JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Blockade of monoacylglycerol lipase inhibits oligodendrocyte excitotoxicity and prevents demyelination in vivo.
Glia
PUBLISHED: 08-08-2014
Show Abstract
Hide Abstract
The endocannabinoids 2-araquidonoylglycerol (2-AG) and anandamide (AEA) are bioactive lipids crucially involved in the regulation of brain function in basal and pathological conditions. Blockade of endocannabinoid metabolism has emerged as a promising therapeutic strategy for inflammatory diseases of the central nervous system, including myelin disorders such as multiple sclerosis. Nevertheless, the biological actions of endocannabinoid degradation inhibitors in oligodendrocytes and white matter tracts are still ill defined. Here we show that the selective monoacylglycerol lipase (MAGL) inhibitor JZL184 suppressed cell death by mild activation of AMPA receptors in oligodendrocytes in vitro, an effect that was mimicked by MAGL substrate 2-AG and by the second major endocannabinoid AEA, in a concentration-dependent manner, whereas inhibition of the AEA metabolizing enzyme fatty acid amide hydrolase with URB597 was devoid of effect. Pharmacological experiments suggested that oligodendrocyte protection from excitotoxicity resulting from MAGL blockade involved the activation of cannabinoid CB1 receptors and the reduction of AMPA-induced cytosolic calcium overload, mitochondrial membrane depolarization, and production of reactive oxygen species. Administration of JZL184 under a therapeutic regimen decreased clinical severity, prevented demyelination, and reduced inflammation in chronic experimental autoimmune encephalomyelitis. Furthermore, MAGL inactivation robustly preserved myelin integrity and suppressed microglial activation in the cuprizone-induced model of T-cell-independent demyelination. These findings suggest that MAGL blockade may be a useful strategy for the treatment of immune-dependent and -independent damage to the white matter. GLIA 2015;63:163-176.
Related JoVE Video
White matter injury: Ischemic and nonischemic.
Glia
PUBLISHED: 06-18-2014
Show Abstract
Hide Abstract
Ischemic pathologies of white matter (WM) include a large proportion of stroke and developmental lesions while multiple sclerosis (MS) is the archetype nonischemic pathology. Growing evidence suggests other important diseases including neurodegenerative and psychiatric disorders also involve a significant WM component. Axonal, oligodendroglial, and astroglial damage proceed via distinct mechanisms in ischemic WM and these mechanisms evolve dramatically with maturation. Axons may pass through four developmental stages where the pattern of membrane protein expression influences how the structure responds to ischemia; WM astrocytes pass through at least two and differ significantly in their ischemia tolerance from grey matter astrocytes; oligodendroglia pass through at least three, with the highly ischemia intolerant pre-oligodendrocyte (pre-Oli) stage linking the less sensitive precursor and mature phenotypes. Neurotransmitters play a central role in WM pathology at all ages. Glutamate excitotoxicity in WM has both necrotic and apoptotic components; the latter mediated by intracellular pathways which differ between receptor types. ATP excitotoxicity may be largely mediated by the P2X7 receptor and also has both necrotic and apoptotic components. Interplay between microglia and other cell types is a critical element in the injury process. A growing appreciation of the significance of WM injury for nonischemic neurological disorders is currently stimulating research into mechanisms; with curious similarities being found with those operating during ischemia. A good example is traumatic brain injury, where axonal pathology can proceed via almost identical pathways to those described during acute ischemia.
Related JoVE Video
Extrasynaptic glutamate release through cystine/glutamate antiporter contributes to ischemic damage.
J. Clin. Invest.
PUBLISHED: 05-21-2014
Show Abstract
Hide Abstract
During brain ischemia, an excessive release of glutamate triggers neuronal death through the overactivation of NMDA receptors (NMDARs); however, the underlying pathways that alter glutamate homeostasis and whether synaptic or extrasynaptic sites are responsible for excess glutamate remain controversial. Here, we monitored ischemia-gated currents in pyramidal cortical neurons in brain slices from rodents in response to oxygen and glucose deprivation (OGD) as a real-time glutamate sensor to identify the source of glutamate release and determined the extent of neuronal damage. Blockade of excitatory amino acid transporters or vesicular glutamate release did not inhibit ischemia-gated currents or neuronal damage after OGD. In contrast, pharmacological inhibition of the cystine/glutamate antiporter dramatically attenuated ischemia-gated currents and cell death after OGD. Compared with control animals, mice lacking a functional cystine/glutamate antiporter exhibited reduced anoxic depolarization and neuronal death in response to OGD. Furthermore, glutamate released by the cystine/glutamate antiporter activated extrasynaptic, but not synaptic, NMDARs, and blockade of extrasynaptic NMDARs reduced ischemia-gated currents and cell damage after OGD. Finally, PET imaging showed increased cystine/glutamate antiporter function in ischemic rats. Altogether, these data suggest that cystine/glutamate antiporter function is increased in ischemia, contributing to elevated extracellular glutamate concentration, overactivation of extrasynaptic NMDARs, and ischemic neuronal death.
Related JoVE Video
ATP Signaling in Brain: Release, Excitotoxicity and Potential Therapeutic Targets.
Cell. Mol. Neurobiol.
PUBLISHED: 04-05-2014
Show Abstract
Hide Abstract
Adenosine 5'-triphosphate (ATP) is released as a genuine co-transmitter, or as a principal purinergic neurotransmitter, in an exocytotic and non-exocytotic manner. It activates ionotropic (P2X) and metabotropic (P2Y) receptors which mediate a plethora of functions in the brain. In particular, P2X7 receptor (P2X7R) are expressed in all brain cells and its activation can form a large pore allowing the passage of organic cations, the leakage of metabolites of up to 900 Da and the release of ATP itself. In turn, pannexins (Panx) are a family of proteins forming hemichannels that can release ATP. In this review, we summarize the progress in the understanding of the mechanisms of ATP release both in physiological and pathophysiological stages. We also provide data suggesting that P2X7R and pannexin 1 (Panx1) may form a large pore in cortical neurons as assessed by electrophysiology. Finally, the participation of calcium homeostasis modulator 1 is also suggested, another non-selective ion channel that can release ATP, and that could play a role in ischemic events, together with P2X7 and Panx1 during excitotoxicity by ATP.
Related JoVE Video
Neurotransmitter signaling in white matter.
Glia
PUBLISHED: 03-04-2014
Show Abstract
Hide Abstract
White matter (WM) tracts are bundles of myelinated axons that provide for rapid communication throughout the CNS and integration in grey matter (GM). The main cells in myelinated tracts are oligodendrocytes and astrocytes, with small populations of microglia and oligodendrocyte precursor cells. The prominence of neurotransmitter signaling in WM, which largely exclude neuronal cell bodies, indicates it must have physiological functions other than neuron-to-neuron communication. A surprising aspect is the diversity of neurotransmitter signaling in WM, with evidence for glutamatergic, purinergic (ATP and adenosine), GABAergic, glycinergic, adrenergic, cholinergic, dopaminergic and serotonergic signaling, acting via a wide range of ionotropic and metabotropic receptors. Both axons and glia are potential sources of neurotransmitters and may express the respective receptors. The physiological functions of neurotransmitter signaling in WM are subject to debate, but glutamate and ATP-mediated signaling have been shown to evoke Ca(2+) signals in glia and modulate axonal conduction. Experimental findings support a model of neurotransmitters being released from axons during action potential propagation acting on glial receptors to regulate the homeostatic functions of astrocytes and myelination by oligodendrocytes. Astrocytes also release neurotransmitters, which act on axonal receptors to strengthen action potential propagation, maintaining signaling along potentially long axon tracts. The co-existence of multiple neurotransmitters in WM tracts suggests they may have diverse functions that are important for information processing. Furthermore, the neurotransmitter signaling phenomena described in WM most likely apply to myelinated axons of the cerebral cortex and GM areas, where they are doubtless important for higher cognitive function.
