JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Overcoming tumor heterogeneity in the molecular diagnosis of urological cancers.
Expert Rev. Mol. Diagn.
PUBLISHED: 10-21-2014
Show Abstract
Hide Abstract
Our understanding of tumor heterogeneity and impact on treatment response is still in its infancy, presenting significant challenges to the molecular pathologist, treating physician and ultimately for the patient. Given that tumor recurrence due to treatment resistance is the most common cause of cancer death, there remains a critical unmet need to change the current paradigm. The mechanisms which underlie tumor heterogeneity can be broadly divided into genomic instability and non-mutational processes, including stochastic variations in cellular responses, modulation by tumor microenvironment and or phenotypic/ functional plasticity relating to cancer stem cells. We believe that these biological mechanisms are not mutually exclusive and emphasize the need for more suitable methodologies to exploit the spatiotemporal patterns of intratumoral heterogeneity using novel approaches such as quantitative tissue-based biomarker assessment and systemic fluid analytics. Generating a comprehensive patient-centric phenotypic disease profile should generate a 'codex' which can be employed to change the current treatment decision process.
Related JoVE Video
Identification and Characterization of Hundreds of Potent and Selective Inhibitors of Trypanosoma brucei Growth from a Kinase-Targeted Library Screening Campaign.
PLoS Negl Trop Dis
PUBLISHED: 10-01-2014
Show Abstract
Hide Abstract
In the interest of identification of new kinase-targeting chemotypes for target and pathway analysis and drug discovery in Trypanosomal brucei, a high-throughput screen of 42,444 focused inhibitors from the GlaxoSmithKline screening collection was performed against parasite cell cultures and counter-screened against human hepatocarcinoma (HepG2) cells. In this way, we have identified 797 sub-micromolar inhibitors of T. brucei growth that are at least 100-fold selective over HepG2 cells. Importantly, 242 of these hit compounds acted rapidly in inhibiting cellular growth, 137 showed rapid cidality. A variety of in silico and in vitro physicochemical and drug metabolism properties were assessed, and human kinase selectivity data were obtained, and, based on these data, we prioritized three compounds for pharmacokinetic assessment and demonstrated parasitological cure of a murine bloodstream infection of T. brucei rhodesiense with one of these compounds (NEU-1053). This work represents a successful implementation of a unique industrial-academic collaboration model aimed at identification of high quality inhibitors that will provide the parasitology community with chemical matter that can be utilized to develop kinase-targeting tool compounds. Furthermore these results are expected to provide rich starting points for discovery of kinase-targeting tool compounds for T. brucei, and new HAT therapeutics discovery programs.
Related JoVE Video
The MicroRNA 424/503 Cluster Reduces CDC25A Expression during Cell Cycle Arrest Imposed by Transforming Growth Factor ? in Mammary Epithelial Cells.
Mol. Cell. Biol.
PUBLISHED: 09-29-2014
Show Abstract
Hide Abstract
Recently, we demonstrated that the microRNA 424(322)/503 [miR-424(322)/503] cluster is transcriptionally controlled by transforming growth factor ? (TGF-?) in the mammary epithelium. Induction of this microRNA cluster impacts mammary epithelium fate by regulating apoptosis and insulin-like growth factor 1 (IGF1) signaling. Here, we expanded our finding to demonstrate that miR-424(322)/503 is an integral component of the cell cycle arrest mediated by TGF-?. Mechanistically, we showed that after TGF-? exposure, increased levels of miR-424(322)/503 reduce the expression of the cell cycle regulator CDC25A. miR-424(322)/503-dependent posttranscriptional downregulation of CDC25A cooperates with previously described transcriptional repression of the CDC25A promoter and proteasome-mediated degradation to reduce the levels of CDC25A expression and to induce cell cycle arrest. We also provide evidence that the TGF-?/miR-424(322)/503 axis is part of the mechanism that regulates the proliferation of hormone receptor-positive (HR(+)) mammary epithelial cells in vivo.
Related JoVE Video
FBXW7 mutations in melanoma and a new therapeutic paradigm.
J. Natl. Cancer Inst.
PUBLISHED: 06-01-2014
Show Abstract
Hide Abstract
Melanoma is a heterogeneous tumor with subgroups requiring distinct therapeutic strategies. Genetic dissection of melanoma subgroups and identification of therapeutic agents are of great interest in the field. These efforts will ultimately lead to treatment strategies, likely combinatorial, based on genetic information.
Related JoVE Video
A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia.
Nat. Med.
PUBLISHED: 05-25-2014
Show Abstract
Hide Abstract
Efforts to identify and annotate cancer driver genetic lesions have been focused primarily on the analysis of protein-coding genes; however, most genetic abnormalities found in human cancer are located in intergenic regions. Here we identify a new long range-acting MYC enhancer controlled by NOTCH1 that is targeted by recurrent chromosomal duplications in human T cell acute lymphoblastic leukemia (T-ALL). This highly conserved regulatory element, hereby named N-Me for NOTCH MYC enhancer, is located within a broad super-enhancer region +1.47 Mb from the MYC transcription initiating site, interacts with the MYC proximal promoter and induces orientation-independent MYC expression in reporter assays. Moreover, analysis of N-Me knockout mice demonstrates a selective and essential role of this regulatory element during thymocyte development and in NOTCH1-induced T-ALL. Together these results identify N-Me as a long-range oncogenic enhancer implicated directly in the pathogenesis of human leukemia and highlight the importance of the NOTCH1-MYC regulatory axis in T cell transformation and as a therapeutic target in T-ALL.
Related JoVE Video
Isolation of cancer stem cells from human prostate cancer samples.
J Vis Exp
PUBLISHED: 04-02-2014
Show Abstract
Hide Abstract
The cancer stem cell (CSC) model has been considerably revisited over the last two decades. During this time CSCs have been identified and directly isolated from human tissues and serially propagated in immunodeficient mice, typically through antibody labeling of subpopulations of cells and fractionation by flow cytometry. However, the unique clinical features of prostate cancer have considerably limited the study of prostate CSCs from fresh human tumor samples. We recently reported the isolation of prostate CSCs directly from human tissues by virtue of their HLA class I (HLAI)-negative phenotype. Prostate cancer cells are harvested from surgical specimens and mechanically dissociated. A cell suspension is generated and labeled with fluorescently conjugated HLAI and stromal antibodies. Subpopulations of HLAI-negative cells are finally isolated using a flow cytometer. The principal limitation of this protocol is the frequently microscopic and multifocal nature of primary cancer in prostatectomy specimens. Nonetheless, isolated live prostate CSCs are suitable for molecular characterization and functional validation by transplantation in immunodeficient mice.
Related JoVE Video
The miR-424(322)/503 cluster orchestrates remodeling of the epithelium in the involuting mammary gland.
Genes Dev.
PUBLISHED: 03-17-2014
Show Abstract
Hide Abstract
The mammary gland is a very dynamic organ that undergoes continuous remodeling. The critical regulators of this process are not fully understood. Here we identify the microRNA cluster miR-424(322)/503 as an important regulator of epithelial involution after pregnancy. Through the generation of a knockout mouse model, we found that regression of the secretory acini of the mammary gland was compromised in the absence of miR-424(322)/503. Mechanistically, we show that miR-424(322)/503 orchestrates cell life and death decisions by targeting BCL-2 and IGF1R (insulin growth factor-1 receptor). Furthermore, we demonstrate that the expression of this microRNA cluster is regulated by TGF-?, a well-characterized regulator of mammary involution. Overall, our data suggest a model in which activation of the TGF-? pathway after weaning induces the transcription of miR-424(322)/503, which in turn down-regulates the expression of key genes. Here, we unveil a previously unknown, multilayered regulation of epithelial tissue remodeling coordinated by the microRNA cluster miR-424(322)/503.
Related JoVE Video
Genomic analysis in active surveillance: predicting high-risk disease using tissue biomarkers.
Curr Opin Urol
PUBLISHED: 03-15-2014
Show Abstract
Hide Abstract
For patients newly diagnosed with prostate cancer, the most significant question is whether the 'truly malignant' disease has been identified. This review will provide an overview of current prostate cancer genomic and biomarker discovery - validation strategies geared towards identifying aggressive, clinically significant disease at the time of diagnosis.
Related JoVE Video
Bladder cancers arise from distinct urothelial sub-populations.
Nat. Cell Biol.
PUBLISHED: 03-12-2014
Show Abstract
Hide Abstract
Bladder cancer is the sixth most common cancer in humans. This heterogeneous set of lesions including urothelial carcinoma (Uca) and squamous cell carcinoma (SCC) arise from the urothelium, a stratified epithelium composed of K5-expressing basal cells, intermediate cells and umbrella cells. Superficial Uca lesions are morphologically distinct and exhibit different clinical behaviours: carcinoma in situ (CIS) is a flat aggressive lesion, whereas papillary carcinomas are generally low-grade and non-invasive. Whether these distinct characteristics reflect different cell types of origin is unknown. Here we show using lineage tracing in a murine model of carcinogenesis that intermediate cells give rise primarily to papillary lesions, whereas K5-basal cells are likely progenitors of CIS, muscle-invasive lesions and SCC depending on the genetic background. Our results provide a cellular and genetic basis for the diversity in bladder cancer lesions and provide a possible explanation for their clinical and morphological differences.
