagenesis). These results suggest that antibody-specific computational predictions and simple cross-blocking experiments allow for accurate prediction of residues in conformational B cell epitopes.
Related JoVE Video
Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 01-13-2014
Show Abstract
Hide Abstract
Dioxygenases of the Ten-Eleven Translocation (TET) family are 5-methylcytosine oxidases that convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidation products in DNA. We show that Tet1 and Tet2 have distinct roles in regulating 5hmC in mouse embryonic stem cells (mESC). Tet1 depletion diminishes 5hmC levels at transcription start sites (TSS), whereas Tet2 depletion is predominantly associated with decreased 5hmC in gene bodies. Enrichment of 5hmC is observed at the boundaries of exons that are highly expressed, and Tet2 depletion results in substantial loss of 5hmC at these boundaries. In contrast, at promoter/TSS regions, Tet2 depletion results in increased 5hmC, potentially because of the redundant activity of Tet1. Together, the data point to a complex interplay between Tet1 and Tet2 in mESC, and to distinct roles for these two proteins in regulating promoter, exon, and polyadenylation site usage in cells.
Related JoVE Video
Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility.
Nat. Immunol.
PUBLISHED: 01-10-2014
Show Abstract
Hide Abstract
A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4(+) T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis.
Related JoVE Video
CD8 T-cell reactivity to islet antigens is unique to type 1 while CD4 T-cell reactivity exists in both type 1 and type 2 diabetes.
J. Autoimmun.
PUBLISHED: 01-07-2014
Show Abstract
Hide Abstract
Previous cross-sectional analyses demonstrated that CD8(+) and CD4(+) T-cell reactivity to islet-specific antigens was more prevalent in T1D subjects than in healthy donors (HD). Here, we examined T1D-associated epitope-specific CD4(+) T-cell cytokine production and autoreactive CD8(+) T-cell frequency on a monthly basis for one year in 10 HD, 33 subjects with T1D, and 15 subjects with T2D. Autoreactive CD4(+) T-cells from both T1D and T2D subjects produced more IFN-? when stimulated than cells from HD. In contrast, higher frequencies of islet antigen-specific CD8(+) T-cells were detected only in T1D. These observations support the hypothesis that general beta-cell stress drives autoreactive CD4(+) T-cell activity while islet over-expression of MHC class I commonly seen in T1D mediates amplification of CD8(+) T-cells and more rapid beta-cell loss. In conclusion, CD4(+) T-cell autoreactivity appears to be present in both T1D and T2D while autoreactive CD8(+) T-cells are unique to T1D. Thus, autoreactive CD8(+) cells may serve as a more T1D-specific biomarker.
Related JoVE Video
Substantial gaps in knowledge of Bordetella pertussis antibody and T cell epitopes relevant for natural immunity and vaccine efficacy.
Hum. Immunol.
PUBLISHED: 01-03-2014
Show Abstract
Hide Abstract
The recent increase in whooping cough in vaccinated populations has been attributed to waning immunity associated with the acellular vaccine. The Immune Epitope Database (IEDB) is a repository of immune epitope data from the published literature and includes T cell and antibody epitopes for human pathogens. The IEDB conducted a review of the epitope literature, which revealed 300 Bordetella pertussis-related epitopes from 39 references. Epitope data are currently available for six virulence factors of B. pertussis: pertussis toxin, pertactin, fimbrial 2, fimbrial 3, adenylate cyclase and filamentous hemagglutinin. The majority of epitopes were defined for antibody reactivity; fewer T cell determinants were reported. Analysis of available protective correlates data revealed a number of candidate epitopes; however few are defined in humans and few have been shown to be protective. Moreover, there are a limited number of studies defining epitopes from natural infection versus whole cell or acellular/subunit vaccines. The relationship between epitope location and structural features, as well as antigenic drift (SNP analysis) was also investigated. We conclude that the cumulative data is yet insufficient to address many fundamental questions related to vaccine failure and this underscores the need for further investigation of B. pertussis immunity at the molecular level.
Related JoVE Video
Allergy-associated T cell epitope repertoires are surprisingly diverse and include non-IgE reactive antigens.
World Allergy Organ J
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
We recently identified T cell epitopes associated with human allergic responses. In a majority of cases, responses focused on a few immunodominant epitopes which can be predicted on the basis of MHC binding characteristics. Several observations from our studies challenged the assumption that T cell epitopes are derived from the same allergen proteins that bind IgE. Transcriptomic and proteomics analysis identified pollen proteins, not bound by IgE. These novel Timothy Grass proteins elicited vigorous Th2 responses, suggesting that unlinked T cell help is operational in pollen-specific responses. Thus, the repertoire of antigens recognized by T cells is much broader than IgE-binding allergens. Additionally, we evaluated the use of epitopes from these novel antigens to assess immunological changes associated with Specific Immunotherapy (SIT). We found that a marked decrease in IL5 production is associated with clinically efficacious SIT, suggesting that these novel antigens are potential immunomarkers for SIT efficacy.
Related JoVE Video
Sterile immunity to malaria after DNA prime/adenovirus boost immunization is associated with effector memory CD8+T cells targeting AMA1 class I epitopes.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Fifteen volunteers were immunized with three doses of plasmid DNA encoding P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) and boosted with human adenovirus-5 (Ad) expressing the same antigens (DNA/Ad). Four volunteers (27%) demonstrated sterile immunity to controlled human malaria infection and, overall, protection was statistically significantly associated with ELISpot and CD8+ T cell IFN-? activities to AMA1 but not CSP. DNA priming was required for protection, as 18 additional subjects immunized with Ad alone (AdCA) did not develop sterile protection.
Related JoVE Video
HLA Class I Alleles Are Associated with Peptide-Binding Repertoires of Different Size, Affinity, and Immunogenicity.
J. Immunol.
PUBLISHED: 11-04-2013
Show Abstract
Hide Abstract
Prediction of HLA binding affinity is widely used to identify candidate T cell epitopes, and an affinity of 500 nM is routinely used as a threshold for peptide selection. However, the fraction (percentage) of peptides predicted to bind with affinities of 500 nM varies by allele. For example, of a large collection of ?30,000 dengue virus-derived peptides only 0.3% were predicted to bind HLA A*0101, wheras nearly 5% were predicted for A*0201. This striking difference could not be ascribed to variation in accuracy of the algorithms used, as predicted values closely correlated with affinity measured in vitro with purified HLA molecules. These data raised the question whether different alleles would also vary in terms of epitope repertoire size, defined as the number of associated epitopes or, alternatively, whether alleles vary drastically in terms of the affinity threshold associated with immunogenicity. To address this issue, strains of HLA transgenic mice with wide (A*0201), intermediate (B*0702), or narrow (A*0101) repertoires were immunized with peptides of varying binding affinity and relative percentile ranking. The results show that absolute binding capacity is a better predictor of immunogenicity, and analysis of epitopes from the Immune Epitope Database revealed that predictive efficacy is increased using allele-specific affinity thresholds. Finally, we investigated the genetic and structural basis of the phenomenon. Although no stringent correlate was defined, on average HLA B alleles are associated with significantly narrower repertoires than are HLA A alleles.
Related JoVE Video
A molecular view of multiple sclerosis and experimental autoimmune encephalitis: What can we learn from the epitope data?
J. Neuroimmunol.
PUBLISHED: 10-31-2013
Show Abstract
Hide Abstract
An analysis to inventory all immune epitope data related to multiple sclerosis (MS) was performed using the Immune Epitope Database (IEDB). The analysis revealed that MS related data represent >20% of all autoimmune data, and that studies of EAE predominate; only 22% of the references describe human data. To date, >5800 unique peptides, analogs, mimotopes, and/or non-protein epitopes have been reported from 861 references, including data describing myelin-containing, as well as non-myelin antigens. This work provides a reference point for the scientific community of the universe of available data for MS-related adaptive immunity in the context of EAE and human disease.
