JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Lower baseline performance but greater plasticity of working memory for carriers of the val allele of the comt val158met polymorphism.
Neuropsychology
PUBLISHED: 05-14-2014
Show Abstract
Hide Abstract
Objective: Little is known about genetic contributions to individual differences in cognitive plasticity. Given that the neurotransmitter dopamine is critical for cognition and associated with cognitive plasticity, we investigated the effects of 3 polymorphisms of dopamine-related genes (LMX1A, DRD2, COMT) on baseline performance and plasticity of working memory (WM), perceptual speed, and reasoning. Method: One hundred one younger and 103 older adults underwent approximately 100 days of cognitive training, and extensive testing before and after training. We analyzed the baseline and posttest data using latent change score models. Results: For working memory, carriers of the val allele of the COMT polymorphism had lower baseline performance and larger performance gains from training than carriers of the met allele. There was no significant effect of the other genes or on other cognitive domains. Conclusions: We relate this result to available evidence indicating that met carriers perform better than val carriers in WM tasks taxing maintenance, whereas val carriers perform better at updating tasks. We suggest that val carriers may show larger training gains because updating operations carry greater potential for plasticity than maintenance operations. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Related JoVE Video
Assessment of microRNA-related SNP effects in the 3' untranslated region of the IL22RA2 risk locus in multiple sclerosis.
Neurogenetics
PUBLISHED: 02-11-2014
Show Abstract
Hide Abstract
Recent large-scale association studies have identified over 100 MS risk loci. One of these MS risk variants is single-nucleotide polymorphism (SNP) rs17066096, located ~14 kb downstream of IL22RA2. IL22RA2 represents a compelling MS candidate gene due to the role of IL-22 in autoimmunity; however, rs17066096 does not map into any known functional element. We assessed whether rs17066096 or a nearby proxy SNP may exert pathogenic effects by affecting microRNA-to-mRNA binding and thus IL22RA2 expression using comprehensive in silico predictions, in vitro reporter assays, and genotyping experiments in 6,722 individuals. In silico screening identified two predicted microRNA binding sites in the 3'UTR of IL22RA2 (for hsa-miR-2278 and hsa-miR-411-5p) encompassing a SNP (rs28366) in moderate linkage disequilibrium with rs17066096 (r (2)?=?0.4). The binding of both microRNAs to the IL22RA2 3'UTR was confirmed in vitro, but their binding affinities were not significantly affected by rs28366. Association analyses revealed significant association of rs17066096 and MS risk in our independent German dataset (odds ratio ?=?1.15, P?=?3.48?×?10(-4)), but did not indicate rs28366 to be the cause of this signal. While our study provides independent validation of the association between rs17066096 and MS risk, this signal does not appear to be caused by sequence variants affecting microRNA function.
Related JoVE Video
MicroRNA-138 is a potential regulator of memory performance in humans.
Front Hum Neurosci
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Genetic factors underlie a substantial proportion of individual differences in cognitive functions in humans, including processes related to episodic and working memory. While genetic association studies have proposed several candidate "memory genes," these currently explain only a minor fraction of the phenotypic variance. Here, we performed genome-wide screening on 13 episodic and working memory phenotypes in 1318 participants of the Berlin Aging Study II aged 60 years or older. The analyses highlight a number of novel single nucleotide polymorphisms (SNPs) associated with memory performance, including one located in a putative regulatory region of microRNA (miRNA) hsa-mir-138-5p (rs9882688, P-value = 7.8 × 10(-9)). Expression quantitative trait locus analyses on next-generation RNA-sequencing data revealed that rs9882688 genotypes show a significant correlation with the expression levels of this miRNA in 309 human lymphoblastoid cell lines (P-value = 5 × 10(-4)). In silico modeling of other top-ranking GWAS signals identified an additional memory-associated SNP in the 3' untranslated region (3' UTR) of DCP1B, a gene encoding a core component of the mRNA decapping complex in humans, predicted to interfere with hsa-mir-138-5p binding. This prediction was confirmed in vitro by luciferase assays showing differential binding of hsa-mir-138-5p to 3' UTR reporter constructs in two human cell lines (HEK293: P-value = 0.0470; SH-SY5Y: P-value = 0.0866). Finally, expression profiling of hsa-mir-138-5p and DCP1B mRNA in human post-mortem brain tissue revealed that both molecules are expressed simultaneously in frontal cortex and hippocampus, suggesting that the proposed interaction between hsa-mir-138-5p and DCP1B may also take place in vivo. In summary, by combining unbiased genome-wide screening with extensive in silico modeling, in vitro functional assays, and gene expression profiling, our study identified miRNA-138 as a potential molecular regulator of human memory function.