Related JoVE Video
RapidCaP, a novel GEM model for metastatic prostate cancer analysis and therapy, reveals myc as a driver of Pten-mutant metastasis.
Cancer Discov
PUBLISHED: 01-20-2014
Show Abstract
Hide Abstract
Genetically engineered mouse (GEM) models are a pillar of functional cancer research. Here, we developed RapidCaP, a GEM modeling system that uses surgical injection for viral gene delivery to the prostate. We show that in Pten deficiency, loss of p53 suffices to trigger metastasis to distant sites at greater than 50% penetrance by four months, consistent with results from human prostate cancer genome analysis. Live bioluminescence tracking showed that endogenous primary and metastatic disease responds to castration before developing lethal castration resistance. To our surprise, the resulting lesions showed no activation of Akt but activation of the Myc oncogene. Using RapidCaP, we find that Myc drives local prostate metastasis and is critical for maintenance of metastasis, as shown by using the Brd4 inhibitor JQ1. Taken together, our data suggest that a "MYC-switch" away from AKT forms a critical and druggable event in PTEN-mutant prostate cancer metastasis and castration resistance.
Related JoVE Video
Defining the role of CD2 in disease progression and overall survival among patients with completely resected stage-II to -III cutaneous melanoma.
J. Am. Acad. Dermatol.
PUBLISHED: 01-16-2014
Show Abstract
Hide Abstract
Accurate assessment of prognosis remains clinically challenging in stage II to III cutaneous melanoma. Studies have implicated CD2 in immune surveillance, T-cell activation, and antitumor immunity, but its role in melanoma progression warrants further investigation.
Related JoVE Video
Glossina palpalis palpalis populations from Equatorial Guinea belong to distinct allopatric clades.
Parasit Vectors
PUBLISHED: 01-14-2014
Show Abstract
Hide Abstract
Luba is one of the four historical foci of Human African Trypanosomiasis (HAT) on Bioko Island, in Equatorial Guinea. Although no human cases have been detected since 1995, T. b. gambiense was recently observed in the vector Glossina palpalis palpalis. The existence of cryptic species within this vector taxon has been previously suggested, although no data are available regarding the evolutionary history of tsetse flies populations in Bioko.
Related JoVE Video
Biomarkers for bladder cancer management: present and future.
Am J Clin Exp Urol
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Accurate and sensitive detection of bladder cancer is critical to diagnose this deadly disease at an early stage, estimate prognosis, predict response to treatment, and monitor recurrence. In past years, laboratory diagnosis and surveillance of urinary bladder cancer have improved significantly. Although urine cytology remains the gold standard test, many new urinary biomarkers have been identified. Furthermore, recent advances in genomic studies of bladder cancer have helped to refine our understanding of the pathogenesis of the disease, the biological basis for outcome disparities, and to inform more efficient treatment and surveillance strategies. In this article, the established diagnostic tests, newly identified biomarkers and genomic landscape of bladder cancer will be reviewed.
Related JoVE Video
Characterization of desmoglein expression in the normal prostatic gland. Desmoglein 2 is an independent prognostic factor for aggressive prostate cancer.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The expression of desmogleins (DSGs), which are known to be crucial for establishing and maintaining the cell-cell adhesion required for tissue integrity, has been well characterized in the epidermis and hair follicle; however, their expression in other epithelial tissues such as prostate is poorly understood. Although downregulation of classical cadherins, such as E-cadherin, has been described in prostate cancer tissue samples, the expression of desmogleins has only been previously reported in prostate cancer cell lines. In this study we characterized desmoglein expression in normal prostate tissues, and further investigated whether Desmoglein 2 (DSG2) expression specifically can serve as a potential clinical prognostic factor for patients diagnosed with primary prostate cancer.
Related JoVE Video
Direct Reversal of Glucocorticoid Resistance by AKT Inhibition in Acute Lymphoblastic Leukemia.
Cancer Cell
PUBLISHED: 05-25-2013
Show Abstract
Hide Abstract
Glucocorticoid resistance is a major driver of therapeutic failure in T cell acute lymphoblastic leukemia (T-ALL). Here, we identify the AKT1 kinase as a major negative regulator of the NR3C1 glucocorticoid receptor protein activity driving glucocorticoid resistance in T-ALL. Mechanistically, AKT1 impairs glucocorticoid-induced gene expression by direct phosphorylation of NR3C1 at position S134 and blocking glucocorticoid-induced NR3C1 translocation to the nucleus. Moreover, we demonstrate that loss of PTEN and consequent AKT1 activation can effectively block glucocorticoid-induced apoptosis and induce resistance to glucocorticoid therapy. Conversely, pharmacologic inhibition of AKT with MK2206 effectively restores glucocorticoid-induced NR3C1 translocation to the nucleus, increases the response of T-ALL cells to glucocorticoid therapy, and effectively reverses glucocorticoid resistance in vitro and in vivo.
Related JoVE Video
Loss of PML cooperates with mutant p53 to drive more aggressive cancers in a gender-dependent manner.
Cell Cycle
PUBLISHED: 05-08-2013
Show Abstract
Hide Abstract
p53 mutations and downregulation of promyelocytic leukemia (PML) are common genetic alterations in human cancers. In healthy cells these two key tumor suppressors exist in a positive regulatory loop, promoting cell death and cellular senescence. However, the influence of their interplay on tumorigenesis has not been explored directly in vivo. The contribution of PML to mutant p53 driven cancer was evaluated in a mouse model harboring a p53 mutation (p53 (wild-type/R172H) ) that recapitulates a frequent p53 mutation (p53 (R175H) ) in human sporadic and Li-Fraumeni cancers. These mice with PML displayed perturbation of the hematopoietic compartment, manifested either as lymphoma or extramedullary hematopoiesis (EMH). EMH was associated with peripheral blood leucocytosis and macrocytic anemia, suggestive of myeloproliferative- myelodysplastic overlap. In contrast, a complete loss of PML from these mice resulted in a marked alteration in tumor profile. While the incidence of lymphomas was unaltered, EMH was not detected and the majority of mice succumbed to sarcomas. Further, males lacking PML exhibited a high incidence of soft tissue sarcomas and reduced survival, while females largely developed osteosarcomas, without impact on survival. Together, these findings demonstrate that PML is an important tumor suppressor dictating disease development in a pertinent mouse model of human cancer.   Key Points: (1) A mutant p53 allele disrupts hematopoiesis in mice, by promoting lymphomas and myeloproliferative / myelodysplastic overlap. (2) Coincidental p53 allele mutation and PML loss shifts the tumor profile toward sarcoma formation, which is paralleled in human leiomyosarcomas (indicated by immunohistochemistry; IHC).
Related JoVE Video
Predicting high-risk disease using tissue biomarkers.
Curr Opin Urol
PUBLISHED: 03-13-2013
Show Abstract
Hide Abstract
For men newly diagnosed with prostate cancer, there are limited tools to understand the risk of disease progression and guide the treatment decision process. We will provide an overview of current prostate cancer biomarker discovery and validation strategies that are geared toward identifying aggressive, clinically significant disease at the time of diagnosis.
Related JoVE Video
Dual Pten/Tp53 suppression promotes sarcoma progression by activating Notch signaling.
Am. J. Pathol.
PUBLISHED: 01-21-2013
Show Abstract
Hide Abstract
Soft tissue sarcomas are a heterogeneous group of tumors associated with poor clinical outcome. Although a subset of soft tissue sarcomas is characterized by simple karyotypes and recurrent chromosomal translocations, the mechanisms driving cytogenetically complex sarcomas are largely unknown. Clinical evidence led us to partially inactivate Pten and Tp53 in the smooth muscle lineage of mice, which developed high-grade undifferentiated pleomorphic sarcomas, leiomyosarcomas, and carcinosarcomas that widely recapitulate the human disease, including the aberrant karyotype and metastatic behavior. Pten was found haploinsufficient, whereas the wild-type allele of Tp53 invariably gained point mutations. Gene expression profiles showed up-regulated Notch signaling in Pten(?/+)Tp53(?/+) tumors compared with Pten(+/+)Tp53(?/+) tumors. Consistently, Pten silencing exacerbated the clonogenic and invasive potential of Tp53-deficient bone marrow-derived mouse mesenchymal stem cells and tumor cells and activated the Notch pathway. Moreover, the increased oncogenic behavior of Pten(?/+)Tp53(?/+) and shPten-transduced Pten(+/+)Tp53(?/+) tumor cells was counteracted by treatment with a ?-secretase inhibitor, suggesting that the aggressiveness of those tumors can be attributed, at least in part, to enhanced Notch signaling. This study demonstrates a cooperative role for Pten and Tp53 suppression in complex karyotype sarcomas while establishing Notch as an important functional player in the cross talk of these pathways during tumor progression. Our results highlight the importance of molecularly subclassifying patients with high-grade sarcoma for targeted treatments.
Related JoVE Video
Zbtb7a suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion.
Nat. Genet.