Related JoVE Video
Properties of MHC class I presented peptides that enhance immunogenicity.
PLoS Comput. Biol.
PUBLISHED: 10-01-2013
Show Abstract
Hide Abstract
T-cells have to recognize peptides presented on MHC molecules to be activated and elicit their effector functions. Several studies demonstrate that some peptides are more immunogenic than others and therefore more likely to be T-cell epitopes. We set out to determine which properties cause such differences in immunogenicity. To this end, we collected and analyzed a large set of data describing the immunogenicity of peptides presented on various MHC-I molecules. Two main conclusions could be drawn from this analysis: First, in line with previous observations, we showed that positions P4-6 of a presented peptide are more important for immunogenicity. Second, some amino acids, especially those with large and aromatic side chains, are associated with immunogenicity. This information was combined into a simple model that was used to demonstrate that immunogenicity is, to a certain extent, predictable. This model (made available at http://tools.iedb.org/immunogenicity/) was validated with data from two independent epitope discovery studies. Interestingly, with this model we could show that T-cells are equipped to better recognize viral than human (self) peptides. After the past successful elucidation of different steps in the MHC-I presentation pathway, the identification of variables that influence immunogenicity will be an important next step in the investigation of T-cell epitopes and our understanding of cellular immune responses.
Related JoVE Video
Feasibility of customised unipolar conversion using bipolar temporary pacing wires in patients after surgical repair of congenital heart disease.
Cardiol Young
PUBLISHED: 08-20-2013
Show Abstract
Hide Abstract
Objective: Temporary pacing wires play a crucial role in the diagnosis and therapy of post-operative arrhythmia after surgery for congenital heart disease. At present, bipolar pacing wires are used in most institutions. In case of functional failure of these wires, a unipolar mode of stimulation and sensing should be theoretically possible as a rescue procedure. Methods: We tested the feasibility of the customised unipolar mode in 18 post-operative patients with congenital heart disease (age 9.2 ± 13.9 months, weight 6.3 ± 3.8 kg, and cardiopulmonary bypass time 70 ± 29 minutes). As there are two possible unipolar configurations, there are twice the number of testing parameters; of those, we compared sensing (mV) and pacing thresholds (V at 0.5 ms). Results: Atrial sensing was significantly better in the unipolar modes (p < 0.001, p < 0.003). The ventricular unipolar sensing did not differ significantly in the "better" of the two possible configurations from the bipolar values (p = 0.363). For the unipolar pacing thresholds, only the "better" unipolar configuration did not differ significantly from the bipolar measurements (atrial: p = 0.058, ventricular: p = 0.138). There was no exit block or undersensing. Conclusion: The results demonstrate that unipolar stimulation and sensing using bipolar epicardial temporary pacing wires is feasible. In the case of failure of bipolar temporary pacing wires, this modality represents an easy rescue measure that in such cases should always be considered.
Related JoVE Video
Evaluating the immunogenicity of protein drugs by applying in vitro MHC binding data and the immune epitope database and analysis resource.
Clin. Dev. Immunol.
PUBLISHED: 05-06-2013
Show Abstract
Hide Abstract
The immune system has evolved to become highly specialized in recognizing and responding to pathogens and foreign molecules. Specifically, the function of HLA class II is to ensure that a sufficient sample of peptides derived from foreign molecules is presented to T cells. This leads to an important concern in human drug development as the possible immunogenicity of biopharmaceuticals, especially those intended for chronic administration, can lead to reduced efficacy and an undesired safety profile for biological therapeutics. As part of this review, we will highlight the molecular basis of antigen presentation as a key step in the induction of T cell responses, emphasizing the events associated with peptide binding to polymorphic and polygenic HLA class II molecules. We will further review methodologies that predict HLA class II binding peptides and candidate epitopes. We will focus on tools provided by the Immune Epitope Database and Analysis Resource, discussing the basic features of different prediction methods, the objective evaluation of prediction quality, and general guidelines for practical use of these tools. Finally the use, advantages, and limitations of the methodology will be demonstrated in a review of two previous studies investigating the immunogenicity of erythropoietin and timothy grass pollen.
Related JoVE Video
Ex vivo tetramer staining and cell surface phenotyping for early activation markers CD38 and HLA-DR to enumerate and characterize malaria antigen-specific CD8+ T-cells induced in human volunteers immunized with a Plasmodium falciparum adenovirus-vectored
Malar. J.
PUBLISHED: 04-18-2013
Show Abstract
Hide Abstract
Malaria is responsible for up to a 600,000 deaths per year; conveying an urgent need for the development of a malaria vaccine. Studies with whole sporozoite vaccines in mice and non-human primates have shown that sporozoite-induced CD8+ T cells targeting liver stage antigens can mediate sterile protection. There is a need for a direct method to identify and phenotype malaria vaccine-induced CD8+ T cells in humans.
Related JoVE Video
Query enhancement through the practical application of ontology: the IEDB and OBI.
J Biomed Semantics
PUBLISHED: 04-15-2013
Show Abstract
Hide Abstract
Ontologies categorize entities, express relationships between them, and provide standardized definitions. Thus, they can be used to present and enforce the specific relationships between database components. The Immune Epitope Database (IEDB, http://www.iedb.org) utilizes the Ontology for Biomedical Investigations (OBI) and several additional ontologies to represent immune epitope mapping experiments. Here, we describe our experiences utilizing this representation in order to provide enhanced database search functionality. We applied a simple approach to incorporate the benefits of the information captured in a formal ontology directly into the user web interface, resulting in an improved user experience with minimal changes to the database itself. The integration is easy to maintain, provides standardized terms and definitions, and allows for subsumption queries. In addition to these immediate benefits, our long-term goal is to enable true semantic integration of data and knowledge in the biomedical domain. We describe our progress towards that goal and what we perceive as the main obstacles.
Related JoVE Video
Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 04-11-2013
Show Abstract
Hide Abstract
The role of CD8(+) T cells in dengue virus infection and subsequent disease manifestations is not fully understood. According to the original antigenic sin theory, skewing of T-cell responses induced by primary infection with one serotype causes less effective response upon secondary infection with a different serotype, predisposing individuals to severe disease. A comprehensive analysis of CD8(+) responses in the general population from the Sri Lankan hyperendemic area, involving the measurement of ex vivo IFN? responses associated with more than 400 epitopes, challenges the original antigenic sin theory. Although skewing of responses toward primary infecting viruses was detected, this was not associated with impairment of responses either qualitatively or quantitatively. Furthermore, we demonstrate higher magnitude and more polyfunctional responses for HLA alleles associated with decreased susceptibility to severe disease, suggesting that a vigorous response by multifunctional CD8(+) T cells is associated with protection from dengue virus disease.
Related JoVE Video
Bcl6 expressing follicular helper CD4 T cells are fate committed early and have the capacity to form memory.
J. Immunol.
PUBLISHED: 03-13-2013
Show Abstract
Hide Abstract
Follicular helper CD4 T (Tfh) cells are a distinct type of differentiated CD4 T cells uniquely specialized for B cell help. In this study, we examined Tfh cell fate commitment, including distinguishing features of Tfh versus Th1 proliferation and survival. Using cell transfer approaches at early time points after an acute viral infection, we demonstrate that early Tfh cells and Th1 cells are already strongly cell fate committed by day 3. Nevertheless, Tfh cell proliferation was tightly regulated in a TCR-dependent manner. The Tfh cells still depend on extrinsic cell fate cues from B cells in their physiological in vivo environment. Unexpectedly, we found that Tfh cells share a number of phenotypic parallels with memory precursor CD8 T cells, including selective upregulation of IL-7R? and a collection of coregulated genes. As a consequence, the early Tfh cells can progress to robustly form memory cells. These data support the hypothesis that CD4 and CD8 T cells share core aspects of a memory cell precursor gene expression program involving Bcl6, and a strong relationship exists between Tfh cells and memory CD4 T cell development.
