JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Cerebellar integrity in the amyotrophic lateral sclerosis-frontotemporal dementia continuum.
PLoS ONE
PUBLISHED: 08-21-2014
Show Abstract
Hide Abstract
Amyotrophic lateral sclerosis (ALS) and behavioural variant frontotemporal dementia (bvFTD) are multisystem neurodegenerative disorders that manifest overlapping cognitive, neuropsychiatric and motor features. The cerebellum has long been known to be crucial for intact motor function although emerging evidence over the past decade has attributed cognitive and neuropsychiatric processes to this structure. The current study set out i) to establish the integrity of cerebellar subregions in the amyotrophic lateral sclerosis-behavioural variant frontotemporal dementia spectrum (ALS-bvFTD) and ii) determine whether specific cerebellar atrophy regions are associated with cognitive, neuropsychiatric and motor symptoms in the patients. Seventy-eight patients diagnosed with ALS, ALS-bvFTD, behavioural variant frontotemporal dementia (bvFTD), most without C9ORF72 gene abnormalities, and healthy controls were investigated. Participants underwent cognitive, neuropsychiatric and functional evaluation as well as structural imaging using voxel-based morphometry (VBM) to examine the grey matter subregions of the cerebellar lobules, vermis and crus. VBM analyses revealed: i) significant grey matter atrophy in the cerebellum across the whole ALS-bvFTD continuum; ii) atrophy predominantly of the superior cerebellum and crus in bvFTD patients, atrophy of the inferior cerebellum and vermis in ALS patients, while ALS-bvFTD patients had both patterns of atrophy. Post-hoc covariance analyses revealed that cognitive and neuropsychiatric symptoms were particularly associated with atrophy of the crus and superior lobule, while motor symptoms were more associated with atrophy of the inferior lobules. Taken together, these findings indicate an important role of the cerebellum in the ALS-bvFTD disease spectrum, with all three clinical phenotypes demonstrating specific patterns of subregional atrophy that associated with different symptomology.
Related JoVE Video
Chorea-acanthocytosis presenting as dystonia.
Acta Clin Croat
PUBLISHED: 07-01-2014
Show Abstract
Hide Abstract
The aim of this article is to present two Slovenian chorea-acanthocytosis (ChAc) siblings with an unusual predominantly dystonic ChAc phenotype. For diagnostic purposes, the genomic DNA was screened for VPS13A mutations. Movement disorder was evaluated and scored according to the Dystonia Movement and Disability Scale (DMDS) in order to evaluate the effects of L-dopa on dystonia. Brain imaging was performed with the use of magnetic resonance imaging scan and 99m Tc-ethyl cysteinate dimmer single photon emission computed tomography (Tc-ECD SPECT). Clinical neurological examination disclosed gait dystonia. Marked swallowing difficulty due to tongue and feeding dystonia was observed. Both siblings were found to be heterozygous for a substitution in exon 22 (c.2191C>T) and for a deletion in exon 35 (c.3995_3996delinsA) leading to mutation in VPS13A. After being administered L-dopa for three months, both subjects showed significant symptomatic improvement documented by reduced DMDS scores. It is concluded that VPS13A mutation testing may improve diagnosis of dystonia and recognition of atypical ChAc phenotypes. It seems that L-dopa could be effective in the treatment of dystonia due to VPS13A mutations.
Related JoVE Video
Frontotemporal dementia and its subtypes: a genome-wide association study.