Related JoVE Video
Differential neuroprotective effects of 5'-deoxy-5'-methylthioadenosine.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
5'-deoxy-5'-methylthioadenosine (MTA) is an endogenous compound produced through the metabolism of polyamines. The therapeutic potential of MTA has been assayed mainly in liver diseases and, more recently, in animal models of multiple sclerosis. The aim of this study was to determine the neuroprotective effect of this molecule in vitro and to assess whether MTA can cross the blood brain barrier (BBB) in order to also analyze its potential neuroprotective efficacy in vivo.
Related JoVE Video
A3 Adenosine receptors mediate oligodendrocyte death and ischemic damage to optic nerve.
Glia
PUBLISHED: 06-13-2013
Show Abstract
Hide Abstract
Adenosine receptor activation is involved in myelination and in apoptotic pathways linked to neurodegenerative diseases. In this study, we investigated the effects of adenosine receptor activation in the viability of oligodendrocytes of the rat optic nerve. Selective activation of A3 receptors in pure cultures of oligodendrocytes caused concentration-dependent apoptotic and necrotic death which was preceded by oxidative stress and mitochondrial membrane depolarization. Oligodendrocyte apoptosis induced by A3 receptor activation was caspase-dependent and caspase-independent. In addition to dissociated cultures, incubation of optic nerves ex vivo with adenosine and the A3 receptor agonist 2-CI-IB-MECA(1-[2-Chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-b-D-ribofuranuronamide)-induced caspase-3 activation, oligodendrocyte damage, and myelin loss, effects which were prevented by the presence of caffeine and the A3 receptor antagonist MRS 1220 (N-[9-Chloro-2-(2-furanyl)[1,2,4]-triazolo [1,5-c]quinazolin-5-yl]benzene acetamide). Finally, ischemia-induced injury and functional loss to the optic nerve was attenuated by blocking A3 receptors. Together, these results indicate that adenosine may trigger oligodendrocyte death via activation of A3 receptors and suggest that this mechanism contributes to optic nerve and white matter ischemic damage. GLIA 2014;62:199-216.
Related JoVE Video
P2X4 receptors control the fate and survival of activated microglia.
Glia
PUBLISHED: 05-23-2013
Show Abstract
Hide Abstract
Microglia, the resident immune cells of the central nervous system, responds to brain disarrangements by becoming activated to contend with brain damage. Here we show that the expression of P2X4 receptors is upregulated in inflammatory foci and in activated microglia in the spinal cord of rats with experimental autoimmune encephalomyelitis (EAE) as well as in the optic nerve of multiple sclerosis patients. To study the role of P2X4 receptors in microgliosis, we activated microglia with LPS in vitro and in vivo. We observed that P2X4 receptor activity in vitro was increased in LPS-activated microglia as assessed by patch-clamp recordings. In addition, P2X4 receptor blockade significantly reduced microglial membrane ruffling, TNF? secretion and morphological changes, as well as LPS-induced microglial cell death. Accordingly, neuroinflammation provoked by LPS injection in vivo induced a rapid microglial loss in the spinal cord that was totally prevented or potentiated by P2X4 receptor blockade or facilitation, respectively. Within the brain, microglia in the hippocampal dentate gyrus showed particular vulnerability to LPS-induced neuroinflammation. Thus, microglia processes in this region retracted as early as 2 h after injection of LPS and died around 24 h later, two features which were prevented by blocking P2X4 receptors. Together, these data suggest that P2X4 receptors contribute to controlling the fate of activated microglia and its survival.GLIA 2014;62:171-184.
Related JoVE Video
Cytosolic zinc accumulation contributes to excitotoxic oligodendroglial death.
Glia
PUBLISHED: 02-26-2013
Show Abstract
Hide Abstract
Dyshomeostasis of cytosolic Zn(2+) is a critical mediator of neuronal damage during excitotoxicity. However, the role of this cation in oligodendrocyte pathophysiology is not well understood. The current study examined the contribution of Zn(2+) deregulation to oligodendrocyte injury mediated by AMPA receptors. Oligodendrocytes loaded with the Zn(2+)-selective indicator FluoZin-3 responded to mild stimulation of AMPA receptors with fast cytosolic Zn(2+) rises that resulted from intracellular release, as they were not blocked by the extracellular Zn(2+) chelator Ca-EDTA. Pharmacological experiments suggested that AMPA-induced Zn(2+) mobilization depends on cytosolic Ca(2+) accumulation, arises from mitochondria and protein-bound pools, and is triggered by mechanisms that do not involve the generation of reactive oxygen species. Moreover, intracellular Zn(2+) rises resulting from AMPA receptor activation seem to be promoted by Ca(2+)-dependent cytosolic acidification. Addition of the cell-permeable Zn(2+) chelator TPEN significantly reduced mitochondrial membrane depolarization, reactive oxygen species production, and cell death by sub-maximal activation of AMPA receptors both in vitro and in situ, suggesting that Zn(2+) deregulation is an important mediator of oligodendrocyte excitotoxicity. These data provide evidence that strategies aimed at maintaining Zn(2+) homeostasis may be useful for the treatment of disorders in which excitotoxicity is an important trigger of oligodendroglial death.
Related JoVE Video
Targeting the endocannabinoid system in the treatment of fragile X syndrome.
Nat. Med.
PUBLISHED: 02-12-2013
Show Abstract
Hide Abstract
Fragile X syndrome (FXS), the most common monogenic cause of inherited intellectual disability and autism, is caused by the silencing of the FMR1 gene, leading to the loss of fragile X mental retardation protein (FMRP), a synaptically expressed RNA-binding protein regulating translation. The Fmr1 knockout model recapitulates the main traits of the disease. Uncontrolled activity of metabotropic glutamate receptor 5 (mGluR5) and mammalian target of rapamycin (mTOR) signaling seem crucial in the pathology of this disease. The endocannabinoid system (ECS) is a key modulator of synaptic plasticity, cognitive performance, anxiety, nociception and seizure susceptibility, all of which are affected in FXS. The cannabinoid receptors CB1 (CB1R) and CB2 (CB2R) are activated by phospholipid-derived endocannabinoids, and CB1R-driven long-term regulation of synaptic strength, as a consequence of mGluR5 activation, is altered in several brain areas of Fmr1 knockout mice. We found that CB1R blockade in male Fmr1 knockout (Fmr1(-/y)) mice through pharmacological and genetic approaches normalized cognitive impairment, nociceptive desensitization, susceptibility to audiogenic seizures, overactivated mTOR signaling and altered spine morphology, whereas pharmacological blockade of CB2R normalized anxiolytic-like behavior. Some of these traits were also reversed by pharmacological inhibition of mTOR or mGluR5. Thus, blockade of ECS is a potential therapeutic approach to normalize specific alterations in FXS.