Related JoVE Video
Identification of minimal human MHC-restricted CD8+ T-cell epitopes within the Plasmodium falciparum circumsporozoite protein (CSP).
Malar. J.
PUBLISHED: 03-02-2013
Show Abstract
Hide Abstract
Plasmodium falciparum circumsporozoite protein (CSP) is a leading malaria vaccine candidate antigen, known to elicit protective antibody responses in humans (RTS,S vaccine). Recently, a DNA prime / adenovirus (Ad) vector boost vaccine encoding CSP and a second P. falciparum antigen, apical membrane antigen-1, also elicited sterile protection, but in this case associated with interferon gamma ELISpot and CD8+ T cell but not antibody responses. The finding that CSP delivered by an appropriate vaccine platform likely elicits protective cell-mediated immunity provided a rationale for identifying class I-restricted epitopes within this leading vaccine candidate antigen.
Related JoVE Video
Previously undescribed grass pollen antigens are the major inducers of T helper 2 cytokine-producing T cells in allergic individuals.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-11-2013
Show Abstract
Hide Abstract
T cells play an important role in the pathogenesis of allergic diseases. However, the proteins considered as potential immunogens of allergenic T-cell responses have traditionally been limited to those that induce IgE responses. Timothy grass (TG) pollen is a well-studied inhaled allergen for which major IgE-reactive allergens have also been shown to trigger T helper 2 (Th2) responses. Here we examined whether other TG pollen proteins are recognized by Th2 responses independently of IgE reactivity. A TG pollen extract was analyzed by 2D gel electrophoresis and IgE/IgG immunoblots using pooled sera from allergic donors. Mass spectrometry of selected protein spots in combination with de novo sequencing of the whole TG pollen transcriptome identified 93 previously undescribed proteins for further study, 64 of which were not targeted by IgE. Predicted MHC binding peptides from the previoulsy undescribed TG proteins were screened for T-cell reactivity in peripheral blood mononuclear cells from allergic donors. Strong IL-5 production was detected in response to peptides from several of the previously undescribed proteins, most of which were not targeted by IgE. Responses against the dominant undescribed epitopes were associated with the memory T-cell subset and could even be detected directly ex vivo after Th2 cell enrichment. These findings demonstrate that a combined unbiased transcriptomic, proteomic, and immunomic approach identifies a greatly broadened repertoire of protein antigens targeted by T cells involved in allergy pathogenesis. The discovery of proteins that induce Th2 cells but are not IgE reactive may allow the development of safer immunotherapeutic strategies.
Related JoVE Video
Predicting cell types and genetic variations contributing to disease by combining GWAS and epigenetic data.
PLoS ONE
PUBLISHED: 01-30-2013
Show Abstract
Hide Abstract
Genome-wide association studies (GWASs) identify single nucleotide polymorphisms (SNPs) that are enriched in individuals suffering from a given disease. Most disease-associated SNPs fall into non-coding regions, so that it is not straightforward to infer phenotype or function; moreover, many SNPs are in tight genetic linkage, so that a SNP identified as associated with a particular disease may not itself be causal, but rather signify the presence of a linked SNP that is functionally relevant to disease pathogenesis. Here, we present an analysis method that takes advantage of the recent rapid accumulation of epigenomics data to address these problems for some SNPs. Using asthma as a prototypic example; we show that non-coding disease-associated SNPs are enriched in genomic regions that function as regulators of transcription, such as enhancers and promoters. Identifying enhancers based on the presence of the histone modification marks such as H3K4me1 in different cell types, we show that the location of enhancers is highly cell-type specific. We use these findings to predict which SNPs are likely to be directly contributing to disease based on their presence in regulatory regions, and in which cell types their effect is expected to be detectable. Moreover, we can also predict which cell types contribute to a disease based on overlap of the disease-associated SNPs with the locations of enhancers present in a given cell type. Finally, we suggest that it will be possible to re-analyze GWAS studies with much higher power by limiting the SNPs considered to those in coding or regulatory regions of cell types relevant to a given disease.
Related JoVE Video
Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset.
PLoS Pathog.
PUBLISHED: 01-24-2013
Show Abstract
Hide Abstract
An understanding of the immunological footprint of Mycobacterium tuberculosis (MTB) CD4 T cell recognition is still incomplete. Here we report that human Th1 cells specific for MTB are largely contained in a CXCR3(+)CCR6(+) memory subset and highly focused on three broadly immunodominant antigenic islands, all related to bacterial secretion systems. Our results refute the notion that secreted antigens act as a decoy, since both secreted proteins and proteins comprising the secretion system itself are targeted by a fully functional T cell response. In addition, several novel T cell antigens were identified which can be of potential diagnostic use, or as vaccine antigens. These results underline the power of a truly unbiased, genome-wide, analysis of CD4 MTB recognition based on the combined use of epitope predictions, high throughput ELISPOT, and T cell libraries using PBMCs from individuals latently infected with MTB.
Related JoVE Video
Positional bias of MHC class I restricted T-cell epitopes in viral antigens is likely due to a bias in conservation.
PLoS Comput. Biol.
PUBLISHED: 01-24-2013
Show Abstract
Hide Abstract
The immune system rapidly responds to intracellular infections by detecting MHC class I restricted T-cell epitopes presented on infected cells. It was originally thought that viral peptides are liberated during constitutive protein turnover, but this conflicts with the observation that viral epitopes are detected within minutes of their synthesis even when their source proteins exhibit half-lives of days. The DRiPs hypothesis proposes that epitopes derive from Defective Ribosomal Products (DRiPs), rather than degradation of mature protein products. One potential source of DRiPs is premature translation termination. If this is a major source of DRiPs, this should be reflected in positional bias towards the N-terminus. By contrast, if downstream initiation is a major source of DRiPs, there should be positional bias towards the C-terminus. Here, we systematically assessed positional bias of epitopes in viral antigens, exploiting the large set of data available in the Immune Epitope Database and Analysis Resource. We show a statistically significant degree of positional skewing among epitopes; epitopes from both ends of antigens tend to be under-represented. Centric-skewing correlates with a bias towards class I binding peptides being over-represented in the middle, in parallel with a higher degree of evolutionary conservation.
Related JoVE Video
A strategy to determine HLA class II restriction broadly covering the DR, DP, and DQ allelic variants most commonly expressed in the general population.
Immunogenetics
PUBLISHED: 01-19-2013
Show Abstract
Hide Abstract
Classic ways to determine MHC restriction involve inhibition with locus-specific antibodies and antigen presentation assays with panels of cell lines matched or mismatched at the various loci of interest. However, these determinations are often complicated by T cell epitope degeneracy and promiscuity. We describe a selection of 46 HLA DR, DQ, and DP specificities that provide worldwide population (phenotypic) coverage of almost 90 % at each locus, and account for over 66 % of all genes at each locus. This panel afforded coverage of at least four HLA class II alleles in over 95 % of the individuals in four study populations of diverse ethnicity from the USA and South Africa. Next, a panel of single HLA class II-transfected cell lines, corresponding to these 46 allelic variants was assembled, consisting of lines previously developed and 15 novel lines generated for the present study. The novel lines were validated by assessing their HLA class II expression by FACS analysis, the in vitro peptide binding activity of HLA molecules purified from the cell lines, and their antigen presenting capacity to T cell lines of known restriction. We also show that these HLA class II-transfected cell lines can be used to rapidly and unambiguously determine HLA restriction of epitopes recognized by an individual donor in a single experiment. This panel of lines will enable high throughput determination of HLA restriction, enabling better characterization of HLA class II-restricted T cell responses and facilitating the development of HLA tetrameric staining reagents.