Raffaele Ferrari, Dena G Hernandez, Michael A Nalls, Jonathan D Rohrer, Adaikalavan Ramasamy, John B J Kwok, Carol Dobson-Stone, William S Brooks, Peter R Schofield, Glenda M Halliday, John R Hodges, Olivier Piguet, Lauren Bartley, Elizabeth Thompson, Eric Haan, Isabel Hernández, Agustin Ruíz, Mercè Boada, Barbara Borroni, Alessandro Padovani, Carlos Cruchaga, Nigel J Cairns, Luisa Benussi, Giuliano Binetti, Roberta Ghidoni, Gianluigi Forloni, Daniela Galimberti, Chiara Fenoglio, Maria Serpente, Elio Scarpini, Jordi Clarimón, Alberto Lleó, Rafael Blesa, Maria Landqvist Waldö, Karin Nilsson, Christer Nilsson, Ian R A Mackenzie, Ging-Yuek R Hsiung, David M A Mann, Jordan Grafman, Christopher M Morris, Johannes Attems, Timothy D Griffiths, Ian G McKeith, Alan J Thomas, P Pietrini, Edward D Huey, Eric M Wassermann, Atik Baborie, Evelyn Jaros, Michael C Tierney, Pau Pastor, Cristina Razquin, Sara Ortega-Cubero, Elena Alonso, Robert Perneczky, Janine Diehl-Schmid, Panagiotis Alexopoulos, Alexander Kurz, Innocenzo Rainero, Elisa Rubino, Lorenzo Pinessi, Ekaterina Rogaeva, Peter St George-Hyslop, Giacomina Rossi, Fabrizio Tagliavini, Giorgio Giaccone, James B Rowe, Johannes C M Schlachetzki, James Uphill, John Collinge, Simon Mead, Adrian Danek, Vivianna M Van Deerlin, Murray Grossman, John Q Trojanowski, Julie van der Zee, William Deschamps, Tim Van Langenhove, Marc Cruts, Christine Van Broeckhoven, Stefano F Cappa, Isabelle Le Ber, Didier Hannequin, Véronique Golfier, Martine Vercelletto, Alexis Brice, Benedetta Nacmias, Sandro Sorbi, Silvia Bagnoli, Irene Piaceri, Jørgen E Nielsen, Lena E Hjermind, Matthias Riemenschneider, Manuel Mayhaus, Bernd Ibach, Gilles Gasparoni, Sabrina Pichler, Wei Gu, Martin N Rossor, Nick C Fox, Jason D Warren, Maria Grazia Spillantini, Huw R Morris, Patrizia Rizzu, Peter Heutink, Julie S Snowden, Sara Rollinson, Anna Richardson, Alexander Gerhard, Amalia C Bruni, Raffaele Maletta, Francesca Frangipane, Chiara Cupidi, Livia Bernardi, Maria Anfossi, Maura Gallo, Maria Elena Conidi, Nicoletta Smirne, Rosa Rademakers, Matt Baker, Dennis W Dickson, Neill R Graff-Radford, Ronald C Petersen, David Knopman, Keith A Josephs, Bradley F Boeve, Joseph E Parisi, William W Seeley, Bruce L Miller, Anna M Karydas, Howard Rosen, John C van Swieten, Elise G P Dopper, Harro Seelaar, Yolande A L Pijnenburg, Philip Scheltens, Giancarlo Logroscino, Rosa Capozzo, Valeria Novelli, Annibale A Puca, Massimo Franceschi, Alfredo Postiglione, Graziella Milan, Paolo Sorrentino, Mark Kristiansen, Huei-Hsin Chiang, Caroline Graff, Florence Pasquier, Adeline Rollin, Vincent Deramecourt, Florence Lebert, Dimitrios Kapogiannis, Luigi Ferrucci, Stuart Pickering-Brown, Andrew B Singleton, John Hardy, Parastoo Momeni.
Lancet Neurol
PUBLISHED: 06-20-2014
Show Abstract
Hide Abstract
Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes-MAPT, GRN, and C9orf72--have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder.
Related JoVE Video
The impact of 5-HTTLPR on acute serotonin transporter blockade by escitalopram on emotion processing: Preliminary findings from a randomised, crossover fMRI study.
Aust N Z J Psychiatry
PUBLISHED: 05-08-2014
Show Abstract
Hide Abstract
Benefit from antidepressant treatment such as selective serotonin reuptake inhibitors (SSRIs) may depend on individual differences in acute effects on neural emotion processing. The short ('S') allele of the serotonin transporter (5-HTT)-linked polymorphic region (5-HTTLPR) is associated with both negative emotion processing biases and poorer treatment outcomes. Therefore, the aim of the present study was to explore the effects of 5-HTTLPR on the impact of the SSRI escitalopram during processing of positive and negative emotional images, as well as neutral stimuli.
Related JoVE Video
A functional polymorphism of the MAOA gene is associated with neural responses to induced anger control.
J Cogn Neurosci
PUBLISHED: 02-24-2014
Show Abstract
Hide Abstract
Aggressiveness is highly heritable. Recent experimental work has linked individual differences in a functional polymorphism of the monoamine oxidase-A gene (MAOA) to anger-driven aggression. Other work has implicated the dorsal ACC (dACC) in cognitive-emotional control and the amygdala in emotional arousal. The present imaging genetics study investigated dACC and amygdala reactivity to induced anger control as a function of MAOA genotype. A research assistant asked 38 healthy male undergraduates to control their anger in response to an insult by a rude experimenter. Men with the low-expression allele showed increased dACC and amygdala activation after the insult, but men with the high-expression allele did not. Both dACC and amygdala activation independently mediated the relationship between MAOA genotype and self-reported anger control. Moreover, following the insult, men with the high-functioning allele showed functional decoupling between the amygdala and dACC, but men with the low-functioning allele did not. These results suggest that heightened dACC and amygdala activation and their connectivity are neuroaffective mechanisms underlying anger control in participants with the low-functioning allele of the MAOA gene.