PUBLISHED: 01-18-2013
Show Abstract
Hide Abstract
Zbtb7a has previously been described as a powerful proto-oncogene. Here we unexpectedly demonstrate that Zbtb7a has a critical oncosuppressive role in the prostate. Prostate-specific inactivation of Zbtb7a leads to a marked acceleration of Pten loss-driven prostate tumorigenesis through bypass of Pten loss-induced cellular senescence (PICS). We show that ZBTB7A physically interacts with SOX9 and functionally antagonizes its transcriptional activity on key target genes such as MIA, which is involved in tumor cell invasion, and H19, a long noncoding RNA precursor for an RB-targeting microRNA. Inactivation of Zbtb7a in vivo leads to Rb downregulation, PICS bypass and invasive prostate cancer. Notably, we found that ZBTB7A is genetically lost, as well as downregulated at both the mRNA and protein levels, in a subset of human advanced prostate cancers. Thus, we identify ZBTB7A as a context-dependent cancer gene that can act as an oncogene in some contexts but also has oncosuppressive-like activity in PTEN-null tumors.
Related JoVE Video
A co-clinical approach identifies mechanisms and potential therapies for androgen deprivation resistance in prostate cancer.
Nat. Genet.
PUBLISHED: 01-17-2013
Show Abstract
Hide Abstract
Here we report an integrated analysis that leverages data from treatment of genetic mouse models of prostate cancer along with clinical data from patients to elucidate new mechanisms of castration resistance. We show that castration counteracts tumor progression in a Pten loss-driven mouse model of prostate cancer through the induction of apoptosis and proliferation block. Conversely, this response is bypassed with deletion of either Trp53 or Zbtb7a together with Pten, leading to the development of castration-resistant prostate cancer (CRPC). Mechanistically, the integrated acquisition of data from mouse models and patients identifies the expression patterns of XAF1, XIAP and SRD5A1 as a predictive and actionable signature for CRPC. Notably, we show that combined inhibition of XIAP, SRD5A1 and AR pathways overcomes castration resistance. Thus, our co-clinical approach facilitates the stratification of patients and the development of tailored and innovative therapeutic treatments.
Related JoVE Video
A common MicroRNA signature consisting of miR-133a, miR-139-3p, and miR-142-3p clusters bladder carcinoma in situ with normal umbrella cells.
Am. J. Pathol.
PUBLISHED: 01-03-2013
Show Abstract
Hide Abstract
miRNAs are small noncoding RNAs with critical roles in a large variety of biological processes such as development and tumorigenesis. miRNA expression profiling has been reported to be a powerful tool to classify tissue samples, including cancers, based on their developmental lineage. In this study, we have profiled the expression of miRNAs in bladder carcinoma in situ (CIS) and distinct cell compartments of the normal bladder, namely umbrella and basal-intermediate urothelial cells, as well as the muscularis propria. We identified several miRNAs differentially expressed between umbrella and basal-intermediate cells (miR-133a, miR-139-3p, miR-142-3p, miR-199b-5p, and miR-221). In situ hybridization confirmed the expression of miR-133a and miR-139-3p in umbrella cells, and miR-142-3p in basal-intermediate cells. Strikingly, miRNA expression levels of CIS most closely resembled the miRNA profile of umbrella cells. Finally, we examined well-established umbrella and basal-intermediate cell immunohistochemical biomarkers in an independent series of CIS samples. Again, this analysis revealed the significant expression of umbrella-specific markers in CIS when compared to non-CIS lesions. Overall, our studies represent a comprehensive and accurate description of the different miRNAs expressed in CIS tumors and three distinct histological areas of the urinary bladder. Notably, this study provides evidence of the possible origin relationship between CIS and normal umbrella cells.
Related JoVE Video
Trypanosoma brucei gambiense Adaptation to Different Mammalian Sera Is Associated with VSG Expression Site Plasticity.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Trypanosoma brucei gambiense infection is widely considered an anthroponosis, although it has also been found in wild and domestic animals. Thus, fauna could act as reservoir, constraining the elimination of the parasite in hypo-endemic foci. To better understand the possible maintenance of T. b. gambiense in local fauna and investigate the molecular mechanisms underlying adaptation, we generated adapted cells lines (ACLs) by in vitro culture of the parasites in different mammalian sera. Using specific antibodies against the Variant Surface Glycoproteins (VSGs) we found that serum ACLs exhibited different VSG variants when maintained in pig, goat or human sera. Although newly detected VSGs were independent of the sera used, the consistent appearance of different VSGs suggested remodelling of the co-transcribed genes at the telomeric Expression Site (VSG-ES). Thus, Expression Site Associated Genes (ESAGs) sequences were analysed to investigate possible polymorphism selection. ESAGs 6 and 7 genotypes, encoding the transferrin receptor (TfR), expressed in different ACLs were characterised. In addition, we quantified the ESAG6/7 mRNA levels and analysed transferrin (Tf) uptake. Interestingly, the best growth occurred in pig and human serum ACLs, which consistently exhibited a predominant ESAG7 genotype and higher Tf uptake than those obtained in calf and goat sera. We also detected an apparent selection of specific ESAG3 genotypes in the pig and human serum ACLs, suggesting that other ESAGs could be involved in the host adaptation processes. Altogether, these results suggest a model whereby VSG-ES remodelling allows the parasite to express a specific set of ESAGs to provide selective advantages in different hosts. Finally, pig serum ACLs display phenotypic adaptation parameters closely related to human serum ACLs but distinct to parasites grown in calf and goat sera. These results suggest a better suitability of swine to maintain T. b. gambiense infection supporting previous epidemiological results.
Related JoVE Video
Personalized approach to prostate cancer prognosis.
Arch. Esp. Urol.
PUBLISHED: 11-05-2011
Show Abstract
Hide Abstract
Personalized medicine in the management of patients with prostate cancer consists of the integration of patient attributes such as age, genetic risk and co-morbidities with specific clinical-pathologic variables including serum prostate specific antigen (PSA), imaging and features from the diagnostic prostate needle biopsy or prostatectomy specimen including tumor differentiation (i.e. Gleason), volume and extent of disease (i.e. tumor length and / or percentage, number of positive cores at diagnosis or pathologic stage post surgery including margin status). Although the development of various clinical statistical instruments such as nomograms have provided a mechanism to interrogate these variables, most urologists rely on basic prognostic features of stage, grade and PSA along with clinical judgment to define and understand individual risk and predict health outcomes. In addition, unlike other tumor types such as breast cancer, there are no routine ancillary diagnostic studies performed on the prostate needle biopsy or prostatectomy specimen to support and refine the treatment decision process for the individual patient. In this review we will provide a summary of the current practice of predictive modeling in prostate cancer and explore how technical advances in functional histology have played a role in the development and incorporation of a systems based platform for providing a patient-specific risk profile useful for clinical decision making.
Related JoVE Video
Related JoVE Video
Postoperative systems models more accurately predict risk of significant disease progression than standard risk groups and a 10-year postoperative nomogram: potential impact on the receipt of adjuvant therapy after surgery.
BJU Int.
PUBLISHED: 07-19-2011
Show Abstract
Hide Abstract
To compare the performance of a systems-based risk assessment tool with standard defined risk groups and the 10-year postoperative nomogram for predicting disease progression, including biochemical relapse and clinical (systemic) failure.
Related JoVE Video
A systems-based modelling approach using transurethral resection of the prostate (TURP) specimens yielded incremental prognostic significance to Gleason when predicting long-term outcome in men with localized prostate cancer.
BJU Int.
PUBLISHED: 07-06-2011
Show Abstract
Hide Abstract
To develop a systems-based model for predicting prostate cancer-specific survival (PCSS) using a conservatively managed cohort with clinically localized prostate cancer and long-term follow-up.
Related JoVE Video
Identification of PHLPP1 as a tumor suppressor reveals the role of feedback activation in PTEN-mutant prostate cancer progression.
Cancer Cell
PUBLISHED: 04-06-2011
Show Abstract
Hide Abstract
Hyperactivation of the PI 3-kinase/AKT pathway is a driving force of many cancers. Here we identify the AKT-inactivating phosphatase PHLPP1 as a prostate tumor suppressor. We show that Phlpp1-loss causes neoplasia and, on partial Pten-loss, carcinoma in mouse prostate. This genetic setting initially triggers a growth suppressive response via p53 and the Phlpp2 ortholog, and reveals spontaneous Trp53 inactivation as a condition for full-blown disease. Surprisingly, the codeletion of PTEN and PHLPP1 in patient samples is highly restricted to metastatic disease and tightly correlated to deletion of TP53 and PHLPP2. These data establish a conceptual framework for progression of PTEN mutant prostate cancer to life-threatening disease.
Related JoVE Video
KISS1 methylation and expression as tumor stratification biomarkers and clinical outcome prognosticators for bladder cancer patients.
Am. J. Pathol.
PUBLISHED: 03-31-2011
Show Abstract
Hide Abstract
KISS1 is a metastasis suppressor gene that is lost in several malignancies, including bladder cancer. We tested the epigenetic silencing hypothesis and evaluated the biological influence of KISS1 methylation on its expression and clinical relevance in bladder cancer. KISS1 hypermethylation was frequent in bladder cancer cells analyzed by methylation-specific PCR and bisulfite sequencing and was associated with low gene expression, being restored in vitro by demethylating azacytidine. Hypermethylation was also frequently observed in a large series of bladder tumors (83.1%, n = 804). KISS1 methylation was associated with increasing stage (P = 0.001) and tumor grade (P = 0.010). KISS1 methylation was associated with low KISS1 transcript expression by quantitative RT-PCR (P = 0.037). KISS1 transcript expression was also associated with histopathological tumor stage (P < 0.0005). Low transcript expression alone (P = 0.003) or combined with methylation (P = 0.019) was associated with poor disease-specific survival (n = 205). KISS1 transcript expression remained an independent prognosticator in multivariate analyses (P = 0.017). KISS1 hypermethylation was identified in bladder cancer, providing a potential mechanistic explanation (epigenetic silencing) for the observed loss of KISS1 in uroepithelial malignancies. Associations of KISS1 methylation and its expression with histopathological variables and poor survival suggest the utility of incorporating KISS1 measurement using paraffin-embedded material for tumor stratification and clinical outcome prognosis of patients with uroepithelial neoplasias.