Related JoVE Video
Temporal intra-individual variation of immunological biomarkers in type 1 diabetes patients: implications for future use in cross-sectional assessment.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Multiple immune parameters such as frequencies of autoreactive CD4(+), CD8(+) T-cells and CD4(+)CD25(+)Foxp3(+) T-cells have been explored as biomarkers in human T1D. However, intra-individual temporal variation of these parameters has not been assessed systematically over time. We determined the variation in each of these parameters in a cohort of T1D and healthy donors (HDs), at monthly intervals for one year. Despite low intra- and inter-assay co-efficient of variation (CV), mean CVs for each of the immune parameters were 119.1% for CD4(+) T-cell-derived IFN-?, 50.44% for autoreactive CD8(+) T-cells, and 31.24% for CD4(+)CD25(+)Foxp3(+) T-cells. Further, both HDs and T1D donors had similar CVs. The variation neither correlated with BMI, age, disease duration or insulin usage, nor were there detectable cyclical patterns of variation. However, averaging results from multiple visits for an individual provided a better estimate of the CV between visits. Based on our data we predict that by averaging values from three visits a treatment effect on these parameters with a 50% effect size could be detected with the same power using 1.8-4-fold fewer patients within a trial compared to using values from a single visit. Thus, our present data contribute to a more robust, accurate endpoint design for future clinical trials in T1D and aid in the identification of truly efficacious therapies.
Related JoVE Video
Insights into HLA-restricted T cell responses in a novel mouse model of dengue virus infection point toward new implications for vaccine design.
J. Immunol.
PUBLISHED: 09-14-2011
Show Abstract
Hide Abstract
The frequency of dengue virus (DENV) infection has increased dramatically in the last few decades, and the lack of a vaccine has led to significant morbidity and mortality worldwide. To date, a convenient murine system to study human T cell responses to DENV has not been available. Mice transgenic for HLA are widely used to model human immune responses, and it has been shown that mouse-passaged DENV is able to replicate to significant levels in IFN-?/?R(-/-) mice. To cover a wide range of HLA phenotypes, we backcrossed IFN-?/?R(-/-) mice with HLA A*0201, A*0101, A*1101, B*0702, and DRB1*0101-transgenic mice. A DENV proteome-wide screen identified a total of 42 epitopes across all HLA-transgenic IFN-?/?R(-/-) strains tested. In contrast, only eight of these elicited responses in the corresponding IFN-?/?R(+/+) mice. We were able to identify T cell epitopes from 9 out of the 10 DENV proteins. However, the majority of responses were derived from the highly conserved nonstructural proteins NS3 and NS5. The relevance of this model is further demonstrated by the fact that most of the epitopes identified in our murine system are also recognized by PBMC from DENV-exposed human donors, and a dominance of HLA B*0702-restricted responses has been detected in both systems. Our results provide new insights into HLA-restricted T cell responses against DENV, and we describe in this study a novel murine model that allows the investigation of T cell-mediated immune mechanisms relevant to vaccine design.
Related JoVE Video
Human CD8? and CD4? T cell memory to lymphocytic choriomeningitis virus infection.
J. Virol.
PUBLISHED: 09-07-2011
Show Abstract
Hide Abstract
Although cellular immunity to acute lymphocytic choriomeningitis virus (LCMV) infection has been well characterized in experimental studies in mice, the T cell response to this virus in humans is incompletely understood. Thus, we analyzed the breadths, magnitudes, and differentiation phenotypes of memory LCMV-specific CD8(+) and CD4(+) T cells in three human donors displaying a variety of disease outcomes after accidental needle stick injury or exposure to LCMV. Although only a small cohort of donors was analyzed at a single time point postinfection, several interesting observations were made. First, we were able to detect LCMV-specific CD8(+) and CD4(+) T cell responses directly ex vivo at 4 to 8 years after exposure, demonstrating the longevity of T cell memory in humans. Second, unlike in murine models of LCMV infection, we found that the breadths of memory CD8(+) and CD4(+) T cell responses were not significantly different from one another. Third, it seemed that the overall CD8(+) T cell response was augmented with increasing severity of disease, while the LCMV-specific CD4(+) T cell response magnitude was highly variable between the three different donors. Next, we found that LCMV-specific CD8(+) T cells in the three donors analyzed seemed to undergo an effector memory differentiation program distinct from that of CD4(+) T cells. Finally, the levels of expression of memory, costimulatory, and inhibitory receptors on CD8(+) and CD4(+) T cell subsets, in some instances, correlated with disease outcome. These data demonstrate for the first time LCMV-specific CD8(+) and CD4(+) T cells in infected humans and begin to provide new insights into memory T cell responses following an acute virus infection.
Related JoVE Video
Cost sensitive hierarchical document classification to triage PubMed abstracts for manual curation.
BMC Bioinformatics
PUBLISHED: 08-26-2011
Show Abstract
Hide Abstract
The Immune Epitope Database (IEDB) project manually curates information from published journal articles that describe immune epitopes derived from a wide variety of organisms and associated with different diseases. In the past, abstracts of scientific articles were retrieved by broad keyword queries of PubMed, and were classified as relevant (curatable) or irrelevant (not curatable) to the scope of the database by a Naïve Bayes classifier. The curatable abstracts were subsequently manually classified into categories corresponding to different disease domains. Over the past four years, we have examined how to further improve this approach in order to enhance classification performance and to reduce the need for manual intervention.
Related JoVE Video
Defining the herpes simplex virus-specific CD8+ T cell repertoire in C57BL/6 mice.
J. Immunol.
PUBLISHED: 02-25-2011
Show Abstract
Hide Abstract
HSV type 1 (HSV-1) expresses its genes sequentially as immediate early (?), early (?), leaky late (?1), and true late (?2), where viral DNA synthesis is an absolute prerequisite only for ?2 gene expression. The ?1 protein glycoprotein B (gB) contains a strongly immunodominant CD8(+) T cell epitope (gB(498-505)) that is recognized by 50% of both the CD8(+) effector T cells in acutely infected trigeminal ganglia (TG) and the CD8(+) memory T cells in latently infected TG. Of 376 predicted HSV-1 CD8(+) T cell epitopes in C57BL/6 mice, 19 (gB(498-505) and 18 subdominant epitopes) stimulated CD8(+) T cells in the spleens and TG of HSV-1 acutely infected mice. These 19 epitopes identified virtually all CD8(+) T cells in the infected TG that represent all or the vast majority of the HSV-specific CD8(+) TCR repertoire. Only 11 of ?84 HSV-1 proteins are recognized by CD8(+) T cells, and most (?80%) are expressed before viral DNA synthesis. Neither the immunodominance of gB(498-505) nor the dominance hierarchy of the subdominant epitopes is due solely to MHC or TCR affinity. We conclude that the vast majority of CD8(+) T cells in HSV-1 acutely infected TG are HSV specific, that HSV-1 ? and ?1 proteins that are expressed before viral DNA synthesis are favored targets of CD8(+) T cells, and that dominance within the TCR repertoire is likely due to the frequency or expansion and survival characteristics of CD8(+) T cell precursors.
Related JoVE Video
Identification of CD4+ T cell epitopes in C. burnetii antigens targeted by antibody responses.
PLoS ONE
PUBLISHED: 02-11-2011
Show Abstract
Hide Abstract
Coxiella burnetii is an obligate intracellular gram-negative bacterium that causes acute Q fever and chronic infections in humans. A killed, whole cell vaccine is efficacious, but vaccination can result in severe local or systemic adverse reactions. Although T cell responses are considered pivotal for vaccine derived protective immunity, the epitope targets of CD4(+) T cell responses in C. burnetii vaccination have not been elucidated. Since mapping CD4(+) epitopes in a genome with over 2,000 ORFs is resource intensive, we focused on 7 antigens that were known to be targeted by antibody responses. 117 candidate peptides were selected from these antigens based on bioinformatics predictions of binding to the murine MHC class II molecule H-2 IA(b). We screened these peptides for recognition by IFN-? producing CD4(+) T cell in phase I C. burnetii whole cell vaccine (PI-WCV) vaccinated C57BL/6 mice and identified 8 distinct epitopes from four different proteins. The identified epitope targets account for 8% of the total vaccination induced IFN-? producing CD4(+) T cells. Given that less than 0.4% of the antigens contained in C. burnetii were screened, this suggests that prioritizing antigens targeted by antibody responses is an efficient strategy to identify at least a subset of CD4(+) targets in large pathogens. Finally, we examined the nature of linkage between CD4(+) T cell and antibody responses in PI-WCV vaccinated mice. We found a surprisingly non-uniform pattern in the help provided by epitope specific CD4(+) T cells for antibody production, which can be specific for the epitope source antigen as well as non-specific. This suggests that a complete map of CD4(+) response targets in PI-WCV vaccinated mice will likely include antigens against which no antibody responses are made.