Related JoVE Video
MANBA, CXCR5, SOX8, RPS6KB1 and ZBTB46 are genetic risk loci for multiple sclerosis.
Brain
PUBLISHED: 06-07-2013
Show Abstract
Hide Abstract
A recent genome-wide association study reported five loci for which there was strong, but sub-genome-wide significant evidence for association with multiple sclerosis risk. The aim of this study was to evaluate the role of these potential risk loci in a large and independent data set of ? 20,000 subjects. We tested five single nucleotide polymorphisms rs228614 (MANBA), rs630923 (CXCR5), rs2744148 (SOX8), rs180515 (RPS6KB1), and rs6062314 (ZBTB46) for association with multiple sclerosis risk in a total of 8499 cases with multiple sclerosis, 8765 unrelated control subjects and 958 trios of European descent. In addition, we assessed the overall evidence for association by combining these newly generated data with the results from the original genome-wide association study by meta-analysis. All five tested single nucleotide polymorphisms showed consistent and statistically significant evidence for association with multiple sclerosis in our validation data sets (rs228614: odds ratio = 0.91, P = 2.4 × 10(-6); rs630923: odds ratio = 0.89, P = 1.2 × 10(-4); rs2744148: odds ratio = 1.14, P = 1.8 × 10(-6); rs180515: odds ratio = 1.12, P = 5.2 × 10(-7); rs6062314: odds ratio = 0.90, P = 4.3 × 10(-3)). Combining our data with results from the previous genome-wide association study by meta-analysis, the evidence for association was strengthened further, surpassing the threshold for genome-wide significance (P < 5 × 10(-8)) in each case. Our study provides compelling evidence that these five loci are genuine multiple sclerosis susceptibility loci. These results may eventually lead to a better understanding of the underlying disease pathophysiology.
Related JoVE Video
Aging and KIBRA/WWC1 genotype affect spatial memory processes in a virtual navigation task.
Hippocampus
PUBLISHED: 05-17-2013
Show Abstract
Hide Abstract
Spatial navigation relies on multiple mnemonic mechanisms and previous work in younger adults has described two separate types of spatial memory. One type uses directional as well as boundary-related information for spatial memory and mainly implicates the hippocampal formation. The other type has been linked to directional and landmark-related information and primarily involves the striatum. Using a virtual reality navigation paradigm, we studied the impacts of aging and a single nucleotide polymorphism (SNP rs17070145) of the KIBRA gene (official name: WWC1) on these memory forms. Our data showed that older adults spatial learning was preferentially related to processing of landmark information, whereas processing of boundary information played a more prominent role in younger adults. Moreover, among older adults T-allele carriers of the examined KIBRA polymorphism showed better spatial learning compared to C homozygotes. Together these findings provide the first evidence for an effect of the KIBRA rs17070145 polymorphism on spatial memory in humans and age differences in the reliance on landmark and boundary-related spatial information. © 2013 Wiley Periodicals, Inc.
Related JoVE Video
Effects of aging and dopamine genotypes on the emergence of explicit memory during sequence learning.
Neuropsychologia
PUBLISHED: 04-09-2013
Show Abstract
Hide Abstract
The striatum and medial temporal lobe play important roles in implicit and explicit memory, respectively. Furthermore, recent studies have linked striatal dopamine modulation to both implicit as well as explicit sequence learning and suggested a potential role of the striatum in the emergence of explicit memory during sequence learning. With respect to aging, previous findings indicated that implicit memory is less impaired than explicit memory in older adults and that genetic effects on cognition are magnified by aging. To understand the links between these findings, we investigated effects of aging and genotypes relevant for striatal dopamine on the implicit and explicit components of sequence learning. Reaction time (RT) and error data from 80 younger (20-30 years) and 70 older adults (60-71 years) during a serial reaction time task showed that age differences in learning-related reduction of RTs emerged gradually over the course of learning. Verbal recall and measures derived from the process-dissociation procedure revealed that younger adults acquired more explicit memory about the sequence than older adults, potentially causing age differences in RT gains in later stages of learning. Of specific interest, polymorphisms of the dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32, rs907094) and dopamine transporter (DAT, VNTR) genes showed interactive effects on overall RTs and verbal recall of the sequence in older but not in younger adults. Together our findings show that variations in genotypes relevant for dopamine functions are associated more with aging-related impairments in the explicit than the implicit component of sequence learning, providing support for theories emphasizing the role of dopaminergic modulation in cognitive aging and the magnification of genetic effects in human aging.