Related JoVE Video
Alternate PAX3 and PAX7 C-terminal isoforms in myogenic differentiation and sarcomagenesis.
Clin Transl Oncol
PUBLISHED: 03-23-2011
Show Abstract
Hide Abstract
Pax3 and Pax7 are closely related genes that are involved in commitment of cells to a myogenic lineage during skeletal muscle development and regeneration. Several Pax3 and Pax7 transcripts are expressed from the genes, generating different isoforms with potentially distinct DNA binding and transactivation properties. The aim of this study was to investigate the implication of Pax3 and Pax7 C-terminal isoforms during myogenic differentiation and tumorigenesis, since fusions involving these genes are commonly associated with alveolar rhabdomyosarcoma (ARMS).
Related JoVE Video
Distinct expression profiles of p63 variants during urothelial development and bladder cancer progression.
Am. J. Pathol.
PUBLISHED: 03-02-2011
Show Abstract
Hide Abstract
The TP63 gene, a member of the TP53 tumor suppressor gene family, can be expressed as at least six isoforms due to alternative promoter use and alternative splicing. The lack of p63 isoform-specific antibodies has limited the analysis of the biological significance of p63. We report a novel set of well-defined antibodies to examine p63 isoforms in mouse and human urothelium during embryogenesis and tumor progression, respectively. We provide evidence that basal and intermediate urothelial cells express p63 isoforms, with the TAp63 variant the first to be detected during development, whereas umbrella cells are characterized by a p63-negative phenotype. Notably, we report that p63-null mice develop a bladder with an abnormal urothelium, constituted by a single layer of cells that express uroplakin II and low molecular weight cytokeratins, consistent with an umbrella cell phenotype. Finally, analysis of 202 human bladder carcinomas revealed a new categorization of invasive tumors into basal-like (positive for ?Np63 and high molecular weight cytokeratins and negative for low molecular weight cytokeratins) versus luminal-like (negative for ?Np63 and high molecular weight cytokeratins and positive for low molecular weight cytokeratins) phenotypes, with ?Np63 expression associated with an aggressive clinical course and poor prognosis. This study highlights the relevance of p63 isoforms in both urothelial development and bladder carcinoma progression, with ?Np63 acting as an oncogene in certain invasive bladder tumors.
Related JoVE Video
A Role for PML in Innate Immunity.
Genes Cancer
PUBLISHED: 01-30-2011
Show Abstract
Hide Abstract
The promyelocytic leukemia gene (PML) of acute promyelocytic leukemia is an established tumor suppressor gene with critical functions in growth suppression, induction of apoptosis, and cellular senescence. Interestingly, although less studied, PML seems to play a key role also in immune response to viral infection. Herein, we report that Pml(-/-) mice spontaneously develop an atypical invasive and lethal granulomatous lesion known as botryomycosis (BTM). In Pml(-/-) mice, BTM is the result of impaired function of macrophages, whereby they fail to become activated and are thus unable to clear pathogenic microorganisms. Accordingly, Pml(-/-) mice are resistant to lipopolysaccharide (LPS)-induced septic shock as a result of an ineffective production of cytokines and chemokines, suggesting a role for PML in the innate immune Toll-like receptor (TLR)/NF-?B prosurvival pathway. These results not only shed light on a new fundamental function of PML in innate immunity, but they also point to a proto-oncogenic role for PML in certain cellular and pathological contexts.
Related JoVE Video
Predictive value of microtubule associated proteins tau and stathmin in patients with nonmuscle invasive bladder cancer receiving adjuvant intravesical taxane therapy.
J. Urol.
PUBLISHED: 01-24-2011
Show Abstract
Hide Abstract
After encouraging results from 2 clinical trials performed at our institution to test intravesical taxane based chemotherapy for bacillus Calmette-Guérin refractory, nonmuscle invasive bladder cancer we designed a study to identify molecular markers linked to the optimal response to such treatment modality.
Related JoVE Video
Three-dimensional culture of mouse renal carcinoma cells in agarose macrobeads selects for a subpopulation of cells with cancer stem cell or cancer progenitor properties.
Cancer Res.
PUBLISHED: 01-24-2011
Show Abstract
Hide Abstract
The culture of tumor cell lines in three-dimensional scaffolds is considered to more closely replicate the in vivo tumor microenvironment than the standard method of two-dimensional cell culture. We hypothesized that our method of encapsulating and maintaining viable and functional pancreatic islets in agarose-agarose macrobeads (diameter 6-8 mm) might provide a novel method for the culture of tumor cell lines. In this report we describe and characterize tumor colonies that form within macrobeads seeded with mouse renal adenocarcinoma cells. Approximately 1% of seeded tumor cells survive in the macrobead and over several months form discrete elliptical colonies appearing as tumor cell niches with increasing metabolic activity in parallel to colony size. The tumor colonies demonstrate ongoing cell turnover as shown by BrdU incorporation and activated caspase-3 and TUNEL staining. Genes upregulated in the tumor colonies of the macrobead are likely adaptations to this novel environment, as well as an amplification of G(1)/S cell-cycle checkpoints. The data presented, including SCA-1 and Oct4 positivity and the upregulation of stem cell-like genes such as those associated with the Wnt pathway, support the notion that the macrobead selects for a subpopulation of cells with cancer stem cell or cancer progenitor properties.
Related JoVE Video
Hydrophilic agarose macrobead cultures select for outgrowth of carcinoma cell populations that can restrict tumor growth.
Cancer Res.
PUBLISHED: 01-24-2011
Show Abstract
Hide Abstract
Cancer cells and their associated tumors have long been considered to exhibit unregulated proliferation or growth. However, a substantial body of evidence indicates that tumor growth is subject to both positive and negative regulatory controls. Here, we describe a novel property of tumor growth regulation that is neither species nor tumor-type specific. This property, functionally a type of feedback control, is triggered by the encapsulation of neoplastic cells in a growth-restricting hydrogel composed of an agarose matrix with a second coating of agarose to form 6- to 8-mm diameter macrobeads. In a mouse cell model of renal adenocarcinoma (RENCA cells), this process resulted in selection for a stem cell-like subpopulation which together with at least one other cell subpopulation drove colony formation in the macrobeads. Cells in these colonies produced diffusible substances that markedly inhibited in vitro and in vivo proliferation of epithelial-derived tumor cells outside the macrobeads. RENCA cells in monolayer culture that were exposed to RENCA macrobead-conditioned media exhibited cell-cycle accumulation in S phase due to activation of a G(2)/M checkpoint. At least 10 proteins with known tumor suppression functions were identified by analysis of RENCA macrobead-conditioned media, the properties of which offer opportunities to further dissect the molecular basis for tumor growth control. More generally, macrobead culture may permit the isolation of cancer stem cells and other cells of the stem cell niche, perhaps providing strategies to define more effective biologically based clinical approaches to treat neoplastic disease.
Related JoVE Video
A comparison of the outcomes of neoadjuvant and adjuvant chemotherapy for clinical T2-T4aN0-N2M0 bladder cancer.
Cancer
PUBLISHED: 01-19-2011
Show Abstract
Hide Abstract
Despite evidence supporting perioperative chemotherapy, few randomized studies compare neoadjuvant and adjuvant chemotherapy for bladder cancer. Consequently, the standard of care regarding the timing of chemotherapy for locally advanced bladder cancer remains controversial. We compared patient outcomes following neoadjuvant or adjuvant systemic chemotherapy for cT2-T4aN0-N2M0 bladder cancer.
Related JoVE Video
CpG ODN, Toll like receptor (TLR)-9 agonist, inhibits metastatic colon adenocarcinoma in a murine hepatic tumor model.
J. Surg. Res.
PUBLISHED: 01-15-2011
Show Abstract
Hide Abstract
Colorectal liver metastases (mets) are often refractory to conventional therapies. CpG oligodeoxynucleotide 1826 (CpG), a Toll like receptor (TLR)-9 agonist, inhibits murine tumor growth by augmenting Th1 immunity. The impact of CpG on metastatic colon tumors is unknown. The purpose of this study was to determine the effect of CpG on the growth of hepatic colon cancer mets.
Related JoVE Video
Disruption of a Sirt1-dependent autophagy checkpoint in the prostate results in prostatic intraepithelial neoplasia lesion formation.
Cancer Res.
PUBLISHED: 12-28-2010
Show Abstract
Hide Abstract
The Sirtuin family of proteins (SIRT) encode a group of evolutionarily conserved, NAD-dependent histone deacetylases, involved in many biological pathways. SIRT1, the human homologue of the yeast Silent Information Regulator 2 (Sir2) gene, deacetylates histones, p300, p53, and the androgen receptor. Autophagy is required for the degradation of damaged organelles and long-lived proteins, as well as for the development of glands such as the breast and prostate. Herein, homozygous deletion of the Sirt1 gene in mice resulted in prostatic intraepithelial neoplasia (PIN) associated with reduced autophagy. Genome-wide gene expression analysis of Sirt1(-/-) prostates demonstrated that endogenous Sirt1 repressed androgen responsive gene expression and induced autophagy in the prostate. Sirt1 induction of autophagy occurred at the level of autophagosome maturation and completion in cultured prostate cancer cells. These studies provide novel evidence for a checkpoint function of Sirt1 in the development of PIN and further highlight a role for SIRT1 as a tumor suppressor in the prostate.