Related JoVE Video
Functional analysis of frequently expressed Chinese rhesus macaque MHC class I molecules Mamu-A1*02601 and Mamu-B*08301 reveals HLA-A2 and HLA-A3 supertypic specificities.
Immunogenetics
PUBLISHED: 01-28-2011
Show Abstract
Hide Abstract
The Simian immunodeficiency virus (SIV)-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection and AIDS-related research, despite the potential that macaques of Chinese origin is a more relevant model. Ongoing efforts to further characterize the Chinese rhesus macaques major histocompatibility complex (MHC) for composition and function should facilitate greater utilization of the species. Previous studies have demonstrated that Chinese-origin M. mulatta (Mamu) class I alleles are more polymorphic than their Indian counterparts, perhaps inferring a model more representative of human MHC, human leukocyte antigen (HLA). Furthermore, the Chinese rhesus macaque class I allele Mamu-A1*02201, the most frequent allele thus far identified, has recently been characterized and shown to be an HLA-B7 supertype analog, the most frequent supertype in human populations. In this study, we have characterized two additional alleles expressed with high frequency in Chinese rhesus macaques, Mamu-A1*02601 and Mamu-B*08301. Upon the development of MHC-peptide-binding assays and definition of their associated motifs, we reveal that these Mamu alleles share peptide-binding characteristics with the HLA-A2 and HLA-A3 supertypes, respectively, the next most frequent human supertypes after HLA-B7. These data suggest that Chinese rhesus macaques may indeed be a more representative model of HLA gene diversity and function as compared to the species of Indian origin and therefore a better model for investigating human immune responses.
Related JoVE Video
Percutaneous pulmonary valve implantation: two-centre experience with more than 100 patients.
Eur. Heart J.
PUBLISHED: 01-27-2011
Show Abstract
Hide Abstract
Dysfunction of valved conduits in the right ventricular outflow tract (RVOT) limits durability and enforces repeated surgical interventions. We report on our combined two-centre experience with percutaneous pulmonary valve implantation (PPVI).
Related JoVE Video
Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes.
Immunogenetics
PUBLISHED: 01-06-2011
Show Abstract
Hide Abstract
Previous studies have attempted to define human leukocyte antigen (HLA) class II supertypes, analogous to the case for class I, on the basis of shared peptide-binding motifs or structure. In the present study, we determined the binding capacity of a large panel of non-redundant peptides for a set of 27 common HLA DR, DQ, and DP molecules. The measured binding data were then used to define class II supertypes on the basis of shared binding repertoires. Seven different supertypes (main DR, DR4, DRB3, main DQ, DQ7, main DP, and DP2) were defined. The molecules associated with the respective supertypes fell largely along lines defined by MHC locus and reflect, in broad terms, commonalities in reported peptide-binding motifs. Repertoire overlaps between molecules within the same class II supertype were found to be similar in magnitude to what has been observed for HLA class I supertypes. Surprisingly, however, the degree to which repertoires between molecules in the different class II supertypes also overlapped was found to be five to tenfold higher than repertoire overlaps noted between molecules in different class I supertypes. These results highlight a high degree of repertoire overlap amongst all HLA class II molecules, perhaps reflecting binding in multiple registers, and more pronounced dependence on backbone interactions rather than peptide anchor residues. This fundamental difference between HLA class I and class II would not have been predicted on the basis of analysis of either binding motifs or the sequence/predicted structures of the HLA molecules.
Related JoVE Video
IEDB-3D: structural data within the immune epitope database.
Nucleic Acids Res.
PUBLISHED: 10-28-2010
Show Abstract
Hide Abstract
IEDB-3D is the 3D structural component of the Immune Epitope Database (IEDB) available via the Browse by 3D Structure page at http://www.iedb.org. IEDB-3D catalogs B- and T-cell epitopes and Major Histocompatibility Complex (MHC) ligands for which 3D structures of complexes with antibodies, T-cell receptors or MHC molecules are available in the Protein Data Bank (PDB). Journal articles that are primary citations of PDB structures and that define immune epitopes are curated within IEDB as any other reference along with accompanying functional assays and immunologically relevant information. For each curated structure, IEDB-3D provides calculated data on intermolecular contacts and interface areas and includes an application, EpitopeViewer, to visualize the structures. IEDB-3D is fully embedded within IEDB, thus allowing structural data, both curated and calculated, and all accompanying information to be queried using multiple search interfaces. These include queries for epitopes recognized in different pathogens, eliciting different functional immune responses, and recognized by different components of the immune system. The query results can be downloaded in Microsoft Excel format, or the entire database, together with structural data both curated and calculated, can be downloaded in either XML or MySQL formats.
Related JoVE Video
CD4+ T cells are not required for the induction of dengue virus-specific CD8+ T cell or antibody responses but contribute to protection after vaccination.
J. Immunol.
PUBLISHED: 09-24-2010
Show Abstract
Hide Abstract
The contribution of T cells to the host response to dengue virus (DENV) infection is not well understood. We previously demonstrated a protective role for CD8(+) T cells during primary DENV infection using a mouse-passaged DENV strain and IFN-?/?R(-/-) C57BL/6 mice, which are susceptible to DENV infection. In this study, we examine the role of CD4(+) T cells during primary DENV infection. Four I-A(b)-restricted epitopes derived from three of the nonstructural DENV proteins were identified. CD4(+) T cells expanded and were activated after DENV infection, with peak activation occurring on day 7. The DENV-specific CD4(+) T cells expressed intracellular IFN-?, TNF, IL-2, and CD40L, and killed peptide-pulsed target cells in vivo. Surprisingly, depletion of CD4(+) T cells before DENV infection had no effect on viral loads. Consistent with this observation, CD4(+) T cell depletion did not affect the DENV-specific IgG or IgM Ab titers or their neutralizing activity, or the DENV-specific CD8(+) T cell response. However, immunization with the CD4(+) T cell epitopes before infection resulted in significantly lower viral loads. Thus, we conclude that whereas CD4(+) T cells are not required for controlling primary DENV infection, their induction by immunization can contribute to viral clearance. These findings suggest inducing anti-DENV CD4(+) T cell responses by vaccination may be beneficial.
Related JoVE Video
Applications for T-cell epitope queries and tools in the Immune Epitope Database and Analysis Resource.
J. Immunol. Methods
PUBLISHED: 09-08-2010
Show Abstract
Hide Abstract
The Immune Epitope Database and Analysis Resource (IEDB, http://www.iedb.org) hosts a continuously growing set of immune epitope data curated from the literature, as well as data submitted directly by experimental scientists. In addition, the IEDB hosts a collection of prediction tools for both MHC class I and II restricted T-cell epitopes that are regularly updated. In this review, we provide an overview of T-cell epitope data and prediction tools provided by the IEDB. We then illustrate effective use of these resources to support experimental studies. We focus on two applications, namely identification of conserved epitopes in novel strains of a previously studied pathogen, and prediction of novel T-cell epitopes to facilitate vaccine design. We address common questions and concerns faced by users, and identify patterns of usage that have proven successful.
Related JoVE Video
Divergent motifs but overlapping binding repertoires of six HLA-DQ molecules frequently expressed in the worldwide human population.