Related JoVE Video
Dopamine and glutamate receptor genes interactively influence episodic memory in old age.
Neurobiol. Aging
PUBLISHED: 03-11-2013
Show Abstract
Hide Abstract
Both the dopaminergic and glutamatergic systems modulate episodic memory consolidation. Evidence from animal studies suggests that these two neurotransmitters may interact in influencing memory performance. Given that individual differences in episodic memory are heritable, we investigated whether variations of the dopamine D2 receptor gene (rs6277, C957T) and the N-methyl-D-aspartate 3A (NR3A) gene, coding for the N-methyl-D-aspartate 3A subunit of the glutamate N-methyl-D-aspartate receptor (rs10989591, Val362Met), interactively modulate episodic memory in large samples of younger (20-31 years; n = 670) and older (59-71 years; n = 832) adults. We found a reliable gene-gene interaction, which was observed in older adults only: older individuals carrying genotypes associated with greater D2 and N-methyl-D-aspartate receptor efficacy showed better episodic performance. These results are in line with findings showing magnification of genetic effects on memory in old age, presumably as a consequence of reduced brain resources. Our findings underscore the need for investigating interactive effects of multiple genes to understand individual difference in episodic memory.
Related JoVE Video
Independent replication of STAT3 association with multiple sclerosis risk in a large German case-control sample.
Neurogenetics
PUBLISHED: 10-27-2011
Show Abstract
Hide Abstract
Recent genome-wide association studies have implicated the "signal transducer and activator of transcription 3" gene (STAT3) as a putative new multiple sclerosis (MS) susceptibility locus. However, independent validation studies are sparse. Therefore, we performed a genetic association study of two STAT3 polymorphisms (rs744166 and rs2293152) in a large and independent German case-control sample of 5,904 subjects. We observed a nominally significant, albeit weak association between rs744166 and MS susceptibility (odds ratio?=?1.09, P?=?0.012) in our sample. This study supports the association between STAT3 and an increase in MS risk. Taking into account the functional role of STAT3, our results favour an involvement of T(h)17 lymphocytes in MS.
Related JoVE Video
The role of clusterin, complement receptor 1, and phosphatidylinositol binding clathrin assembly protein in Alzheimer disease risk and cerebrospinal fluid biomarker levels.
Arch. Gen. Psychiatry
PUBLISHED: 02-09-2011
Show Abstract
Hide Abstract
Two recent and simultaneously published genome-wide association studies independently implicated clusterin (CLU), complement receptor 1 (CR1), and phosphatidylinositol binding clathrin assembly protein (PICALM) as putative novel Alzheimer disease (AD) risk loci. Despite their strong statistical support, all 3 signals emerged from heterogeneous case-control populations and lack replication in different settings.
Related JoVE Video
CALHM1 P86L polymorphism does not alter amyloid-beta or tau in cerebrospinal fluid.
Neurosci. Lett.
PUBLISHED: 10-22-2009
Show Abstract
Hide Abstract
Recently, the P86L alteration in CALHM1 (calcium homeostasis modulator-1) was reported to be associated with Alzheimers disease (AD). Moreover, the risk allele increased amyloid-beta (A beta) levels in conditioned media from cultured cells. Therefore, we hypothesized that CALHM1 P86L may modulate A beta or tau levels in cerebrospinal fluid (CSF). Nearly 200 individuals with AD or other cognitive disorders were included for CSF analysis and CALHM1 genotyping. No significant differences in CSF levels of A beta 42, tau or phospho-tau were found across the various CALHM1 genotypes. In conclusion, we found no evidence that CALHM1 P86L is associated with altered CSF levels of the investigated AD biomarkers.