Related JoVE Video
Ca(2+) -dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid ?-treated astrocytes and in a model of Alzheimers disease.
Aging Cell
PUBLISHED: 02-02-2013
Show Abstract
Hide Abstract
Neurotoxic effects of amyloid ? peptides are mediated through deregulation of intracellular Ca(2+) homeostasis and signaling, but relatively little is known about amyloid ? modulation of Ca(2+) homeostasis and its pathological influence on glia. Here, we found that amyloid ? oligomers caused a cytoplasmic Ca(2+) increase in cultured astrocytes, which was reduced by inhibitors of PLC and ER Ca(2+) release. Furthermore, amyloid ? peptides triggered increased expression of glial fibrillary acidic protein (GFAP), as well as oxidative and ER stress, as indicated by eIF2? phosphorylation and overexpression of chaperone GRP78. These effects were decreased by ryanodine and 2APB, inhibitors of ryanodine receptors and InsP3 receptors, respectively, in both primary cultured astrocytes and organotypic cultures of hippocampus and entorhinal cortex. Importantly, intracerebroventricular injection of amyloid ? oligomers triggered overexpression of GFAP and GRP78 in astrocytes of the hippocampal dentate gyrus. These data were validated in a triple-transgenic mouse model of Alzheimers disease (AD). Overexpression of GFAP and GRP78 in the hippocampal astrocytes correlated with the amyloid ? oligomer load in 12-month-old mice, suggesting that this parameter drives astrocytic ER stress and astrogliosis in vivo. Together, these results provide evidence that amyloid ? oligomers disrupt ER Ca(2+) homeostasis, which induces ER stress that leads to astrogliosis; this mechanism may be relevant to AD pathophysiology.
Related JoVE Video
Plasma brain-derived neurotrophic factor levels, learning capacity and cognition in patients with first episode psychosis.
BMC Psychiatry
PUBLISHED: 01-14-2013
Show Abstract
Hide Abstract
Cognitive impairments are seen in first psychotic episode (FEP) patients. The neurobiological underpinnings that might underlie these changes remain unknown. The aim of this study is to investigate whether Brain Derived Neurotrophic Factor (BDNF) levels are associated with cognitive impairment in FEP patients compared with healthy controls.
Related JoVE Video
Relationship between negative symptoms and plasma levels of insulin-like growth factor 1 in first-episode schizophrenia and bipolar disorder patients.
Prog. Neuropsychopharmacol. Biol. Psychiatry
PUBLISHED: 01-11-2013
Show Abstract
Hide Abstract
Previous studies have suggested that insulin-like growth factor-1 (IGF-1) is altered in schizophrenia. The objective of this study was to investigate whether plasma IGF-1 levels were altered at the onset of psychiatric disorders such as schizophrenia or bipolar disorder. We focused at the first psychotic episode (FPE) and during 1-year follow-up. We also studied if IGF-1 levels were related to clinical symptoms. 50 patients and 43 healthy controls matched by age, gender and educational level were selected from the Basque Country catchment area in Spain. Plasma IGF-1 levels were measured at FPE and 1 month, 6 months and one year later. Patient symptoms were assessed at the same disease stages using the Positive and Negative Symptoms Scale (PANSS), the Global Assessment of Functioning (GAF), the Hamilton Depression Rating Scale (HDRS21) and the Young Mania Rating Scale (YMRS). A statistically significant increase in the plasma levels of IGF-1 was found in the whole cohort of patients one month after FPE compared to matched controls (219.84 ng/ml vs 164.15 ng/ml; p=0.014), as well as in schizophrenia patients alone at that stage (237.60 ng/ml vs 171.60 ng/ml; p=0.039). In turn, negative symptoms in both groups of patients were positively correlated with IGF-1 levels both at FPE (?=0.521; p<0.001) and after 1 year (?=0.659; p=0.001), being patients diagnosed with schizophrenia the main contributors to this relationship. These results indicate that there is a significant change in the plasma levels of IGF-1 at the initial stages of schizophrenia but not in bipolar disorder, and suggest that IGF-1 could have role in the pathophysiology of negative symptoms.
Related JoVE Video
Contribution of pannexin1 to experimental autoimmune encephalomyelitis.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Pannexin1 (Panx1) is a plasma membrane channel permeable to relatively large molecules, such as ATP. In the central nervous system (CNS) Panx1 is found in neurons and glia and in the immune system in macrophages and T-cells. We tested the hypothesis that Panx1-mediated ATP release contributes to expression of Experimental Autoimmune Encephalomyelitis (EAE), an animal model for multiple sclerosis, using wild-type (WT) and Panx1 knockout (KO) mice. Panx1 KO mice displayed a delayed onset of clinical signs of EAE and decreased mortality compared to WT mice, but developed as severe symptoms as the surviving WT mice. Spinal cord inflammatory lesions were also reduced in Panx1 KO EAE mice during acute disease. Additionally, pharmacologic inhibition of Panx1 channels with mefloquine (MFQ) reduced severity of acute and chronic EAE when administered before or after onset of clinical signs. ATP release and YoPro uptake were significantly increased in WT mice with EAE as compared to WT non-EAE and reduced in tissues of EAE Panx1 KO mice. Interestingly, we found that the P2X7 receptor was upregulated in the chronic phase of EAE in both WT and Panx1 KO spinal cords. Such increase in receptor expression is likely to counterbalance the decrease in ATP release recorded from Panx1 KO mice and thus contribute to the development of EAE symptoms in these mice. The present study shows that a Panx1 dependent mechanism (ATP release and/or inflammasome activation) contributes to disease progression, and that inhibition of Panx1 using pharmacology or gene disruption delays and attenuates clinical signs of EAE.
Related JoVE Video
Neurotransmitter signaling in the pathophysiology of microglia.
Front Cell Neurosci
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Microglial cells are the resident immune cells of the central nervous system. In the resting state, microglia are highly dynamic and control the environment by rapidly extending and retracting motile processes. Microglia are closely associated with astrocytes and neurons, particularly at the synapses, and more recent data indicate that neurotransmission plays a role in regulating the morphology and function of surveying/resting microglia, as they are endowed with receptors for most known neurotransmitters. In particular, microglia express receptors for ATP and glutamate, which regulate microglial motility. After local damage, the release of ATP induces microgliosis and activated microglial cells migrate to the site of injury, proliferate, and phagocytose cells, and cellular compartments. However, excessive activation of microglia could contribute to the progression of chronic neurodegenerative diseases, though the underlying mechanisms are still unclear. Microglia have the capacity to release a large number of substances that can be detrimental to the surrounding neurons, including glutamate, ATP, and reactive oxygen species. However, how altered neurotransmission following acute insults or chronic neurodegenerative conditions modulates microglial functions is still poorly understood. This review summarizes the relevant data regarding the role of neurotransmitter receptors in microglial physiology and pathology.