J. Immunol.
PUBLISHED: 09-01-2010
Show Abstract
Hide Abstract
Knowledge of the binding repertoires and specificities of HLA-DQ molecules is somewhat limited and contradictory, partly because of the scarcity of reports addressing some of the most common molecules and possibly because of the diversity of the techniques used. In this paper, we report the development of high-throughput binding assays for the six most common DQ molecules in the general worldwide population. Using comprehensive panels of single substitution analogs of specific ligands, we derived detailed binding motifs for DQA1*0501/DQB1*0301, DQA1*0401/DQB1*0402, and DQA1*0101/DQB1*0501 and more detailed motifs for DQA1*0501/DQB1*0201, DQA1*0301/DQB1*0302, and DQA1*0102/DQB1*0602, previously characterized on the basis of sets of eluted ligands and/or limited sets of substituted peptides. In contrast to what has previously been observed for DR and DP molecules, DQ motifs were generally less clearly defined in terms of chemical specificity and, strikingly, had little overlap with each other. However, testing a panel of peptides spanning a set of Phleum pratense Ags, and panels of known DQ epitopes, revealed a surprisingly significant and substantial overlap in the repertoire of peptides bound by these DQ molecules. Although the mechanism underlying these apparently contradictory findings is not clear, it likely reflects the peculiar mode of interaction between DQ (and not DR or DP) molecules and their peptide ligands. Because the DQ molecules studied are found in >85% of the general human population, these findings have important implications for epitope identification studies and monitoring of DQ-restricted immune responses.
Related JoVE Video
Peptide binding predictions for HLA DR, DP and DQ molecules.
BMC Bioinformatics
PUBLISHED: 07-01-2010
Show Abstract
Hide Abstract
MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ molecules are presumably equally important, and have only been studied less because they are more difficult to handle experimentally.
Related JoVE Video
Meta-analysis of all immune epitope data in the Flavivirus genus: inventory of current immune epitope data status in the context of virus immunity and immunopathology.
Viral Immunol.
PUBLISHED: 06-23-2010
Show Abstract
Hide Abstract
A meta-analysis was performed in order to inventory the immune epitope data related to viruses in the genus Flavivirus. Nearly 2000 epitopes were captured from over 130 individual Flavivirus-related references identified from PubMed and reported as of September 2009. This report includes all epitope structures and associated immune reactivity from the past and current literature, including: the epitope distribution among pathogens and related strains, the epitope distribution among different pathogen antigens, the number of epitopes defined in human and animal models of disease, the relationship between epitopes identified in different disease states following natural (or experimental) infection, and data from studies focused on candidate vaccines. We found that the majority of epitopes were defined for dengue virus (DENV) and West Nile virus (WNV). The prominence of DENV and WNV data in the epitope literature is likely a reflection of their overall worldwide impact on human disease, and the lack of vaccines. Conversely, the relatively smaller number of epitopes defined for the other viruses within the genus (yellow fever and Japanese encephalitis virus) most likely reflects the presence of established prophylaxis and/or their more modest impact on morbidity and mortality globally. Through this work we hope to provide useful data to those working in the area of Flavivirus research.
Related JoVE Video
Modeling biomedical experimental processes with OBI.
J Biomed Semantics
PUBLISHED: 06-22-2010
Show Abstract
Hide Abstract
Experimental descriptions are typically stored as free text without using standardized terminology, creating challenges in comparison, reproduction and analysis. These difficulties impose limitations on data exchange and information retrieval.
Related JoVE Video
Molecular determinants of T cell epitope recognition to the common Timothy grass allergen.
J. Immunol.
PUBLISHED: 06-16-2010
Show Abstract
Hide Abstract
We investigated the molecular determinants of allergen-derived T cell epitopes in humans utilizing the Phleum pratense (Timothy grass) allergens (Phl p). PBMCs from allergic individuals were tested in ELISPOT assays with overlapping peptides spanning known Phl p allergens. A total of 43 distinct antigenic regions were recognized, illustrating the large breadth of grass-specific T cell epitopes. Th2 cytokines (as represented by IL-5) were predominant, whereas IFN-gamma, IL-10, and IL-17 were detected less frequently. Responses from specific immunotherapy treatment individuals were weaker and less consistent, yet similar in epitope specificity and cytokine pattern to allergic donors, whereas nonallergic individuals were essentially nonreactive. Despite the large breadth of recognition, nine dominant antigenic regions were defined, each recognized by multiple donors, accounting for 51% of the total response. Multiple HLA molecules and loci restricted the dominant regions, and the immunodominant epitopes could be predicted using bioinformatic algorithms specific for 23 common HLA-DR, DP, and DQ molecules. Immunodominance was also apparent at the Phl p Ag level. It was found that 52, 19, and 14% of the total response was directed to Phl p 5, 1, and 3, respectively. Interestingly, little or no correlation between Phl p-specific IgE levels and T cell responses was found. Thus, certain intrinsic features of the allergen protein might influence immunogenicity at the level of T cell reactivity. Consistent with this notion, different Phl p Ags were associated with distinct patterns of IL-5, IFN-gamma, IL-10, and IL-17 production.
Related JoVE Video
Coverage of related pathogenic species by multivalent and cross-protective vaccine design: arenaviruses as a model system.
Microbiol. Mol. Biol. Rev.
PUBLISHED: 05-29-2010
Show Abstract
Hide Abstract
The arenaviruses are a family of negative-sense RNA viruses that cause severe human disease ranging from aseptic meningitis to hemorrhagic fever syndromes. There are currently no FDA-approved vaccines for the prevention of arenavirus disease, and therapeutic treatment is limited to the use of ribavirin and/or immune plasma for a subset of the pathogenic arenaviruses. The considerable genetic variability observed among the seven arenaviruses that are pathogenic for humans illustrates one of the major challenges for vaccine development today, namely, to overcome pathogen heterogeneity. Over the past 5 years, our group has tested several strategies to overcome pathogen heterogeneity, utilizing the pathogenic arenaviruses as a model system. Because T cells play a prominent role in protective immunity following arenavirus infection, we specifically focused on the development of human vaccines that would induce multivalent and cross-protective cell-mediated immune responses. To facilitate our vaccine development and testing, we conducted large-scale major histocompatibility complex (MHC) class I and class II epitope discovery on murine, nonhuman primate, and human backgrounds for each of the pathogenic arenaviruses, including the identification of protective HLA-restricted epitopes. Finally, using the murine model of lymphocytic choriomeningitis virus infection, we studied the phenotypic characteristics associated with immunodominant and protective T cell epitopes. This review summarizes the findings from our studies and discusses their application to future vaccine design.
Related JoVE Video
Identification and localization of minimal MHC-restricted CD8+ T cell epitopes within the Plasmodium falciparum AMA1 protein.
Malar. J.
PUBLISHED: 04-09-2010
Show Abstract
Hide Abstract
Plasmodium falciparum apical membrane antigen-1 (AMA1) is a leading malaria vaccine candidate antigen that is expressed by sporozoite, liver and blood stage parasites. Since CD8+ T cell responses have been implicated in protection against pre-erythrocytic stage malaria, this study was designed to identify MHC class I-restricted epitopes within AMA1.
Related JoVE Video
The most common Chinese rhesus macaque MHC class I molecule shares peptide binding repertoire with the HLA-B7 supertype.
Immunogenetics
PUBLISHED: 03-20-2010
Show Abstract
Hide Abstract
Of the two rhesus macaque subspecies used for AIDS studies, the Simian immunodeficiency virus-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection, providing both insight into pathogenesis and a system for testing novel vaccines. Despite the Chinese rhesus macaque potentially being a more relevant model for AIDS outcomes than the Indian rhesus macaque, the Chinese-origin rhesus macaques have not been well-characterized for their major histocompatibility complex (MHC) composition and function, reducing their greater utilization. In this study, we characterized a total of 50 unique Chinese rhesus macaques from several varying origins for their entire MHC class I allele composition and identified a total of 58 unique complete MHC class I sequences. Only nine of the sequences had been associated with Indian rhesus macaques, and 28/58 (48.3%) of the sequences identified were novel. From all MHC alleles detected, we prioritized Mamu-A1*02201 for functional characterization based on its higher frequency of expression. Upon the development of MHC/peptide binding assays and definition of its associated motif, we revealed that this allele shares peptide binding characteristics with the HLA-B7 supertype, the most frequent supertype in human populations. These studies provide the first functional characterization of an MHC class I molecule in the context of Chinese rhesus macaques and the first instance of HLA-B7 analogy for rhesus macaques.
