JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Habitat Differences Influence Genetic Impacts of Human Land Use on the American Beech (Fagus grandifolia).
J. Hered.
PUBLISHED: 08-19-2014
Show Abstract
Hide Abstract
Natural reforestation after regional forest clearance is a globally common land-use sequence. The genetic recovery of tree populations in these recolonized forests may depend on the biogeographic setting of the landscape, for instance whether they are in the core or in the marginal part of the species' range. Using data from 501 individuals genotyped across 7 microsatellites, we investigated whether regional differences in habitat quality affected the recovery of genetic variation in a wind-pollinated tree species, American beech (Fagus grandifolia) in Massachusetts. We compared populations in forests that were recolonized following agricultural abandonment to those in remnant forests that have only been logged in both central inland and marginal coastal regions. Across all populations in our entire study region, recolonized forests showed limited reduction of genetic diversity as only observed heterozygosity was significantly reduced in these forests (H O = 0.520 and 0.590, respectively). Within inland region, this pattern was observed, whereas in the coast, recolonized populations exhibited no reduction in all genetic diversity estimates. However, genetic differentiation among recolonized populations in marginal coastal habitat increased (F st logged = 0.072; F st secondary = 0.249), with populations showing strong genetic structure, in contrast to inland region. These results indicate that the magnitude of recovery of genetic variation in recolonized populations can vary at different habitats.
Related JoVE Video
Yersinia pestis and the plague of Justinian 541-543 AD: a genomic analysis.
Lancet Infect Dis
PUBLISHED: 01-28-2014
Show Abstract
Hide Abstract
Yersinia pestis has caused at least three human plague pandemics. The second (Black Death, 14-17th centuries) and third (19-20th centuries) have been genetically characterised, but there is only a limited understanding of the first pandemic, the Plague of Justinian (6-8th centuries). To address this gap, we sequenced and analysed draft genomes of Y pestis obtained from two individuals who died in the first pandemic.
Related JoVE Video
Ancient DNA from lake sediments: bridging the gap between paleoecology and genetics.
BMC Evol. Biol.
PUBLISHED: 01-27-2011
Show Abstract
Hide Abstract
Quaternary plant ecology in much of the world has historically relied on morphological identification of macro- and microfossils from sediments of small freshwater lakes. Here, we report new protocols that reliably yield DNA sequence data from Holocene plant macrofossils and bulk lake sediment used to infer ecological change. This will allow changes in census populations, estimated from fossils and associated sediment, to be directly associated with population genetic changes.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.