Related JoVE Video
Role of monoubiquitylation on the control of I?B? degradation and NF-?B activity.
PLoS ONE
PUBLISHED: 07-26-2011
Show Abstract
Hide Abstract
The NF-?B pathway is regulated by multiple post-translational modifications including phosphorylation, ubiquitylation and SUMOylation. Many of these modifications act on the natural inhibitor I?B? modulating its capacity to control signal-mediated NF-?B activity. While the canonical pathway involving the phosphorylation and polyubiquitylation of I?B? has been well characterized, the role of these post-translational modifications in the control of basal NF-?B activity has not been deeply explored. Using the recently developed Tandem-repeated Ubiquitin Binding Entities (also known as ubiquitin traps) to capture ubiquitylated proteins, we identified monoubiquitylated forms of I?B? from multiple rat organs and cell types. The identification of these forms was demonstrated through different procedures such as immunoprecipitations with specific ubiquitin antibodies or His6-Ubiquitin pull downs. Monoubiquitylated forms of I?B? are resistant to TNF?-mediated degradation and can be captured using TUBEs, even after proteasome inhibitors treatment. As it occurs for monoSUMOylation, monoubiquitylation is not dependent of the phosphorylation of I?B? on the serines 32/36 and is not optimally degraded after TNF? stimulation. A ubiquitin-I?B? fusion exhibits phosphorylation defects and resistance to TNF? mediated degradation similar to the ones observed for endogenous monoubiquitylated I?B?. The N-terminal attachment of a single ubiquitin moiety on the I?B? fusion results in a deficient binding to the IKK? kinase and recruitment of the SCF ligase component ?TrCP, promoting a negative impact on the NF-?B activity. Altogether, our results suggest the existence of a reservoir of monoubiquitylated I?B? resistant to TNF?-induced proteolysis, which is able to interact and repress DNA binding and NF-?B transcriptional activity. Such pool of I?B? may play an important role in the control of basal and signal-mediated NF-?B activity.
Related JoVE Video
P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia.
Neurobiol. Dis.
PUBLISHED: 07-13-2011
Show Abstract
Hide Abstract
Overactivation of subtype P2X7 receptors can induce excitotoxic neuronal death by calcium (Ca(2+)) overload. In this study, we characterize the functional properties of P2X7 receptors using electrophysiology and Ca(2+) monitoring in primary cortical neuron cultures and in brain slices. Both electrical responses and Ca(2+) influx induced by ATP and benzoyl-ATP were reduced by Brilliant Blue G (BBG) at concentrations which specifically inhibit P2X7 receptors. In turn, oxygen-glucose deprivation (OGD) caused neuronal death that was reduced with BBG application. OGD in neuron cultures and brain slices generated an inward current, which was delayed and reduced by BBG. To assess the relevance of these in vitro findings, we used middle cerebral artery occlusion in rats as a model of transient focal cerebral ischemia to study the neuroprotective effect of BBG in vivo. Treatment with BBG (twice per day, 30 mg/kg) produced a 60% reduction in the extent of brain damage compared to treatment with vehicle alone. These results show that P2X7 purinergic receptors mediate tissue damage after OGD in neurons and following transient brain ischemia. Therefore, these receptors are a relevant molecular target for the development of new treatments to attenuate brain damage following stroke.
Related JoVE Video
Increased expression of cystine/glutamate antiporter in multiple sclerosis.
J Neuroinflammation
PUBLISHED: 06-03-2011
Show Abstract
Hide Abstract
Glutamate excitotoxicity contributes to oligodendrocyte and tissue damage in multiple sclerosis (MS). Intriguingly, glutamate level in plasma and cerebrospinal fluid of MS patients is elevated, a feature which may be related to the pathophysiology of this disease. In addition to glutamate transporters, levels of extracellular glutamate are controlled by cystine/glutamate antiporter x(c)?, an exchanger that provides intracellular cystine for production of glutathione, the major cellular antioxidant. The objective of this study was to analyze the role of the system x(c)? in glutamate homeostasis alterations in MS pathology.
Related JoVE Video
Gain-of-function of P2X7 receptor gene variants in multiple sclerosis.
Cell Calcium
PUBLISHED: 05-03-2011
Show Abstract
Hide Abstract
We have previously shown that P2X7 receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates chronic experimental autoimmune encephalomyelitis. Here, we have explored the putative association of functionally relevant single nucleotide polymorphisms of the P2X7 receptor gene with multiple sclerosis. We found that T allele of rs17525809 polymorphism, which yields an Ala-76 to Val change in the extracellular domain, is more frequent in multiple sclerosis patients than in controls. Importantly, P2X7 variants with Val show a gain-of-function consisting in higher calcium permeability, larger electrophysiological responses and higher ethidium uptake, and enhance the effect of the also gain-of-function His-155 to Tyr substitution (rs208294) in the haplotype formed by these two variants. These findings may contribute to define the genetic background predisposing for multiple sclerosis and its pathophysiology.
Related JoVE Video
Bax and calpain mediate excitotoxic oligodendrocyte death induced by activation of both AMPA and kainate receptors.
J. Neurosci.
PUBLISHED: 03-19-2011
Show Abstract
Hide Abstract
Sustained activation of AMPA and kainate receptors in rat oligodendrocytes induces cytosolic calcium overload, mitochondrial depolarization, and an increase of reactive oxygen species, resulting in cell death. Here, we provide evidence that Bax, a proapoptotic member of the Bcl-2 protein family, is involved in excitotoxic apoptotic death of oligodendrocytes and that calpain mediates Bax activation. Cultured Bax(-/-) oligodendrocytes, obtained from the optic nerve of Bax knock-out mice, were resistant to AMPA and kainate receptor-mediated insults. In turn, both mitochondrial calcium uptake and mitochondrial alterations after excitotoxic insults were diminished in Bax-null oligodendrocytes. Moreover, pretreatment with furosemide, a blocker of Bax translocation to mitochondria, significantly protected rat and mouse oligodendrocytes from AMPA- and kainate-induced damage; in contrast, bongkrekic acid, a blocker of the mitochondrial permeability transition pore, had no effect. Finally, we analyzed the participation of calpain, which cleaves Bax and is activated by AMPA and kainate, in oligodendrocyte death. Pretreatment with 3-(4-iodophenyl)-2-mercapto-(Z)-2-propenoic acid (PD150606), a broad cell-permeable calpain inhibitor, and two additional calpain inhibitors diminished Bax activation, inhibited its translocation to mitochondria, and attenuated all apoptotic events resulting from excitotoxic insults to rat oligodendrocytes. Together, these results indicate that Bax and calpain are essential intermediaries of the mitochondria-dependent death pathway, triggered by AMPA and kainate receptor activation in oligodendrocytes.
Related JoVE Video
Dual-specific phosphatase-6 (Dusp6) and ERK mediate AMPA receptor-induced oligodendrocyte death.