Related JoVE Video
Variation in the oxytocin receptor gene is associated with increased risk for anxiety, stress and depression in individuals with a history of exposure to early life stress.
J Psychiatr Res
PUBLISHED: 01-21-2014
Show Abstract
Hide Abstract
Oxytocin is a neuropeptide that is involved in the regulation of mood, anxiety and social biology. Genetic variation in the oxytocin receptor gene (OXTR) has been implicated in anxiety, depression and related stress phenotypes. It is not yet known whether OXTR interacts with other risk factors such as early life trauma to heighten the severity of experienced anxiety and depression.
Related JoVE Video
TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions.
Acta Neuropathol.
PUBLISHED: 01-19-2014
Show Abstract
Hide Abstract
Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis, and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA-binding protein of 43 kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here, we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n = 14), with the major allele correlated with later age at death (p = 0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n = 75), again finding that the major allele associates with later age at death (p = 0.016), as well as later age at onset (p = 0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease.
Related JoVE Video
Methylation of the oxytocin receptor gene and oxytocin blood levels in the development of psychopathy.
Dev. Psychopathol.
PUBLISHED: 09-23-2013
Show Abstract
Hide Abstract
Child conduct problems (CPs) are a robust predictor of adult mental health; the concurrence of callous-unemotional (CU) traits confers specific risk for psychopathy. Psychopathy may be related to disturbances in the oxytocin (OXT) system. Evidence suggests that epigenetic changes in the OXT receptor gene (OXTR) are associated with lower circulating OXT and social-cognitive difficulties. We tested methylation levels of OXTR in 4- to 16-year-old males who met DSM criteria for a diagnosis of oppositional-defiant or conduct disorder and were stratified by CU traits and age. Measures were DNA methylation levels of six CpG sites in the promoter region of the OXTR gene (where a CpG site is a cytosine nucleotide occurs next to a guanine nucleotide in the linear sequence of bases along its lenth, linked together by phosphate binding), and OXT blood levels. High CU traits were associated with greater methylation of the OXTR gene for two cytosine nucleotide and guanine nucleotide phosphate linked sites and lower circulating OXT in older males. Higher methylation correlated with lower OXT levels. We conclude that greater methylation of OXTR characterizes adolescent males with high levels of CU and CPs, and this methylation is associated with lower circulating OXT and functional impairment in interpersonal empathy. The results add genetic evidence that high CU traits specify a distinct subgroup within CP children, and they suggest models of psychopathy may be informed by further identification of these epigenetic processes and their functional significance.
Related JoVE Video
Polymorphisms in the oxytocin receptor gene are associated with the development of psychopathy.
Dev. Psychopathol.
PUBLISHED: 09-23-2013
Show Abstract
Hide Abstract
The co-occurrence of child conduct problems (CPs) and callous-unemotional (CU) traits confers risk for psychopathy. The oxytocin (OXT) system is a likely candidate for involvement in the development of psychopathy. We tested variations in the OXT receptor gene (OXTR) in CP children and adolescents with varying levels of CU traits. Two samples of Caucasian children, aged 4-16 years, who met DSM criteria for disruptive behavior problems and had no features of autism spectrum disorder, were stratified into low versus high CU traits. Measures were the frequencies of nine candidate OXTR polymorphisms (single nucleotide polymorphisms). In Sample 1, high CU traits were associated with single nucleotide polymorphism rs1042778 in the 3 untranslated region of OXTR and the CGCT haplotype of rs2268490, rs2254298, rs237889, and rs13316193. The association of rs1042778 was replicated in the second rural sample and held across gender and child versus adolescent age groups. We conclude that polymorphic variation of the OXTR characterizes children with high levels of CU traits and CPs. The results are consistent with a hypothesized role of OXT in the developmental antecedents of psychopathy, particularly the differential amygdala activation model of psychopathic traits, and add genetic evidence that high CU traits specify a distinct subgroup within CP children.
Related JoVE Video
DNA methylation of the MAPT gene in Parkinsons disease cohorts and modulation by vitamin E In Vitro.
Mov. Disord.