Related JoVE Video
IMMUNOCAT-a data management system for epitope mapping studies.
J. Biomed. Biotechnol.
PUBLISHED: 03-07-2010
Show Abstract
Hide Abstract
To enable rationale vaccine design, studies of molecular and cellular mechanisms of immune recognition need to be linked with clinical studies in humans. A major challenge in conducting such translational research studies lies in the management and integration of large amounts and various types of data collected from multiple sources. For this purpose, we have established "IMMUNOCAT", an interactive data management system for the epitope discovery research projects conducted by our group. The system provides functions to store, query, and analyze clinical and experimental data, enabling efficient, systematic, and integrative data management. We demonstrate how IMMUNOCAT is utilized in a large-scale research contract that aims to identify epitopes in common allergens recognized by T cells from human donors, in order to facilitate the rational design of allergy vaccines. At clinical sites, demographic information and disease history of each enrolled donor are captured, followed by results of an allergen skin test and blood draw. At the laboratory site, T cells derived from blood samples are tested for reactivity against a panel of peptides derived from common human allergens. IMMUNOCAT stores results from these T cell assays along with MHC:peptide binding data, results from RAST tests for antibody titers in donor serum, and the respective donor HLA typing results. Through this system, we are able to perform queries and integrated analyses of the various types of data. This provides a case study for the use of bioinformatics and information management techniques to track and analyze data produced in a translational research study aimed at epitope identification.
Related JoVE Video
TiArA: a virtual appliance for the analysis of Tiling Array data.
PLoS ONE
PUBLISHED: 03-05-2010
Show Abstract
Hide Abstract
Genomic tiling arrays have been described in the scientific literature since 2003, yet there is a shortage of user-friendly applications available for their analysis.
Related JoVE Video
Design and utilization of epitope-based databases and predictive tools.
Immunogenetics
PUBLISHED: 02-11-2010
Show Abstract
Hide Abstract
In the last decade, significant progress has been made in expanding the scope and depth of publicly available immunological databases and online analysis resources, which have become an integral part of the repertoire of tools available to the scientific community for basic and applied research. Herein, we present a general overview of different resources and databases currently available. Because of our association with the Immune Epitope Database and Analysis Resource, this resource is reviewed in more detail. Our review includes aspects such as the development of formal ontologies and the type and breadth of analytical tools available to predict epitopes and analyze immune epitope data. A common feature of immunological databases is the requirement to host large amounts of data extracted from disparate sources. Accordingly, we discuss and review processes to curate the immunological literature, as well as examples of how the curated data can be used to generate a meta-analysis of the epitope knowledge currently available for diseases of worldwide concern, such as influenza and malaria. Finally, we review the impact of immunological databases, by analyzing their usage and citations, and by categorizing the type of citations. Taken together, the results highlight the growing impact and utility of immunological databases for the scientific community.
Related JoVE Video
Uncovering the interplay between CD8, CD4 and antibody responses to complex pathogens.
Future Microbiol
PUBLISHED: 02-11-2010
Show Abstract
Hide Abstract
Vaccinia virus (VACV) was used as the vaccine strain to eradicate smallpox. VACV is still administered to healthcare workers or researchers who are at risk of contracting the virus, and to military personnel. Thus, VACV represents a weapon against outbreaks, both natural (e.g., monkeypox) or man-made (bioterror). This virus is also used as a vector for experimental vaccine development (cancer/infectious disease). As a prototypic poxvirus, VACV is a model system for studying host-pathogen interactions. Until recently, little was known about the targets of host immune responses, which was likely owing to VACVs large genome (>200 open reading frames). However, the last few years have witnessed an explosion of data, and VACV has quickly become a useful model to study adaptive immune responses. This review summarizes and highlights key findings based on identification of VACV antigens targeted by the immune system (CD4, CD8 and antibodies) and the complex interplay between responses.
Related JoVE Video
Polyfunctional CD4+ T cell responses to a set of pathogenic arenaviruses provide broad population coverage.
Immunome Res
PUBLISHED: 02-09-2010
Show Abstract
Hide Abstract
Several arenaviruses cause severe hemorrhagic fever and aseptic meningitis in humans for which no licensed vaccines are available. A major obstacle for vaccine development is pathogen heterogeneity within the Arenaviridae family. Evidence in animal models and humans indicate that T cell and antibody-mediated immunity play important roles in controlling arenavirus infection and replication. Because CD4+ T cells are needed for optimal CD8+ T cell responses and to provide cognate help for B cells, knowledge of epitopes recognized by CD4+ T cells is critical to the development of an effective vaccine strategy against arenaviruses. Thus, the goal of the present study was to define and characterize CD4+ T cell responses from a broad repertoire of pathogenic arenaviruses (including lymphocytic choriomeningitis, Lassa, Guanarito, Junin, Machupo, Sabia, and Whitewater Arroyo viruses) and to provide determinants with the potential to be incorporated into a multivalent vaccine strategy.
Related JoVE Video
Five HLA-DP molecules frequently expressed in the worldwide human population share a common HLA supertypic binding specificity.
J. Immunol.
PUBLISHED: 02-05-2010
Show Abstract
Hide Abstract
Compared with DR and DQ, knowledge of the binding repertoires and specificities of HLA-DP alleles is somewhat limited. However, a growing body of literature has indicated the importance of DP-restricted responses in the context of cancer, allergy, and infectious disease. In the current study, we developed high-throughput binding assays for the five most common HLA-DPB1 alleles in the general worldwide population. Using these assays on a comprehensive panel of single-substitution analogs and large peptide libraries, we derived novel detailed binding motifs for DPB1*0101 and DPB1*0501. We also derived more detailed quantitative motifs for DPB1*0201, DPB1*0401, and DPB1*0402, which were previously characterized on the basis of sets of eluted ligands and/or limited sets of substituted peptides. Unexpectedly, all five DP molecules, originally selected only on the basis of their frequency in human populations, were found to share largely overlapping peptide motifs. Testing panels of known DP epitopes and a panel of peptides spanning a set of Phleum pratense Ags revealed that these molecules also share largely overlapping peptide-binding repertoires. This demonstrates that a previously hypothesized DP supertype extends far beyond what was originally envisioned and includes at least three additional very common DP specificities. Taken together, these DP supertype molecules are found in >90% of the human population. Thus, these findings have important implications for epitope-identification studies and monitoring of human class II-restricted immune responses.
Related JoVE Video
Limitations of Ab initio predictions of peptide binding to MHC class II molecules.
PLoS ONE
PUBLISHED: 01-21-2010
Show Abstract
Hide Abstract
Successful predictions of peptide MHC binding typically require a large set of binding data for the specific MHC molecule that is examined. Structure based prediction methods promise to circumvent this requirement by evaluating the physical contacts a peptide can make with an MHC molecule based on the highly conserved 3D structure of peptide:MHC complexes. While several such methods have been described before, most are not publicly available and have not been independently tested for their performance. We here implemented and evaluated three prediction methods for MHC class II molecules: statistical potentials derived from the analysis of known protein structures; energetic evaluation of different peptide snapshots in a molecular dynamics simulation; and direct analysis of contacts made in known 3D structures of peptide:MHC complexes. These methods are ab initio in that they require structural data of the MHC molecule examined, but no specific peptide:MHC binding data. Moreover, these methods retain the ability to make predictions in a sufficiently short time scale to be useful in a real world application, such as screening a whole proteome for candidate binding peptides. A rigorous evaluation of each methods prediction performance showed that these are significantly better than random, but still substantially lower than the best performing sequence based class II prediction methods available. While the approaches presented here were developed independently, we have chosen to present our results together in order to support the notion that generating structure based predictions of peptide:MHC binding without using binding data is unlikely to give satisfactory results.