J. Biol. Chem.
PUBLISHED: 02-07-2011
Show Abstract
Hide Abstract
Oligodendrocytes, the myelinating cells of the CNS, are highly vulnerable to glutamate excitotoxicity, a mechanism involved in tissue damage in multiple sclerosis. Thus, understanding oligodendrocyte death at the molecular level is important to develop new therapeutic approaches to treat the disease. Here, using microarray analysis and quantitative PCR, we observed that dual-specific phosphatase-6 (Dusp6), an extracellular regulated kinase-specific phosphatase, is up-regulated in oligodendrocyte cultures as well as in optic nerves after AMPA receptor activation. In turn, Dusp6 is overexpressed in optic nerves from multiple sclerosis patients before the appearance of evident damage in this structure. We further analyzed the role of Dusp6 and ERK signaling in excitotoxic oligodendrocyte death and observed that AMPA receptor activation induces a rapid increase in ERK1/2 phosphorylation. Blocking Dusp6 expression, which enhances ERK1/2 phosphorylation, significantly diminished AMPA receptor-induced oligodendrocyte death. In contrast, MAPK/ERK pathway inhibition with UO126 significantly potentiates excitotoxic oligodendrocyte death and increases cytochrome c release, mitochondrial depolarization, and mitochondrial calcium overload produced by AMPA receptor stimulation. Upstream analysis demonstrated that MAPK/ERK signaling alters AMPA receptor properties. Indeed, Dusp6 overexpression as well as incubation with UO126 produced an increase in AMPA receptor-induced inward currents and cytosolic calcium overload. Together, these data suggest that levels of phosphorylated ERK, controlled by Dusp6 phosphatase, regulate glutamate receptor permeability and oligodendroglial excitotoxicity. Therefore, targeting Dusp6 may be a useful strategy to prevent oligodendrocyte death in multiple sclerosis and other diseases involving CNS white matter.
Related JoVE Video
Amyloid ? peptide oligomers directly activate NMDA receptors.
Cell Calcium
PUBLISHED: 02-01-2011
Show Abstract
Hide Abstract
Amyloid beta (A?) oligomers accumulate in the brain tissue of Alzheimer disease patients and are related to disease pathogenesis. The precise mechanisms by which A? oligomers cause neurotoxicity remain unknown. We recently reported that A? oligomers cause intracellular Ca(2+) overload and neuronal death that can be prevented by NMDA receptor antagonists. This study investigated whether A? oligomers directly activated NMDA receptors (NMDARs) using NR1/NR2A and NR1/NR2B receptors that were heterologously expressed in Xenopus laevis oocytes. Indeed, A? oligomers induced inward non-desensitizing currents that were blocked in the presence of the NMDA receptor antagonists memantine, APV, and MK-801. Intriguingly, the amplitude of the responses to A? oligomers was greater for NR1/NR2A heteromers than for NR1/NR2B heteromers expressed in oocytes. Consistent with these findings, we observed that the increase in the cytosolic concentration of Ca(2+) induced by A? oligomers in cortical neurons is prevented by AP5, a broad spectrum NMDA receptor antagonist, but slightly attenuated by ifenprodil which blocks receptors with the NR2B subunit. Together, these results indicate that A? oligomers directly activate NMDA receptors, particularly those with the NR2A subunit, and further suggest that drugs that attenuate the activity of such receptors may prevent A? damage to neurons in Alzheimer?s disease.
Related JoVE Video
Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions.
Nat. Neurosci.
PUBLISHED: 01-30-2011
Show Abstract
Hide Abstract
The corollaries of the obesity epidemic that plagues developed societies are malnutrition and resulting biochemical imbalances. Low levels of essential n-3 polyunsaturated fatty acids (n-3 PUFAs) have been linked to neuropsychiatric diseases, but the underlying synaptic alterations are mostly unknown. We found that lifelong n-3 PUFAs dietary insufficiency specifically ablates long-term synaptic depression mediated by endocannabinoids in the prelimbic prefrontal cortex and accumbens. In n-3-deficient mice, presynaptic cannabinoid CB(1) receptors (CB(1)Rs) normally responding to endocannabinoids were uncoupled from their effector G(i/o) proteins. Finally, the dietary-induced reduction of CB(1)R functions in mood-controlling structures was associated with impaired emotional behavior. These findings identify a plausible synaptic substrate for the behavioral alterations caused by the n-3 PUFAs deficiency that is often observed in western diets.
Related JoVE Video
Glutamate and ATP signalling in white matter pathology.
J. Anat.
PUBLISHED: 01-20-2011
Show Abstract
Hide Abstract
Excessive signalling by excitatory neurotransmitters like glutamate and ATP can be deleterious to neurons and oligodendroglia, and cause disease. In particular, sustained activation of ?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate and N-methyl-d-aspartate (NMDA) receptors damages oligodendrocytes, a feature that depends entirely on Ca(2+) overload of the cytoplasm and that can be initiated by disruption of glutamate homeostasis. Thus, inhibition of glutamate uptake by activated microglia can compromise glutamate homeostasis and induce oligodendrocyte excitotoxicity. Moreover, non-lethal, brief activation of kainate receptors in oligodendrocytes rapidly sensitizes these cells to complement attack as a consequence of oxidative stress. In addition to glutamate, ATP signalling can directly trigger oligodendrocyte excitotoxicity via activation of Ca(2+) -permeable P2X7 purinergic receptors, which mediates ischaemic damage to white matter (WM) and causes lesions that are reminiscent of multiple sclerosis (MS) plaques. Conversely, blockade of P2X7 receptors attenuates post-ischaemic injury to WM and ameliorates chronic experimental autoimmune encephalomyelitis, a model of MS. Importantly, P2X7 expression is elevated in normal-appearing WM in patients with MS, suggesting that signalling through this receptor in oligodendrocytes may be enhanced in this disease. Altogether, these observations reveal novel mechanisms by which altered glutamate and ATP homeostasis can trigger oligodendrocyte death. This review aims at summarizing current knowledge about the mechanisms leading to WM damage as a consequence of altered neurotransmitter signalling, and their relevance to disease. This knowledge will generate new therapeutic avenues to treat more efficiently acute and chronic WM pathology.
Related JoVE Video
Neuroglial interactions mediated by purinergic signalling in the pathophysiology of CNS disorders.
Semin. Cell Dev. Biol.
PUBLISHED: 01-11-2011
Show Abstract
Hide Abstract
Purinergic signalling in neurons and glia is relevant to acute and chronic neurological diseases. In particular, emerging evidence indicates that adenosine can play a neuromodulatory role in balancing GABA and glutamate neurotransmission and thus, have a tremendous therapeutic potential for the treatment of epilepsy. On the other hand, signalling via P2 purinergic receptors contributes to post-ischemic injury to grey and white matter as well as endogenous neurogenesis in response to tissue damage. Likewise, P2 receptors mediate demyelinating damage in animal models of multiple sclerosis, and recent evidences suggest that P2X receptor function is altered in this disorder. In all instances, complex interactions between neurons and glia via purine signals are relevant to disease and its prevention or attenuation. Here, we review current knowledge on how purinergic signalling is involved in the pathophysiology of CNS diseases, with an emphasis in epilepsy, ischemia and multiple sclerosis. Understanding in depth the primary and secondary mechanisms relevant to the control of excitation and/or damage by purines will undoubtedly lead to the development of novel therapies based on the use of drugs acting at the purinergic system.