PUBLISHED: 07-09-2013
Show Abstract
Hide Abstract
Parkinsons disease (PD) is a neurodegenerative disorder for which environmental factors influence disease risk and may act via an epigenetic mechanism. The microtubule-associated protein tau (MAPT) is a susceptibility gene for idiopathic PD. Methylation levels were determined by pyrosequencing of bisulfite-treated DNA in a leukocyte cohort (358 PD patients and 1084 controls) and in two brain cohorts (Brain1, comprising 69 cerebellum controls; and Brain2, comprising 3 brain regions from 28 PD patients and 12 controls). In vitro assays involved the transfection of methylated promoter-luciferase constructs or treatment with an exogenous micronutrient. In normal leukocytes, the MAPT H1/H2 diplotype and sex were predictors of MAPT methylation. Haplotype-specific pyrosequencing confirmed that the H1 haplotype had higher methylation than the H2 haplotype in normal leukocytes and brain tissues. MAPT methylation was negatively associated with MAPT expression in the Brain1 cohort and in transfected cells. Methylation levels differed between three normal brain regions (Brain2 cohort, putamen?
Related JoVE Video
Endogenous progesterone levels and frontotemporal dementia: modulation of TDP-43 and Tau levels in vitro and treatment of the A315T TARDBP mouse model.
Dis Model Mech
PUBLISHED: 06-20-2013
Show Abstract
Hide Abstract
Frontotemporal dementia (FTD) is associated with motor neurone disease (FTD-MND), corticobasal syndrome (CBS) and progressive supranuclear palsy syndrome (PSPS). Together, this group of disorders constitutes a major cause of young-onset dementia. One of the three clinical variants of FTD is progressive nonfluent aphasia (PNFA), which is focused on in this study. The steroid hormone progesterone (PROG) is known to have an important role as a neurosteroid with potent neuroprotective and promyelination properties. In a case-control study of serum samples (39 FTD, 91 controls), low serum PROG was associated with FTD overall. In subgroup analysis, low PROG levels were significantly associated with FTD-MND and CBS, but not with PSPS or PNFA. PROG levels of >195 pg/ml were significantly correlated with lower disease severity (frontotemporal dementia rating scale) for individuals with CBS. In the human neuroblastoma SK-N-MC cell line, exogenous PROG (9300-93,000 pg/ml) had a significant effect on overall Tau and nuclear TDP-43 levels, reducing total Tau levels by ?1.5-fold and increasing nuclear TDP-43 by 1.7- to 2.0-fold. Finally, elevation of plasma PROG to a mean concentration of 5870 pg/ml in an Ala315Thr (A315T) TARDBP transgenic mouse model significantly reduced the rate of loss of locomotor control in PROG-treated, compared with placebo, mice. The PROG treatment did not significantly increase survival of the mice, which might be due to the limitation of the transgenic mouse to accurately model TDP-43-mediated neurodegeneration. Together, our clinical, cellular and animal data provide strong evidence that PROG could be a valid therapy for specific related disorders of FTD.
Related JoVE Video
The association between the oxytocin receptor gene (OXTR) and hypnotizability.
Psychoneuroendocrinology
PUBLISHED: 03-02-2013
Show Abstract
Hide Abstract
Hypnosis has puzzled scientists for centuries, and particularly the reason why some people are prone to engaging in suggested experiences discordant with external reality. Absorption in internal experience is one key component of the hypnotic response. The neuropeptide oxytocin has been posited to heighten sensitivity to external cues, and it is possible that individual differences in oxytocin-related capacity to engage in external or internal experiences influences hypnotic response. To test this proposal, 185 Caucasian individuals provided saliva samples for analysis of polymorphisms in the oxytocin receptor gene, COMT, and independently completed standardized measures of hypnotizability and absorption. Participants with the GG genotype at rs53576 were characterized by lower hypnotizability and absorption scores than those with the A allele; there was no association between hyponotizability and COMT. These findings provide initial evidence that the capacity to respond to suggestions for altered internal experience is influenced by the oxytocin receptor gene, and is consistent with evidence that oxytocin plays an important role in modulating the extent to which people engage with external versus internal experiences.
Related JoVE Video
C9ORF72 repeat expansion in Australian and Spanish frontotemporal dementia patients.