Related JoVE Video
Association of nuclear localization of a long interspersed nuclear element-1 protein in breast tumors with poor prognostic outcomes.
Genes Cancer
PUBLISHED: 10-16-2010
Show Abstract
Hide Abstract
Within healthy human somatic cells, retrotransposition by long interspersed nuclear element-1 (also known as LINE-1 or L1) is thought to be held in check by a variety of mechanisms, including DNA methylation and RNAi. The expression of L1-ORF1 protein, which is rarely found in normal tissue, was assayed using antibodies with a variety of clinical cancer specimens and cancer cell lines. L1-ORF1p expression was detected in nearly all breast tumors that the authors examined, and the protein was also present in a high percentage of ileal carcinoids, bladder, and pancreatic neuroendocrine tumors, as well as in a smaller percentage of prostate and colorectal tumors. Tumors generally demonstrated cytoplasmic L1-ORF1p; however, in several breast cancers, L1-ORF1p was nuclear. Patients with breast tumors displaying nuclear L1-ORF1p had a greater incidence of both local recurrence and distal metastases and also showed poorer overall survival when compared with patients with tumors displaying cytoplasmic L1-ORF1p. These data suggest that expression of L1-ORF1p is widespread in many cancers and that redistribution from cytoplasm to nucleus could be a poor prognostic indicator during breast cancer. High expression and nuclear localization of L1-ORF1p may result in a higher rate of L1 retrotransposition, which could increase genomic instability.
Related JoVE Video
Impact of stromal sensitivity on radiation response of tumors implanted in SCID hosts revisited.
Cancer Res.
PUBLISHED: 10-05-2010
Show Abstract
Hide Abstract
Severe combined immunodeficient (SCID) mice carry a germ-line mutation in DNA-PK, associated with deficiency in recognition and repair DNA double-strand breaks. Thus, SCID cells and tissues display increased sensitivity to radiation-induced postmitotic (clonogenic) cell death. Nonetheless, the single-radiation doses required for 50% permanent local control (TCD(50)) of tumors implanted in SCID mice are not significantly different from the TCD(50) values of the same tumors in wild-type hosts. Whereas the tumor stroma is derived from the host, the observation that tumors implanted in SCID mice do not exhibit hypersensitivity to radiation might imply that stromal endothelial elements do not contribute substantially to tumor cure by ionizing radiation. Here, we challenge this notion, testing the hypothesis that ASMase-mediated endothelial apoptosis, which results from plasma membrane alterations, not DNA damage, is a crucial element in the cure of tumors in SCID mice by single-dose radiotherapy (SDRT). We show that the endothelium in MCA/129 fibrosarcomas and B16 melanomas exhibits a wild-type apoptotic phenotype in SCID hosts, abrogated in tumors in SCID(asmase-/-) littermates, which also acquire resistance to SDRT. Conversion into a radioresistant tumor phenotype when implanted in SCID(asmase-/-) hosts provides compelling evidence that cell membrane ASMase-mediated microvascular dysfunction, rather than DNA damage-mediated endothelial clonogenic lethality, plays a mandatory role in the complex pathophysiologic mechanism of tumor cure by SDRT, and provides an explanation for the wild-type SDRT responses reported in tumors implanted in SCID mice.
Related JoVE Video
Molecular pathways of urothelial development and bladder tumorigenesis.
Urol. Oncol.
PUBLISHED: 07-09-2010
Show Abstract
Hide Abstract
Bladder cancer is the fifth most common human malignancy and the second most frequently diagnosed genitourinary tumor after prostate cancer. The majority of malignant tumors arising in the urinary bladder are urothelial carcinomas. Clinically, superficial bladder tumors (stages Ta and Tis) account for 75% to 85% of neoplasms, while the remaining 15% to 25% are invasive (T1, T2-T4) or metastatic lesions at the time of initial presentation. Several studies have revealed that distinct genotypic and phenotypic patterns are associated with early vs. late stages of bladder cancer. Early superficial disease appears to segregate into 2 main pathways: (1) superficial papillary bladder tumors, which are characterized by gain-of-function mutations affecting oncogenes such as H-RAS, FGFR3, and PI3K, and deletions of the long arm of chromosome 9 (9q); (2) Carcinoma in situ, a "flat" high grade lesion considered to be a precursor of invasive cancer, is characterized by loss-of-function mutations affecting tumor suppressor genes, such as p53, RB, and PTEN. Based on these data, a model for bladder tumor progression has been proposed in which 2 separate genetic pathways characterize the evolution of early bladder neoplasms. Several molecular markers have been correlated with tumor stage, but the rationale for these 2 well-defined genetic pathways still remains unclear. Normal urothelium is a pseudo-stratified epithelium that coats the bladder, composed of 3 cell types: basal, intermediate, and superficial ("umbrella") cells. We have identified a series of markers that are differently expressed in these distinct cells types, and postulated a novel model for urothelium development and configuration. Briefly, it is our working hypothesis that 2 distinct progenitor cells are responsible for basal/intermediate cells and "umbrella" cells, respectively. Basal and intermediate cells are characterized by a p63 positive phenotype, as well as expression of high molecular weight cytokeratins (CKs), such as CK5, CK10, and CK14. On the contrary, "umbrella" cells display a p63 negative phenotype and are characterized by expression of 2 specific low molecular weight CKs: CK18 and CK20. Neither urothelial stem cells nor bladder cancer stem cells have been identified to date. In this review, we will further expand on the issues discussed above.
Related JoVE Video
Mouse models of human bladder cancer as a tool for drug discovery.
Curr Protoc Pharmacol
PUBLISHED: 06-01-2010
Show Abstract
Hide Abstract
Muscle-invasive bladder cancer is a deadly condition in dire need of effective new treatments. This unit contains a description of mouse models suitable for the evaluation of potential new therapies. Included is a genetically engineered mouse model of bladder cancer generated by the delivery of an adenovirus expressing Cre recombinase into the bladder lumen. Also described is an orthotopic mouse model created by the instillation of human bladder tumor cells into the bladder lumen of immune deficient mice. Protocols are also provided on the use of these models for the preclinical evaluation of new chemical entities, with mTOR inhibitors shown as an example.
Related JoVE Video
Associations between NBS1 polymorphisms, haplotypes and smoking-related cancers.
Carcinogenesis
PUBLISHED: 05-17-2010
Show Abstract
Hide Abstract
Constituents of tobacco smoke can cause DNA double-strand breaks (DSBs), leading to tumorigenesis. The NBS1 gene product is a vital component in DSB detection and repair, thus genetic variations may influence cancer development. We examined the associations between NBS1 polymorphisms and haplotypes and newly incident smoking-related cancers in three case-control studies (Los Angeles: 611 lung and 601 upper aero-digestive tract (UADT) cancer cases and 1040 controls; Memorial Sloan-Kettering Cancer Center: 227 bladder cancer cases and 211 controls and Taixing, China: 218 esophagus, 206 stomach, 204 liver cancer cases and 415 controls). rs1061302 was associated with cancers of the lung [adjusted odds ratio (OR(adj)) = 1.6, 95% confidence interval (CI): 1.2, 2.4], larynx (OR(adj) = 0.56, 95% CI: 0.32, 0.97) and liver (OR(adj) = 1.7, 95% CI: 1.0, 2.9). Additionally, positive associations were found for rs709816 with bladder cancer (OR(adj) = 4.2, 95% CI: 1.4, 12) and rs1063054 with lung cancer (OR(adj) = 1.6, 95% CI: 1.0, 2.3). Some associations in lung and stomach cancers varied with smoking status. CAC haplotype was positively associated with smoking-related cancers: lung (OR(adj) = 1.7, 95% CI: 1.1, 2.9) and UADT (OR(adj) = 2.0, 95% CI: 1.1, 3.7), specifically, oropharynx (OR(adj) = 2.1, 95% CI: 1.0, 4.2) and larynx (OR(adj) = 4.8, 95% CI: 1.7, 14). Bayesian false-discovery probabilities were calculated to assess Type I error. It appears that NBS1 polymorphisms and haplotypes may be associated with smoking-related cancers and that these associations may differ by smoking status. Our findings also suggest that single-nucleotide polymorphisms located in the binding region of the MRE-RAD50-NBS1 complex or microRNA targeted pathways may influence tumor development. These hypotheses should be further examined in functional studies.
Related JoVE Video
The TLX1 oncogene drives aneuploidy in T cell transformation.
Nat. Med.
PUBLISHED: 03-31-2010
Show Abstract
Hide Abstract
The TLX1 oncogene (encoding the transcription factor T cell leukemia homeobox protein-1) has a major role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). However, the specific mechanisms of T cell transformation downstream of TLX1 remain to be elucidated. Here we show that transgenic expression of human TLX1 in mice induces T-ALL with frequent deletions and mutations in Bcl11b (encoding B cell leukemia/lymphoma-11B) and identify the presence of recurrent mutations and deletions in BCL11B in 16% of human T-ALLs. Most notably, mouse TLX1 tumors were typically aneuploid and showed a marked defect in the activation of the mitotic checkpoint. Mechanistically, TLX1 directly downregulates the expression of CHEK1 (encoding CHK1 checkpoint homolog) and additional mitotic control genes and induces loss of the mitotic checkpoint in nontransformed preleukemic thymocytes. These results identify a previously unrecognized mechanism contributing to chromosomal missegregation and aneuploidy active at the earliest stages of tumor development in the pathogenesis of cancer.