Related JoVE Video
Therapeutic potential of kainate receptors.
CNS Neurosci Ther
PUBLISHED: 12-06-2010
Show Abstract
Hide Abstract
Glutamate receptors are key mediators of brain communication. Among ionotropic glutamate receptors, kainate receptors (KARs) have been least explored and their relevance to pathophysiology is relatively obscure. This is in part due to the relatively low abundance of KARs, the regulatory function in network activity they play, the lack of specific agonists and antagonists for this receptor subtype, as well as to the absence of striking phenotypes in mice deficient in KAR subunits. Nonetheless, it is now well established that KARs are located presynaptically whereby they regulate glutamate and GABA release, and thus, excitability and participate in short-term plasticity. In turn, KARs are also located postsynaptically and their activation contributes to synaptic integration. The development of specific novel ligands is helping to further investigate the contribution of KARs to health and disease. In this review, I summarize current knowledge about KAR physiology and pharmacology, and discuss their involvement in cell death and disease. In addition, I recapitulate the available data about the use of KAR antagonists and receptor subunit deficient mice in experimental paradigms of brain diseases, as well as the main findings about KAR roles in human CNS disorders. In sum, subunit specific antagonists have therapeutic potential in neurodegenerative and psychiatric diseases as well as in epilepsy and pain. Knowledge about the genetics of KARs will also help to understand the pathophysiology of those and other illnesses.
Related JoVE Video
Index cluster study of dengue virus infection in Nicaragua.
Am. J. Trop. Med. Hyg.
PUBLISHED: 09-03-2010
Show Abstract
Hide Abstract
Traditional study designs do not identify acute asymptomatic or pre-symptomatic dengue virus (DENV) infections, thus limiting our understanding of immunologic and viral factors that modulate infection outcome. In the 2006 and 2007 dengue seasons, we conducted a pilot index cluster study in Managua, Nicaragua, in which 442 persons living within 50 meters of 22 index cases identified through an ongoing pediatric cohort study were evaluated for DENV infection. Post-enrollment and pre-enrollment DENV infections were confirmed in 12 (2.7%) and 19 (4.3%) contacts, respectively. Five (42%) post-enrollment infections were asymptomatic, and DENV-2 was identified in 9 (75%) infections. Phylogenetic analysis with full-length DENV genomic sequence from contacts, index cases, and cohort dengue cases indicated focal transmission and infection outside the local area. We demonstrate the feasibility of identification of acute asymptomatic and pre-symptomatic cases in urban Latin America, the first report of such a study in the Americas, and identify age and concomitant immunity to DENV of contacts as a key factor in index cluster study design.
Related JoVE Video
Cannabidiol induces intracellular calcium elevation and cytotoxicity in oligodendrocytes.
Glia
PUBLISHED: 07-21-2010
Show Abstract
Hide Abstract
Heavy marijuana use has been linked to white matter histological alterations. However, the impact of cannabis constituents on oligodendroglial pathophysiology remains poorly understood. Here, we investigated the in vitro effects of cannabidiol, the main nonpsychoactive marijuana component, on oligodendrocytes. Exposure to cannabidiol induced an intracellular Ca(2+) rise in optic nerve oligodendrocytes that was not primarily mediated by entry from the extracellular space, nor by interactions with ryanodine or IP(3) receptors. Application of the mitochondrial protonophore carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP; 1 ?M) completely prevented subsequent cannabidiol-induced Ca(2+) responses. Conversely, the increase in cytosolic Ca(2+) levels elicited by FCCP was reduced after previous exposure to cannabidiol, further suggesting that the mitochondria acts as the source of cannabidiol-evoked Ca(2+) rise in oligodendrocytes. n addition, brief exposure to cannabidiol (100 nM-10 ?M) led to a concentration-dependent decrease of oligodendroglial viability that was not prevented by antagonists of CB(1), CB(2), vanilloid, A(2A) or PPAR? receptors, but was instead reduced in the absence of extracellular Ca(2+). The oligodendrotoxic effect of cannabidiol was partially blocked by inhibitors of caspase-3, -8 and -9, PARP-1 and calpains, suggesting the activation of caspase-dependent and -independent death pathways. Cannabidiol also elicited a concentration-dependent alteration of mitochondrial membrane potential, and an increase in reactive oxygen species (ROS) that was reduced in the absence of extracellular Ca(2+). Finally, cannabidiol-induced cytotoxicity was partially prevented by the ROS scavenger trolox. Together, these results suggest that cannabidiol causes intracellular Ca(2+) dysregulation which can lead to oligodendrocytes demise.
Related JoVE Video
Increase in brain-derived neurotrophic factor in first episode psychotic patients after treatment with atypical antipsychotics.
Int Clin Psychopharmacol
PUBLISHED: 06-24-2010
Show Abstract
Hide Abstract
Some preclinical and postmortem studies suggest that the effects of atypical antipsychotics could be mediated by brain-derived neurotrophic factor (BDNF). Olanzapine is an atypical antipsychotic with shown efficacy in psychosis treatment. The aim of this study was to compare plasma BDNF levels at baseline and after 1 year of olanzapine treatment in 18 drug-naive patients who experienced a first psychotic episode with those of 18 healthy control participants matched by age, sex, and socioeconomic level. Plasma BDNF levels were measured in patients at the index episode and at 1, 6, and 12 months of follow-up using an enzyme-linked immunosorbent assay. Symptoms and functioning of patients and controls were assessed with the Positive and Negative Symptom Scale and Global Assessment of Function Scale. BDNF levels of patients at onset were significantly lower than controls but increased toward control values during olanzapine treatment. There was a significant positive correlation between BDNF levels and functioning (Global Assessment of Function Scale). BDNF levels were also negatively correlated with positive symptoms, but not with negative symptoms or general psychopathology. Results suggest that olanzapine can offset the low BDNF levels at the onset of first psychotic episodes, and improving psychotic symptoms. The increase in BDNF levels may be its mechanism of action in improving positive symptoms.
Related JoVE Video
An organotypic culture model to study nigro-striatal degeneration.
J. Neurosci. Methods
PUBLISHED: 02-03-2010
Show Abstract
Hide Abstract
Functional and reliable in vitro models of Parkinsons disease (PD) are valuable for studying mechanisms of dopaminergic degeneration before proceeding to animal testing. At present, all in vitro models involve substitute cell types and thus their direct relevance to PD is questionable. Here, we describe an organotypic culture model which conserves the 3D architecture of the nigro-striatal pathway, together with the subventricular zone and cerebral cortex, and recapitulates a specific pattern of dopaminergic degeneration which is the principal hallmark of PD. The organotypic culture is kept in vitro for up to 12 days and dopaminergic degeneration is induced by the simple cutting of dopaminergic fibers. This organotypic model represents a rapid and useful method (30 min/pup for preparation and up to 12 days of cultivation) to investigate in vitro the mechanisms underlying neuronal death and protection, as well as neurogenesis and repair after nigro-striatal neurodegeneration.
Related JoVE Video
Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors.