Related JoVE Video
Assessment of Alzheimers disease case-control associations using family-based methods.
Neurogenetics
PUBLISHED: 07-14-2009
Show Abstract
Hide Abstract
The genetics of Alzheimers disease (AD) is heterogeneous and remains only ill-defined. We have recently created a freely available and continuously updated online database (AlzGene; http://www.alzgene.org ) for which we collect all published genetic association studies in AD and perform systematic meta-analyses on all polymorphisms with sufficient genotype data. In this study, we tested 27 genes (ACE, BDNF, CH25H, CHRNB2, CST3, CTSD, DAPK1, GALP, hCG2039140, IL1B, LMNA, LOC439999, LOC651924, MAPT, MTHFR, MYH13, PCK1, PGBD1, PRNP, PSEN1, SORCS1, SORL1, TF, TFAM, TNK1, GWA_14q32.13, and GWA_7p15.2), all showing significant association with AD risk in the AlzGene meta-analyses, in a large collection of family-based samples comprised of 4,180 subjects from over 1,300 pedigrees. Overall, we observe significant association with risk for AD and polymorphisms in ACE, CHRNB2, TF, and an as yet uncharacterized locus on chromosome 7p15.2 [rs1859849]. For all four loci, the association was observed with the same alleles as in the AlzGene meta-analyses. The convergence of case-control and family-based findings suggests that these loci currently represent the most promising AD gene candidates. Further fine-mapping and functional analyses are warranted to elucidate the potential biochemical mechanisms and epidemiological relevance of these genes.
Related JoVE Video
GAB2 as an Alzheimer disease susceptibility gene: follow-up of genomewide association results.
Arch. Neurol.
PUBLISHED: 02-11-2009
Show Abstract
Hide Abstract
Genomewide association (GWA) studies have recently implicated 4 novel Alzheimer disease (AD) susceptibility loci (GAB2, GOLM1, and 2 uncharacterized loci to date on chromosomes 9p and 15q). To our knowledge, these findings have not been independently replicated.
Related JoVE Video
Closing the case of APOE in multiple sclerosis: no association with disease risk in over 29 000 subjects.
J. Med. Genet.
Show Abstract
Hide Abstract
Single nucleotide polymorphisms (SNPs) rs429358 (?4) and rs7412 (?2), both invoking changes in the amino-acid sequence of the apolipoprotein E (APOE) gene, have previously been tested for association with multiple sclerosis (MS) risk. However, none of these studies was sufficiently powered to detect modest effect sizes at acceptable type-I error rates. As both SNPs are only imperfectly captured on commonly used microarray genotyping platforms, their evaluation in the context of genome-wide association studies has been hindered until recently.
Related JoVE Video
Comprehensive research synopsis and systematic meta-analyses in Parkinsons disease genetics: The PDGene database.
PLoS Genet.
Show Abstract
Hide Abstract
More than 800 published genetic association studies have implicated dozens of potential risk loci in Parkinsons disease (PD). To facilitate the interpretation of these findings, we have created a dedicated online resource, PDGene, that comprehensively collects and meta-analyzes all published studies in the field. A systematic literature screen of -27,000 articles yielded 828 eligible articles from which relevant data were extracted. In addition, individual-level data from three publicly available genome-wide association studies (GWAS) were obtained and subjected to genotype imputation and analysis. Overall, we performed meta-analyses on more than seven million polymorphisms originating either from GWAS datasets and/or from smaller scale PD association studies. Meta-analyses on 147 SNPs were supplemented by unpublished GWAS data from up to 16,452 PD cases and 48,810 controls. Eleven loci showed genome-wide significant (P < 5 × 10(-8)) association with disease risk: BST1, CCDC62/HIP1R, DGKQ/GAK, GBA, LRRK2, MAPT, MCCC1/LAMP3, PARK16, SNCA, STK39, and SYT11/RAB25. In addition, we identified novel evidence for genome-wide significant association with a polymorphism in ITGA8 (rs7077361, OR 0.88, P? =? 1.3 × 10(-8)). All meta-analysis results are freely available on a dedicated online database (www.pdgene.org), which is cross-linked with a customized track on the UCSC Genome Browser. Our study provides an exhaustive and up-to-date summary of the status of PD genetics research that can be readily scaled to include the results of future large-scale genetics projects, including next-generation sequencing studies.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.