Related JoVE Video
Integrative genome comparison of primary and metastatic melanomas.
PLoS ONE
PUBLISHED: 03-09-2010
Show Abstract
Hide Abstract
A cardinal feature of malignant melanoma is its metastatic propensity. An incomplete view of the genetic events driving metastatic progression has been a major barrier to rational development of effective therapeutics and prognostic diagnostics for melanoma patients. In this study, we conducted global genomic characterization of primary and metastatic melanomas to examine the genomic landscape associated with metastatic progression. In addition to uncovering three genomic subclasses of metastastic melanomas, we delineated 39 focal and recurrent regions of amplification and deletions, many of which encompassed resident genes that have not been implicated in cancer or metastasis. To identify progression-associated metastasis gene candidates, we applied a statistical approach, Integrative Genome Comparison (IGC), to define 32 genomic regions of interest that were significantly altered in metastatic relative to primary melanomas, encompassing 30 resident genes with statistically significant expression deregulation. Functional assays on a subset of these candidates, including MET, ASPM, AKAP9, IMP3, PRKCA, RPA3, and SCAP2, validated their pro-invasion activities in human melanoma cells. Validity of the IGC approach was further reinforced by tissue microarray analysis of Survivin showing significant increased protein expression in thick versus thin primary cutaneous melanomas, and a progression correlation with lymph node metastases. Together, these functional validation results and correlative analysis of human tissues support the thesis that integrated genomic and pathological analyses of staged melanomas provide a productive entry point for discovery of melanoma metastases genes.
Related JoVE Video
Galectin-3 expression is associated with bladder cancer progression and clinical outcome.
Tumour Biol.
PUBLISHED: 02-14-2010
Show Abstract
Hide Abstract
Galectin-3 belongs to a family of carbohydrate-binding proteins whose function is not fully characterized. However, it is believed to play a role in adhesion, proliferation and apoptosis in solid tumors. We aimed at investigating galectin-3 expression in bladder cancer. Galectin-3 expression was assessed by transcript profiling (U133A arrays) in a series or frozen bladder tumors (n = 105). Immunohistochemistry was performed on tissue arrays containing bladder tumors (n = 389) to evaluate associations of protein expression patterns of galectin-3 with proliferation (Ki67), apoptosis (apopdetek), bcl-2, and clinicopathologic variables. Galectin-3 protein levels were then quantified in 160 urinary specimens of bladder cancer patients and controls by enzymeimmunoanalysis. Galectin-3 gene expression levels increased in invasive tumours as compared with non-muscle invasive lesions (p = 0.001) and were associated with poor survival in patients with advanced disease (p = 0.03). Protein expression patterns also correlated galectin-3 with tumor stage (p < 0.001), grade (p = 0.03), Ki67 and apopdetek (p < 0.001), and overall survival in patients with T1G3 tumors (p < 0.001). Furthermore, galectin-3 urinary levels segregated bladder cancer patients from controls with high diagnostic accuracy (AUC = 0.7). Independent series of bladder tumors showed that transcript and protein levels of galectin-3 were differentially expressed along bladder cancer progression. Urinary protein levels served to identify bladder cancer patients. These observations suggest a role for galectin-3 as a biomarker for bladder cancer diagnostics, staging, and outcome prognosis.
Related JoVE Video
PHF6 mutations in T-cell acute lymphoblastic leukemia.
Nat. Genet.
PUBLISHED: 02-03-2010
Show Abstract
Hide Abstract
Tumor suppressor genes on the X chromosome may skew the gender distribution of specific types of cancer. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with an increased incidence in males. In this study, we report the identification of inactivating mutations and deletions in the X-linked plant homeodomain finger 6 (PHF6) gene in 16% of pediatric and 38% of adult primary T-ALL samples. Notably, PHF6 mutations are almost exclusively found in T-ALL samples from male subjects. Mutational loss of PHF6 is importantly associated with leukemias driven by aberrant expression of the homeobox transcription factor oncogenes TLX1 and TLX3. Overall, these results identify PHF6 as a new X-linked tumor suppressor in T-ALL and point to a strong genetic interaction between PHF6 loss and aberrant expression of TLX transcription factors in the pathogenesis of this disease.
Related JoVE Video
Screening of Trypanosoma brucei gambiense in domestic livestock and tsetse flies from an insular endemic focus (Luba, Equatorial Guinea).
PLoS Negl Trop Dis
PUBLISHED: 02-02-2010
Show Abstract
Hide Abstract
Sleeping sickness is spread over 36 Sub-Saharan African countries. In West and Central Africa, the disease is caused by Trypanosoma brucei gambiense, which produces a chronic clinical manifestation. The Luba focus (Bioko Island, Equatorial Guinea) has not reported autochthonous sleeping sickness cases since 1995, but given the complexity of the epidemiological cycle, the elimination of the parasite in the environment is difficult to categorically ensure.
Related JoVE Video
Single nucleotide polymorphisms of 8 inflammation-related genes and their associations with smoking-related cancers.
Int. J. Cancer
PUBLISHED: 01-30-2010
Show Abstract
Hide Abstract
Tobacco smoke and its metabolites are carcinogens that increase tissue oxidative stress and induce target tissue inflammation. We hypothesized that genetic variation of inflammatory pathway genes plays a role in tobacco-related carcinogenesis and is modified by tobacco smoking. We evaluated the association of 12 single nucleotide polymorphisms of 8 inflammation-related genes with tobacco-related cancers (lung, oropharynx, larynx, esophagus, stomach, liver, bladder, and kidney) using 3 case-control studies from: Los Angeles (population-based; 611 lung and 553 upper aero-digestive tract cancer cases and 1,040 controls), Taixing, China (population-based; 218 esophagus, 206 stomach, 204 liver cancer cases, and 415 controls), and Memorial Sloan-Kettering Cancer Center (hospital-based; 227 bladder cancer cases and 211 controls). After adjusting for age, education, ethnicity, gender, and tobacco smoking, IL10 rs1800871 was inversely associated with oropharyngeal cancer (CT+TT vs. CC adjusted odds ratio [aOR]: 0.69, 95% confidence interval [CI]: 0.50-0.95), and was positively associated with lung cancer among never smokers (TT vs. CT+CC aOR: 2.5, 95% CI: 1.3-5.1) and inversely with oropharyngeal cancer among ever smokers (CT+TT vs. CC aOR: 0.63, 95% CI: 0.41-0.95). Among all pooled never smokers (588 cases and 816 controls), TNF rs1799964 was inversely associated with smoking-related cancer (CC vs. CT+TT aOR: 0.36, 95% CI: 0.17-0.77). Bayesian correction for multiple comparisons suggests that chance is unlikely to explain our findings (although epigenetic mechanisms may be in effect), which support our hypotheses, suggesting that IL10 rs1800871 is a susceptibility marker for oropharyngeal and lung cancers, and that TNF rs1799964 is associated with smoking-related cancers among never smokers.
Related JoVE Video
Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence.
Nature
PUBLISHED: 01-11-2010
Show Abstract
Hide Abstract
Cellular senescence has been recently shown to have an important role in opposing tumour initiation and promotion. Senescence induced by oncogenes or by loss of tumour suppressor genes is thought to critically depend on induction of the p19(Arf)-p53 pathway. The Skp2 E3-ubiquitin ligase can act as a proto-oncogene and its aberrant overexpression is frequently observed in human cancers. Here we show that although Skp2 inactivation on its own does not induce cellular senescence, aberrant proto-oncogenic signals as well as inactivation of tumour suppressor genes do trigger a potent, tumour-suppressive senescence response in mice and cells devoid of Skp2. Notably, Skp2 inactivation and oncogenic-stress-driven senescence neither elicit activation of the p19(Arf)-p53 pathway nor DNA damage, but instead depend on Atf4, p27 and p21. We further demonstrate that genetic Skp2 inactivation evokes cellular senescence even in oncogenic conditions in which the p19(Arf)-p53 response is impaired, whereas a Skp2-SCF complex inhibitor can trigger cellular senescence in p53/Pten-deficient cells and tumour regression in preclinical studies. Our findings therefore provide proof-of-principle evidence that pharmacological inhibition of Skp2 may represent a general approach for cancer prevention and therapy.
Related JoVE Video
miR-19 is a key oncogenic component of mir-17-92.
Genes Dev.