Cell Calcium
PUBLISHED: 01-12-2010
Show Abstract
Hide Abstract
Amyloid beta (Abeta) oligomers accumulate in brain tissue of Alzheimer disease patients and are related to pathogenesis. The precise mechanisms by which Abeta oligomers cause neurotoxicity remain unresolved. In this study, we investigated the role of ionotropic glutamate receptors on the intracellular Ca2+ overload caused by Abeta. Using rat cortical neurons in culture and entorhinal-hippocampal organotypic slices, we found that Abeta oligomers significantly induced inward currents, intracellular Ca2+ increases and apoptotic cell death through a mechanism requiring NMDA and AMPA receptor activation. The massive entry of Ca2+ through NMDA and AMPA receptors induced by Abeta oligomers caused mitochondrial dysfunction as indicated by mitochondrial Ca2+ overload, oxidative stress and mitochondrial membrane depolarization. Importantly, chronic treatment with nanomolar concentration of Abeta oligomers also induced NMDA- and AMPA receptor-dependent cell death in entorhinal cortex and hippocampal slice cultures. Together, these results indicate that overactivation of NMDA and AMPA receptor, mitochondrial Ca2+ overload and mitochondrial damage underlie the neurotoxicity induced by Abeta oligomers. Hence, drugs that modulate these events can prevent from Abeta damage to neurons in Alzheimers disease.
Related JoVE Video
Calcium dyshomeostasis in white matter pathology.
Cell Calcium
PUBLISHED: 09-10-2009
Show Abstract
Hide Abstract
Calcium (Ca2+) dyshomeostasis is a major event in the pathophysiology of white matter disorders of the brain and spinal cord. All cellular components of white matter, including macroglial cells and axons, are endowed with membrane Ca2+-permeable receptors and channels lodged in the cell membrane, as well as store-operated channels and pumps. Intracellular Ca2+ overload resulting from deregulated activity of channels, such as those opened by glutamate and ATP, is deleterious to glia and axons. In this review, I summarize recent advances in our understanding of white matter Ca2+ dyshomeostasis in experimental paradigms which are relevant to stroke, perinatal ischemia, multiple sclerosis, psychiatric disorders, Alzheimers disease and traumatic injury, and discuss some of the clinical implications of these findings.
Related JoVE Video
Increased expression of glutamate transporters in subcortical white matter after transient focal cerebral ischemia.
Neurobiol. Dis.
PUBLISHED: 08-26-2009
Show Abstract
Hide Abstract
Transient focal cerebral ischemia leads to extensive excitotoxic glial damage in the subcortical white matter. Efficient reuptake of released glutamate is essential for preventing glutamate receptor overstimulation and neuronal and glial death. The present study evaluates the expression of the main glutamate transporters (EAAT1, EAAT2, and EAAT3) in subcortical white matter of the rat after transient middle cerebral artery occlusion. Western blot analysis and immunohistochemistry show an increase in the expression of EAAT1 and EAAT2 in subcortical white matter early after ischemia which subsequently decreases at longer reperfusion periods. However, expression of both EAAT1 and EAAT2 remains higher in astrocytes forming the gliotic scar and in microglial/macrophage cells at the border of or within the infarct area, respectively. Taken together, these results indicate that there is a transient enhanced expression of EAATs in the subcortical white matter early after ischemia. Our findings reveal an adaptive response of subcortical white matter to increased levels of glutamate during focal cerebral ischemia which may limit excitotoxic damage.
Related JoVE Video
Endoplasmic reticulum Ca(2+) release through ryanodine and IP(3) receptors contributes to neuronal excitotoxicity.
Cell Calcium
PUBLISHED: 07-20-2009
Show Abstract
Hide Abstract
Overactivation of ionotropic glutamate receptors induces a Ca(2+) overload into the cytoplasm that leads neurons to excitotoxic death, a process that has been linked to several neurodegenerative disorders. While the role of mitochondria and its involvement in excitotoxicity have been widely studied, the contribution of endoplasmic reticulum (ER), another crucial intracellular store in maintaining Ca(2+) homeostasis, is not fully understood. In this study, we analyzed the contribution of ER-Ca(2+) release through ryanodine (RyR) and IP(3) (IP(3)R) receptors to a neuronal in vitro model of excitotoxicity. NMDA induced a dose-dependent neuronal death, which was significantly decreased by ER-Ca(2+) release inhibitors in cortical neurons as well as in organotypic slices. Furthermore, ryanodine and 2APB, RyR and IP(3)R inhibitors respectively, attenuated NMDA-triggered intracellular Ca(2+) increase and oxidative stress, whereas 2APB reduced mitochondrial membrane depolarization and caspase-3 cleavage. Consistent with ER-Ca(2+) homeostasis disruption, we observed that NMDA-induced ER stress, characterized here by eIF2alpha phosphorylation and over-expression of GRP chaperones which were regulated by ER-Ca(2+) release inhibitors. These results demonstrate that Ca(2+) release from ER contributes to neuronal death by both promoting mitochondrial dysfunction and inducing specific stress and apoptosis pathways during excitotoxicity.
Related JoVE Video
CB1 cannabinoid receptor-dependent and -independent inhibition of depolarization-induced calcium influx in oligodendrocytes.
Glia
PUBLISHED: 04-29-2009
Show Abstract
Hide Abstract
Regulation of Ca(2+) homeostasis plays a critical role in oligodendrocyte function and survival. Cannabinoid CB(1) and CB(2) receptors have been shown to regulate Ca(2+) levels and/or K(+) currents in a variety of cell types. In this study we investigated the effect of cannabinoid compounds on the Ca(2+) influx elicited in cultured oligodendrocytes by transient membrane depolarization with an elevated extracellular K(+) concentration (50 mM). The CB(1) receptor agonist arachidonoyl-chloro-ethanolamide (ACEA) elicited a concentration-dependent inhibition of depolarization-evoked Ca(2+) transients in oligodendroglial somata with a maximal effect (94+/-3)% and an EC(50) of 1.3+/-0.03 microM. This activity was mimicked by the CB(1)/CB(2) agonist CP55,940, as well as by the endocannabinoids N-arachidonoyl-ethanolamine (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), whereas the CB(2) receptor selective agonist JWH133 was ineffective. The CB(1) receptor antagonist AM251 (1 microM) also reduced the Ca(2+) response evoked by high extracellular K(+) and did not prevent the inhibition elicited by ACEA (3 microM). Nevertheless, the ability of ACEA and AEA to reduce depolarization-evoked Ca(2+) transients was significantly reduced in oligodendrocytes from CB(1) receptor knockout mice, as well as by pretreatment with pertussis toxin. Bath application of the inwardly rectifying K(+) channels (Kir channels) blockers BaCl(2) (300 microM) and CsCl(2) (1 mM) reduced the size of voltage-induced Ca(2+) influx and partially prevented the inhibitory effect of ACEA. Our results indicate that cannabinoids inhibit depolarization-evoked Ca(2+) transients in oligodendrocytes via CB(1) receptor-independent and -dependent mechanisms that involve the activation of PTX-sensitive G(i/o) proteins and the blockade of Kir channels.
Related JoVE Video
Mangifera indica L. extract attenuates glutamate-induced neurotoxicity on rat cortical neurons.