Related JoVE Video
Hematopoietic cell types: prototype for a revised cell ontology.
J Biomed Inform
PUBLISHED: 01-18-2010
Show Abstract
Hide Abstract
The Cell Ontology (CL) aims for the representation of in vivo and in vitro cell types from all of biology. The CL is a candidate reference ontology of the OBO Foundry and requires extensive revision to bring it up to current standards for biomedical ontologies, both in its structure and its coverage of various subfields of biology. We have now addressed the specific content of one area of the CL, the section of the ontology dealing with hematopoietic cells. This section has been extensively revised to improve its content and eliminate multiple inheritance in the asserted hierarchy, and the groundwork has been laid for structuring the hematopoietic cell type terms as cross-products incorporating logical definitions built from relationships to external ontologies, such as the Protein Ontology and the Gene Ontology. The methods and improvements to the CL in this area represent a paradigm for improvement of the entire ontology over time.
Related JoVE Video
Transcatheter creation of an aortopulmonary shunt in an animal model.
Catheter Cardiovasc Interv
PUBLISHED: 01-13-2010
Show Abstract
Hide Abstract
The surgical creation of an aortopulmonary shunt is an important tool in the therapy of complex congenital heart defects. We report on a transcatheter approach to establish an aortopulmonary shunt in piglets.
Related JoVE Video
Two kinetic patterns of epitope-specific CD8 T-cell responses following murine gammaherpesvirus 68 infection.
J. Virol.
PUBLISHED: 01-06-2010
Show Abstract
Hide Abstract
Murine gammaherpesvirus 68 (gammaHV68) provides an important experimental model for understanding mechanisms of immune control of the latent human gammaherpesviruses. Antiviral CD8 T cells play a key role throughout three separate phases of the infection: clearance of lytic virus, control of the latency amplification stage, and prevention of reactivation of latently infected cells. Previous analyses have shown that T-cell responses to two well-characterized epitopes derived from ORF6 and ORF61 progress with distinct kinetics. ORF6(487)-specific cells predominate early in infection and then decline rapidly, whereas ORF61(524)-specific cells continue to expand through early latency, due to sustained epitope expression. However, the paucity of identified epitopes to this virus has limited our understanding of the overall complexities of CD8 T-cell immune control throughout infection. Here we screened 1,383 predicted H-2(b)-restricted peptides and identified 33 responses, of which 21 have not previously been reported. Kinetic analysis revealed a spectrum of T-cell responses based on the rapidity of their decline after the peak acute response that generally corresponded to the expression patterns of the two previously characterized epitopes. The slowly declining responses that were maintained during latency amplification proliferated more rapidly and underwent maturation of functional avidity over time. Furthermore, the kinetics of decline was accelerated following infection with a latency-null mutant virus. Overall, the data show that gammaHV68 infection elicits a highly heterogeneous CD8 T-cell response that segregates into two distinctive kinetic patterns controlled by differential epitope expression during the lytic and latency amplification stages of infection.
Related JoVE Video
Novel sequence feature variant type analysis of the HLA genetic association in systemic sclerosis.
Hum. Mol. Genet.
PUBLISHED: 11-18-2009
Show Abstract
Hide Abstract
We describe a novel approach to genetic association analyses with proteins sub-divided into biologically relevant smaller sequence features (SFs), and their variant types (VTs). SFVT analyses are particularly informative for study of highly polymorphic proteins such as the human leukocyte antigen (HLA), given the nature of its genetic variation: the high level of polymorphism, the pattern of amino acid variability, and that most HLA variation occurs at functionally important sites, as well as its known role in organ transplant rejection, autoimmune disease development and response to infection. Further, combinations of variable amino acid sites shared by several HLA alleles (shared epitopes) are most likely better descriptors of the actual causative genetic variants. In a cohort of systemic sclerosis patients/controls, SFVT analysis shows that a combination of SFs implicating specific amino acid residues in peptide binding pockets 4 and 7 of HLA-DRB1 explains much of the molecular determinant of risk.
Related JoVE Video
Pre-existing immunity against swine-origin H1N1 influenza viruses in the general human population.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 11-16-2009
Show Abstract
Hide Abstract
A major concern about the ongoing swine-origin H1N1 influenza virus (S-OIV) outbreak is that the virus may be so different from seasonal H1N1 that little immune protection exists in the human population. In this study, we examined the molecular basis for pre-existing immunity against S-OIV, namely the recognition of viral immune epitopes by T cells or B cells/antibodies that have been previously primed by circulating influenza strains. Using data from the Immune Epitope Database, we found that only 31% (8/26) of B-cell epitopes present in recently circulating H1N1 strains are conserved in the S-OIV, with only 17% (1/6) conserved in the hemagglutinin (HA) and neuraminidase (NA) surface proteins. In contrast, 69% (54/78) of the epitopes recognized by CD8(+) T cells are completely invariant. We further demonstrate experimentally that some memory T-cell immunity against S-OIV is present in the adult population and that such memory is of similar magnitude as the pre-existing memory against seasonal H1N1 influenza. Because protection from infection is antibody mediated, a new vaccine based on the specific S-OIV HA and NA proteins is likely to be required to prevent infection. However, T cells are known to blunt disease severity. Therefore, the conservation of a large fraction of T-cell epitopes suggests that the severity of an S-OIV infection, as far as it is determined by susceptibility of the virus to immune attack, would not differ much from that of seasonal flu. These results are consistent with reports about disease incidence, severity, and mortality rates associated with human S-OIV.
Related JoVE Video
The immune epitope database 2.0.
Nucleic Acids Res.
PUBLISHED: 11-11-2009
Show Abstract
Hide Abstract
The Immune Epitope Database (IEDB, www.iedb.org) provides a catalog of experimentally characterized B and T cell epitopes, as well as data on Major Histocompatibility Complex (MHC) binding and MHC ligand elution experiments. The database represents the molecular structures recognized by adaptive immune receptors and the experimental contexts in which these molecules were determined to be immune epitopes. Epitopes recognized in humans, nonhuman primates, rodents, pigs, cats and all other tested species are included. Both positive and negative experimental results are captured. Over the course of 4 years, the data from 180,978 experiments were curated manually from the literature, which covers approximately 99% of all publicly available information on peptide epitopes mapped in infectious agents (excluding HIV) and 93% of those mapped in allergens. In addition, data that would otherwise be unavailable to the public from 129,186 experiments were submitted directly by investigators. The curation of epitopes related to autoimmunity is expected to be completed by the end of 2010. The database can be queried by epitope structure, source organism, MHC restriction, assay type or host organism, among other criteria. The database structure, as well as its querying, browsing and reporting interfaces, was completely redesigned for the IEDB 2.0 release, which became publicly available in early 2009.
Related JoVE Video
Quantitating T cell cross-reactivity for unrelated peptide antigens.
J. Immunol.
PUBLISHED: 09-04-2009
Show Abstract
Hide Abstract
Quantitating the frequency of T cell cross-reactivity to unrelated peptides is essential to understanding T cell responses in infectious and autoimmune diseases. Here we used 15 mouse or human CD8+ T cell clones (11 antiviral, 4 anti-self) in conjunction with a large library of defined synthetic peptides to examine nearly 30,000 TCR-peptide MHC class I interactions for cross-reactions. We identified a single cross-reaction consisting of an anti-self TCR recognizing a poxvirus peptide at relatively low sensitivity. We failed to identify any cross-reactions between the synthetic peptides in the panel and polyclonal CD8+ T cells raised to viral or alloantigens. These findings provide the best estimate to date of the frequency of T cell cross-reactivity to unrelated peptides ( approximately 1/30,000), explaining why cross-reactions between unrelated pathogens are infrequently encountered and providing a critical parameter for understanding the scope of self-tolerance.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.