PUBLISHED: 12-17-2009
Show Abstract
Hide Abstract
Recent studies have revealed the importance of multiple microRNAs (miRNAs) in promoting tumorigenesis, among which mir-17-92/Oncomir-1 exhibits potent oncogenic activity. Genomic amplification and elevated expression of mir-17-92 occur in several human B-cell lymphomas, and enforced mir-17-92 expression in mice cooperates with c-myc to promote the formation of B-cell lymphomas. Unlike classic protein-coding oncogenes, mir-17-92 has an unconventional gene structure, where one primary transcript yields six individual miRNAs. Here, we functionally dissected the individual components of mir-17-92 by assaying their tumorigenic potential in vivo. Using the Emu-myc model of mouse B-cell lymphoma, we identified miR-19 as the key oncogenic component of mir-17-92, both necessary and sufficient for promoting c-myc-induced lymphomagenesis by repressing apoptosis. The oncogenic activity of miR-19 is at least in part due to its repression of the tumor suppressor Pten. Consistently, miR-19 activates the Akt-mTOR (mammalian target of rapamycin) pathway, thereby functionally antagonizing Pten to promote cell survival. Our findings reveal the essential role of miR-19 in mediating the oncogenic activity of mir-17-92, and implicate the functional diversity of mir-17-92 components as the molecular basis for its pleiotropic effects during tumorigenesis.
Related JoVE Video
Overexpression of phospho-eIF4E is associated with survival through AKT pathway in non-small cell lung cancer.
Clin. Cancer Res.
PUBLISHED: 12-15-2009
Show Abstract
Hide Abstract
The eukaryotic translation initiation factor complex 4E (eIF4E) is downstream in the mammalian target of rapamycin (mTOR) pathway. This study explored expression of eIF4E and its relationship with the PTEN/AKT and RAS/MEK/ERK pathways in non-small cell lung carcinoma (NSCLC).
Related JoVE Video
Intravesical delivery of rapamycin suppresses tumorigenesis in a mouse model of progressive bladder cancer.
Cancer Prev Res (Phila)
PUBLISHED: 12-01-2009
Show Abstract
Hide Abstract
Early-stage bladder cancer occurs as two distinct forms: namely, low-grade superficial disease and high-grade carcinoma in situ (CIS), which is the major precursor of muscle-invasive bladder cancer. Although the low-grade form is readily treatable, few, if any, effective treatments are currently available for preventing progression of nonmuscle-invasive CIS to invasive bladder cancer. Based on our previous findings that the mammalian target of Rapamycin (mTOR) signaling pathway is activated in muscle-invasive bladder cancer, but not superficial disease, we reasoned that suppression of this pathway might block cancer progression. To test this idea, we performed in vivo preclinical studies using a genetically engineered mouse model that we now show recapitulates progression from nonmuscle-invasive CIS to muscle-invasive bladder tumors. We find that delivery of Rapamycin, an mTOR inhibitor, subsequent to the occurrence of CIS effectively prevents progression to invasive bladder cancer. Furthermore, we show that intravesical delivery of Rapamycin directly into the bladder lumen is highly effective for suppressing bladder tumorigenesis. Thus, our findings show the potential therapeutic benefit of inhibiting mTOR signaling for treatment of patients at high risk of developing invasive bladder cancer. More broadly, our findings support a more widespread use of intravesical delivery of therapeutic agents for treatment of high-risk bladder cancer patients, and provide a mouse model for effective preclinical testing of potential novel agents.
Related JoVE Video
MFH classification: differentiating undifferentiated pleomorphic sarcoma in the 21st Century.
Expert Rev Anticancer Ther
PUBLISHED: 08-13-2009
Show Abstract
Hide Abstract
The essence and origin of malignant fibrous histiocytoma (MFH) have been debated for now close to five decades. Originally characterized as a morphologically unique soft-tissue sarcoma subtype of unclear etiology in 1963, with a following 15 years of research only to conclude that "the issue of histogenesis [of MFH] is largely unresolvable"; it is "now regarded as synonymous with [high grade] undifferentiated pleomorphic sarcoma and essentially represents a diagnosis of exclusion". Yet despite this apparent lack of progress, the first decade of the 21st century has seen some significant progress in terms of defining the origins of MFH. Perhaps more importantly these origins might also pave the way for novel therapies. This manuscript will highlight MFHs troubled history, discuss recent advances, and comment as to what the coming years may promise and what further needs to be done to make sure that progress continues.
Related JoVE Video
Androgen receptor expression is associated with prostate cancer-specific survival in castrate patients with metastatic disease.
BJU Int.
PUBLISHED: 07-14-2009
Show Abstract
Hide Abstract
To investigate whether baseline (before treatment) clinical variables and tumour specimen characteristics (including the androgen receptor, AR) from patients with castrate-resistant metastatic prostate cancer can be used to predict the time to prostate cancer-specific mortality and overall survival, as AR levels in prostate cancer have been associated with disease progression, including prostate-specific antigen (PSA) recurrence and systemic metastasis.
Related JoVE Video
3-Phosphoinositide-dependent kinase 1 potentiates upstream lesions on the phosphatidylinositol 3-kinase pathway in breast carcinoma.
Cancer Res.
PUBLISHED: 07-14-2009
Show Abstract
Hide Abstract
Lesions of ERBB2, PTEN, and PIK3CA activate the phosphatidylinositol 3-kinase (PI3K) pathway during cancer development by increasing levels of phosphatidylinositol-3,4,5-triphosphate (PIP(3)). 3-Phosphoinositide-dependent kinase 1 (PDK1) is the first node of the PI3K signal output and is required for activation of AKT. PIP(3) recruits PDK1 and AKT to the cell membrane through interactions with their pleckstrin homology domains, allowing PDK1 to activate AKT by phosphorylating it at residue threonine-308. We show that total PDK1 protein and mRNA were overexpressed in a majority of human breast cancers and that 21% of tumors had five or more copies of the gene encoding PDK1, PDPK1. We found that increased PDPK1 copy number was associated with upstream pathway lesions (ERBB2 amplification, PTEN loss, or PIK3CA mutation), as well as patient survival. Examination of an independent set of breast cancers and tumor cell lines derived from multiple forms of human cancers also found increased PDK1 protein levels associated with such upstream pathway lesions. In human mammary cells, PDK1 enhanced the ability of upstream lesions to signal to AKT, stimulate cell growth and migration, and rendered cells more resistant to PDK1 and PI3K inhibition. After orthotopic transplantation, PDK1 overexpression was not oncogenic but dramatically enhanced the ability of ERBB2 to form tumors. Our studies argue that PDK1 overexpression and increased PDPK1 copy number are common occurrences in cancer that potentiate the oncogenic effect of upstream lesions on the PI3K pathway. Therefore, we conclude that alteration of PDK1 is a critical component of oncogenic PI3K signaling in breast cancer.
Related JoVE Video
Systems pathology: a paradigm shift in the practice of diagnostic and predictive pathology.
Cancer
PUBLISHED: 06-23-2009
Show Abstract
Hide Abstract
Diagnostic tumor pathology in the context of personalized medicine has progressed from an interpretive, subjective science to a more objective, evidence-based practice. This has resulted in the development of several tissue-based, molecular-driven tests that provide information regarding prognosis and response to therapy. The challenge, however, for both the pathologist and the treating physician is how best to effectively integrate this data into a comprehensive treatment plan that includes a patient-specific risk assessment. To address this need, the authors developed a systems pathology approach to the practice of clinical molecular medicine through technical advances in object-oriented image analysis, and phenotyping at the microanatomical level using deparaffinized tissue section and quantitative biomarker multiplexing. With support vector regression for censored data, they have been able to integrate complex information and provide a patient-specific risk profile based on the clinical endpoint under investigation. Cancer 2009;115(13 suppl):3078-84. (c) 2009 American Cancer Society.
Related JoVE Video
The N-Myc-DLL3 cascade is suppressed by the ubiquitin ligase Huwe1 to inhibit proliferation and promote neurogenesis in the developing brain.
Dev. Cell
PUBLISHED: 06-13-2009
Show Abstract
Hide Abstract
Self-renewal and proliferation of neural stem cells and the decision to initiate neurogenesis are crucial events directing brain development. Here we show that the ubiquitin ligase Huwe1 operates upstream of the N-Myc-DLL3-Notch pathway to control neural stem cell activity and promote neurogenesis. Conditional inactivation of the Huwe1 gene in the mouse brain caused neonatal lethality associated with disorganization of the laminar patterning of the cortex. These defects stemmed from severe impairment of neurogenesis associated with uncontrolled expansion of the neural stem cell compartment. Loss- and gain-of-function experiments in the mouse cortex demonstrated that Huwe1 restrains proliferation and enables neuronal differentiation by suppressing the N-Myc-DLL3 cascade. Notably, human high-grade gliomas carry focal hemizygous deletions of the X-linked Huwe1 gene in association with amplification of the N-myc locus. Our results indicate that Huwe1 balances proliferation and neurogenesis in the developing brain and that this pathway is subverted in malignant brain tumors.
Related JoVE Video
Alveolar rhabdomyosarcoma: is the cell of origin a mesenchymal stem cell?
Cancer Lett.
PUBLISHED: 06-13-2009
Show Abstract
Hide Abstract
Alveolar rhabdomyosarcoma (ARMS) is a pediatric sarcoma that typically occurs in older children predominantly arising in the trunk and extremities, and exhibits a worse prognosis than other types of rhabdomyosarcomas. Most ARMS tumors have t(2; 13) or t(1; 13) translocations, involving PAX3-FKHR and PAX7-FKHR fusion genes, respectively. These genetic events result in a molecular gain of function of the fusion protein which is proposed, in a yet unspecified mechanism, to perturb the differentiation of muscle progenitor cells. While a significant amount of work has been done characterizing PAX-FKHR fusion proteins in ARMS and elucidating their involvement in the sarcomagenic process, their relationship to normal skeletal muscle differentiation remains unestablished. In this manuscript we will explore a potential role for mesenchymal stem cells as the cell of origin of ARMS, and the possibility that PAX-FKHR fusion genes may commit these cells to a myogenic lineage while inhibiting terminal differentiation, thus contributing to ARMS formation. We will also review the structure and function of alternate transcripts of PAX3, PAX7, FKHR and the fusion genes PAX3-FKHR and PAX7-FKHR, and discuss the role of these genes and their downstream targets in development of ARMS. Additionally, we will review transgenic mouse models and their ability to mimic the formation of ARMS.