Neurotoxicology
PUBLISHED: 04-08-2009
Show Abstract
Hide Abstract
Overstimulation of ionotropic glutamate receptors causes excitotoxic neuronal death contributing to neurodegenerative disorders. Massive influx of calcium in excitotoxicity provokes alterations in the membrane potential of mitochondria and increases the production of reactive oxygen species. Here we report that Mangifera indica L. extracts (MiE) prevent glutamate-induced excitotoxicity in primary cultured neurons of the rat cerebral cortex. To evaluate the effects of MiE on excitotoxicity, cells were stimulated with L-glutamic acid (50 microM; 10 min) alone or in the presence of MiE. Maximal protection (56%) was obtained with 2.5 microg/mL of MiE. In turn, we measured the effects of MiE on excitotoxic-induced oxidative stress and mitochondrial depolarization by fluorimetry using 5,6-chloromethyl-2,7-dichlorodihydrofluorescein diacetate and tetramethylrhodamine, respectively. Both parameters were effectively reduced by MiE at concentrations which showed neuroprotection. Mangiferin, an antioxidant polyphenol which is a major component of MiE, was also effective in preventing neuronal death, oxidative stress and mitochondrial depolarization. Maximal protection (64%) was obtained at 12.5 microg/mL of mangiferin which also attenuated oxidative stress and mitochondrial depolarization at the neuroprotective concentrations. Together, these results indicate that MiE is an efficient neuroprotector of excitotoxic neuronal death, indicates that mangiferin carries a substantial part of the antioxidant and neuroprotective activity of MiE, and that this natural extract has therapeutic potential to treat neurodegenerative disorders.
Related JoVE Video
A model of ischemia-induced neuroblast activation in the adult subventricular zone.
PLoS ONE
PUBLISHED: 03-11-2009
Show Abstract
Hide Abstract
We have developed a rat brain organotypic culture model, in which tissue slices contain cortex-subventricular zone-striatum regions, to model neuroblast activity in response to in vitro ischemia. Neuroblast activation has been described in terms of two main parameters, proliferation and migration from the subventricular zone into the injured cortex. We observed distinct phases of neuroblast activation as is known to occur after in vivo ischemia. Thus, immediately after oxygen/glucose deprivation (6-24 hours), neuroblasts reduce their proliferative and migratory activity, whereas, at longer time points after the insult (2 to 5 days), they start to proliferate and migrate into the damaged cortex. Antagonism of ionotropic receptors for extracellular ATP during and after the insult unmasks an early activation of neuroblasts in the subventricular zone, which responded with a rapid and intense migration of neuroblasts into the damaged cortex (within 24 hours). The process is further enhanced by elevating the production of the chemoattractant SDf-1alpha and may also be boosted by blocking the activation of microglia. This organotypic model which we have developed is an excellent in vitro system to study neurogenesis after ischemia and other neurodegenerative diseases. Its application has revealed a SOS response to oxygen/glucose deprivation, which is inhibited by unfavorable conditions due to the ischemic environment. Finally, experimental quantifications have allowed us to elaborate a mathematical model to describe neuroblast activation and to develop a computer simulation which should have promising applications for the screening of drug candidates for novel therapies of ischemia-related pathologies.
Related JoVE Video
Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols.
Cell Calcium
PUBLISHED: 02-07-2009
Show Abstract
Hide Abstract
Excessive activation of glutamate receptors, or excitotoxicity, contributes to acute and chronic neurological disorders including stroke. We previously showed that two natural polyphenol antioxidants, mangiferin and morin, are neuroprotective in a model of ischemic brain damage. In this study, we analyzed the molecular mechanisms underlying neuroprotection by mangiferin and morin in an in vitro model of excitotoxic neuronal death involving NMDA receptor overactivation. We observed that both polyphenols reduce the formation of reactive oxygen species, activate the enzymatic antioxidant system, and restore the mitochondrial membrane potential. Moreover, both antioxidants inhibit glutamate-induced activation of calpains, normalize the levels of phosphorylated Akt kinase and Erk1/2, as well as of cytosolic Bax, inhibit AIF release from mitochondria, and regulate the nuclear translocation of NF-kappaB. Each of these effects contributes to the substantial reduction of apoptotic neuronal death induced by glutamate. These results demonstrate that mangiferin and morin exhibit excellent antioxidant and antiapoptotic properties, supporting their clinical application as trial neuroprotectors in pathologies involving excitotoxic neuronal death.
Related JoVE Video
Zn2+ -induced ERK activation mediates PARP-1-dependent ischemic-reoxygenation damage to oligodendrocytes.
Glia
Show Abstract
Hide Abstract
Much of the cell death following episodes of anoxia and ischemia in the mammalian central nervous system has been attributed to extracellular accumulation of glutamate and ATP, which causes a rise in [Ca(2+)](i), loss of mitochondrial potential, and cell death. However, restoration of blood flow and reoxygenation are frequently associated with exacerbation of tissue injury (the oxygen paradox). Herein we describe a novel signaling pathway that is activated during ischemia-like conditions (oxygen and glucose deprivation; OGD) and contributes to ischemia-induced oligodendroglial cell death. OGD induced a retarded and sustained increase in extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation after restoring glucose and O(2) (reperfusion-like conditions). Blocking the ERK1/2 pathway with the MEK inhibitor UO126 largely protected oligodendrocytes against ischemic insults. ERK1/2 activation was blocked by the high-affinity Zn(2+) chelator TPEN, but not by antagonists of AMPA/kainate or P2X7 receptors that were previously shown to be involved in ischemic oligodendroglial cell death. Using a high-affinity Zn(2+) probe, we showed that ischemia induced an intracellular Zn(2+) rise in oligodendrocytes, and that incubation with TPEN prevented mitochondrial depolarization and ROS generation after ischemia. Accordingly, exposure to TPEN and the antioxidant Trolox reduced ischemia-induced oligodendrocyte death. Moreover, UO126 blocked the ischemia-induced increase in poly-[ADP]-ribosylation of proteins, and the poly[ADP]-ribose polymerase 1 (PARP-1) inhibitor DPQ significantly inhibited ischemia-induced oligodendroglial cell death-demonstrating that PARP-1 was required downstream in the Zn(2+)-ERK oligodendrocyte cell death pathway. Chelation of cytosolic Zn(2+), blocking ERK signaling, and antioxidants may be beneficial for treating CNS white matter ischemia-reperfusion injury. Importantly, all the inhibitors of this pathway protected oligodendrocytes when applied after the ischemic insult.
Related JoVE Video
Roles of white matter in central nervous system pathophysiologies.
ASN Neuro
Show Abstract
Hide Abstract
The phylogenetic enlargement of cerebral cortex culminating in the human brain imposed greater communication needs that have been met by the massive expansion of WM (white matter). Damage to WM alters brain function, and numerous neurological diseases feature WM involvement. In the current review, we discuss the major features of WM, the contributions of WM compromise to brain pathophysiology, and some of the mechanisms mediating WM injury. We will emphasize the newly appreciated importance of neurotransmitter signalling in WM, particularly glutamate and ATP signalling, to understanding both normal and abnormal brain functions. A deeper understanding of the mechanisms leading to WM damage will generate much-needed insights for developing therapies for acute and chronic diseases with WM involvement.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.