Related JoVE Video
Personalized prediction of tumor response and cancer progression on prostate needle biopsy.
J. Urol.
PUBLISHED: 05-17-2009
Show Abstract
Hide Abstract
To our knowledge in patients with prostate cancer there are no available tests except clinical variables to determine the likelihood of disease progression. We developed a patient specific, biology driven tool to predict outcome at diagnosis. We also investigated whether biopsy androgen receptor levels predict a durable response to therapy after secondary treatment.
Related JoVE Video
Prediction of prostate cancer recurrence using magnetic resonance imaging and molecular profiles.
Clin. Cancer Res.
PUBLISHED: 05-12-2009
Show Abstract
Hide Abstract
To evaluate whether pretreatment magnetic resonance imaging (MRI)/MR spectroscopic imaging (MRSI) findings and molecular markers in surgical specimens correlate with each other and with pretreatment clinical variables (biopsy Gleason score, clinical stage, and prostate-specific antigen level) and whether they contribute incremental value in predicting prostate cancer recurrence.
Related JoVE Video
Comparison of models to predict clinical failure after radical prostatectomy.
Cancer
PUBLISHED: 03-19-2009
Show Abstract
Hide Abstract
Models are available to accurately predict biochemical disease recurrence (BCR) after radical prostatectomy (RP). Because not all patients experiencing BCR will progress to metastatic disease, it is appealing to determine postoperatively which patients are likely to manifest systemic disease.
Related JoVE Video
Inactivation of p53 and Pten promotes invasive bladder cancer.
Genes Dev.
PUBLISHED: 03-04-2009
Show Abstract
Hide Abstract
Although bladder cancer represents a serious health problem worldwide, relevant mouse models for investigating disease progression or therapeutic targets have been lacking. We show that combined deletion of p53 and Pten in bladder epithelium leads to invasive cancer in a novel mouse model. Inactivation of p53 and PTEN promotes tumorigenesis in human bladder cells and is correlated with poor survival in human tumors. Furthermore, the synergistic effects of p53 and Pten deletion are mediated by deregulation of mammalian target of rapamycin (mTOR) signaling, consistent with the ability of rapamycin to block bladder tumorigenesis in preclinical studies. Our integrated analyses of mouse and human bladder cancer provide a rationale for investigating mTOR inhibition for treatment of patients with invasive disease.
Related JoVE Video
Correlation of MR imaging and MR spectroscopic imaging findings with Ki-67, phospho-Akt, and androgen receptor expression in prostate cancer.
Radiology
PUBLISHED: 02-27-2009
Show Abstract
Hide Abstract
To retrospectively assess whether magnetic resonance (MR) imaging and MR spectroscopic imaging and selected molecular markers correlate with each other and with clinically insignificant and significant prostate cancer (PCa), as defined at surgical pathologic analysis.
Related JoVE Video
ETS rearrangements and prostate cancer initiation.
Nature
PUBLISHED: 02-13-2009
Show Abstract
Hide Abstract
The first recurrent translocation event in prostate cancer has been recently described; it results in the translocation of an ETS (E26 transformation specific) transcription factor (ERG or ETV1) to the TMPRSS2 promoter region, which contains androgen responsive elements. The TMPRSS2:ERG genetic rearrangement has been reported to occur in approximately 40% of primary prostate tumours (ETV1 genetic rearrangements occur at a much lower frequency), and it results in the aberrant androgen-regulated expression of ERG. Tomlins et al. concluded that ETS genetic rearrangements are sufficient to initiate prostate neoplasia. However, here we show that ETS genetic rearrangements may in fact represent progression events rather than initiation events in prostate tumorigenesis. To this end, we demonstrate that the prostate-specific overexpression of ERG does not initiate prostate tumorigenesis.
Related JoVE Video
Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate.
Nat. Genet.
PUBLISHED: 02-06-2009
Show Abstract
Hide Abstract
Chromosomal translocations involving the ERG locus are frequent events in human prostate cancer pathogenesis; however, the biological role of aberrant ERG expression is controversial. Here we show that aberrant expression of ERG is a progression event in prostate tumorigenesis. We find that prostate cancer specimens containing the TMPRSS2-ERG rearrangement are significantly enriched for loss of the tumor suppressor PTEN. In concordance with these findings, transgenic overexpression of ERG in mouse prostate tissue promotes marked acceleration and progression of high-grade prostatic intraepithelial neoplasia (HGPIN) to prostatic adenocarcinoma in a Pten heterozygous background. In vitro overexpression of ERG promotes cell migration, a property necessary for tumorigenesis, without affecting proliferation. ADAMTS1 and CXCR4, two candidate genes strongly associated with cell migration, were upregulated in the presence of ERG overexpression. Thus, ERG has a distinct role in prostate cancer progression and cooperates with PTEN haploinsufficiency to promote progression of HGPIN to invasive adenocarcinoma.
Related JoVE Video
Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia.
Nat. Med.
PUBLISHED: 02-05-2009
Show Abstract
Hide Abstract
Gamma-secretase inhibitors (GSIs) block the activation of the oncogenic protein Notch homolog-1 (NOTCH1) in T cell acute lymphoblastic leukemia (T-ALL). However, limited antileukemic cytotoxicity and severe gastrointestinal toxicity have restricted the clinical application of these targeted drugs. Here we show that combination therapy with GSIs plus glucocorticoids can improve the antileukemic effects of GSIs and reduce their gut toxicity in vivo. Inhibition of NOTCH1 signaling in glucocorticoid-resistant T-ALL restored glucocorticoid receptor autoupregulation and induced apoptotic cell death through induction of the gene encoding BCL-2-like apoptosis initiator-11 (BCL2L11). GSI treatment resulted in cell cycle arrest and accumulation of goblet cells in the gut mediated by upregulation of the gene encoding the transcription factor Krüppel-like factor-4 (Klf4), a negative regulator of the cell cycle required for goblet cell differentiation. In contrast, glucocorticoid treatment induced transcriptional upregulation of cyclin D2 (Ccnd2) and protected mice from developing the intestinal goblet cell metaplasia typically induced by inhibition of NOTCH signaling with GSIs. These results support a role for glucocorticoids plus GSIs in the treatment of glucocorticoid-resistant T-ALL.
Related JoVE Video
Differential requirement of mTOR in postmitotic tissues and tumorigenesis.
Sci Signal
PUBLISHED: 01-30-2009
Show Abstract
Hide Abstract
The mammalian target of rapamycin (mTOR) is a crucial effector in a complex signaling network commonly disrupted in cancer. mTOR exerts its multiple functions in the context of two different multiprotein complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Loss of the tumor suppressor PTEN (phosphatase and tensin homolog deleted from chromosome 10) can hyperactivate mTOR through AKT and represents one of the most frequent events in human prostate cancer. We show here that conditional inactivation of mTor in the adult mouse prostate is seemingly inconsequential for this postmitotic tissue. Conversely, inactivation of mTor leads to a marked suppression of Pten loss-induced tumor initiation and progression in the prostate. This suppression is more pronounced than that elicited by the sole pharmacological abrogation of mTORC1. Acute inactivation of mTor in vitro also highlights the differential requirement of mTor function in proliferating and transformed cells. Collectively, our data constitute a strong rationale for developing specific mTOR inhibitors targeting both mTORC1 and mTORC2 for the treatment of tumors triggered by PTEN deficiency and aberrant mTOR signaling.
Related JoVE Video
A systems pathology model for predicting overall survival in patients with refractory, advanced non-small-cell lung cancer treated with gefitinib.
Eur. J. Cancer
PUBLISHED: 01-28-2009
Show Abstract
Hide Abstract
To identify clinical and biometric features associated with overall survival of patients with advanced refractory non-small-cell lung cancer (NSCLC) treated with gefitinib.
Related JoVE Video
Cyfip1 is a putative invasion suppressor in epithelial cancers.
Cell
PUBLISHED: 01-23-2009
Show Abstract
Hide Abstract
Identification of bona fide tumor suppressors is often challenging because of the large number of genetic alterations present in most human cancers. To evaluate candidate genes present within chromosomal regions recurrently deleted in human cancers, we coupled high-resolution genomic analysis with a two-stage genetic study using RNA interference (RNAi). We found that Cyfip1, a subunit of the WAVE complex, which regulates cytoskeletal dynamics, is commonly deleted in human epithelial cancers. Reduced expression of CYFIP1 is commonly observed during invasion of epithelial tumors and is associated with poor prognosis in this setting. Silencing of Cyfip1 disturbed normal epithelial morphogenesis in vitro and cooperated with oncogenic Ras to produce invasive carcinomas in vivo. Mechanistically, we have linked alterations in WAVE-regulated actin dynamics with impaired cell-cell adhesion and cell-ECM interactions. Thus, we propose Cyfip1 as an invasion suppressor gene.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.