PLoS ONE
PUBLISHED: 01-15-2013
Show Abstract
Hide Abstract
A hexanucleotide repeat expansion in C9ORF72 has been established as a common cause of frontotemporal dementia (FTD). However, the minimum repeat number necessary for disease pathogenesis is not known. The aims of our study were to determine the frequency of the C9ORF72 repeat expansion in two FTD patient collections (one Australian and one Spanish, combined n?=?190), to examine C9ORF72 expansion allele length in a subset of FTD patients, and to examine C9ORF72 allele length in non-expansion patients (those with <30 repeats). The C9ORF72 repeat expansion was detected in 5-17% of patients (21-41% of familial FTD patients). For one family, the expansion was present in the proband but absent in the mother, who was diagnosed with dementia at age 68. No association was found between C9ORF72 non-expanded allele length and age of onset and in the Spanish sample mean allele length was shorter in cases than in controls. Southern blotting analysis revealed that one of the nine expansion-positive patients examined, who had neuropathologically confirmed frontotemporal lobar degeneration with TDP-43 pathology, harboured an intermediate allele with a mean size of only ?65 repeats. Our study indicates that the C9ORF72 repeat expansion accounts for a significant proportion of Australian and Spanish FTD cases. However, C9ORF72 allele length does not influence the age at onset of non-expansion FTD patients in the series examined. Expansion of the C9ORF72 allele to as little as ?65 repeats may be sufficient to cause disease.
Related JoVE Video
An exploration of the serotonin system in antisocial boys with high levels of callous-unemotional traits.
PLoS ONE
PUBLISHED: 01-14-2013
Show Abstract
Hide Abstract
The serotonin system is thought to play a role in the aetiology of antisocial and aggressive behaviour in both adults and children however previous findings have been inconsistent. Recently, research has suggested that the function of the serotonin system may be specifically altered in a sub-set of antisocial populations - those with psychopathic (callous-unemotional) personality traits. We explored the relationships between callous-unemotional traits and functional polymorphisms of selected serotonin-system genes, and tested the association between callous-unemotional traits and serum serotonin levels independently of antisocial and aggressive behaviour.
Related JoVE Video
Frontotemporal dementia-amyotrophic lateral sclerosis syndrome locus on chromosome 16p12.1-q12.2: genetic, clinical and neuropathological analysis.
Acta Neuropathol.
PUBLISHED: 01-08-2013
Show Abstract
Hide Abstract
Numerous families exhibiting both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) have been described, and although many of these have been shown to harbour a repeat expansion in C9ORF72, several C9ORF72-negative FTD-ALS families remain. We performed neuropathological and genetic analysis of a large European Australian kindred (Aus-12) with autosomal dominant inheritance of dementia and/or ALS. Affected Aus-12 members developed either ALS or dementia; some of those with dementia also had ALS and/or extrapyramidal features. Neuropathology was most consistent with frontotemporal lobar degeneration with type B TDP pathology, but with additional phosphorylated tau pathology consistent with corticobasal degeneration. Aus-12 DNA samples were negative for mutations in all known dementia and ALS genes, including C9ORF72 and FUS. Genome-wide linkage analysis provided highly suggestive evidence (maximum multipoint LOD score of 2.9) of a locus on chromosome 16p12.1-16q12.2. Affected individuals shared a chromosome 16 haplotype flanked by D16S3103 and D16S489, spanning 37.9 Mb, with a smaller suggestive disease haplotype spanning 24.4 Mb defined by recombination in an elderly unaffected individual. Importantly, this smaller region does not overlap with FUS. Whole-exome sequencing identified four variants present in the maximal critical region that segregate with disease. Linkage analysis incorporating these variants generated a maximum multipoint LOD score of 3.0. These results support the identification of a locus on chromosome 16p12.1-16q12.2 responsible for an unusual cluster of neurodegenerative phenotypes. This region overlaps with a separate locus on 16q12.1-q12.2 reported in an independent ALS family, indicating that this region may harbour a second major locus for FTD-ALS.
Related JoVE Video
The brain-derived neurotrophic factor Val66Met polymorphism predicts response to exposure therapy in posttraumatic stress disorder.
Biol. Psychiatry
PUBLISHED: 01-08-2013
Show Abstract
Hide Abstract
The most effective treatment for posttraumatic stress disorder (PTSD) is exposure therapy, which aims to facilitate extinction of conditioned fear. Recent evidence suggests that brain-derived neurotrophic factor (BDNF) facilitates extinction learning. This study assessed whether the Met-66 allele of BDNF, which results in lower activity-dependent secretion, predicts poor response to exposure therapy in PTSD.
Related JoVE Video
Neural substrates of episodic memory dysfunction in behavioural variant frontotemporal dementia with and without C9ORF72 expansions.
Neuroimage Clin
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The recently discovered hexanucleotide repeat expansion, C9ORF72, has been shown to be among the most common cause of familial behavioural variant frontotemporal dementia (bvFTD) and to be present in a significant minority of apparently sporadic cases. While mounting evidence points to prominent episodic memory dysfunction in bvFTD cases, recent reports have also suggested an amnestic profile in C9ORF72 mutation carriers. No study to date, however, has formally characterised the extent to which episodic memory is impaired in C9ORF72 mutation versus sporadic cases, or the underlying neural substrates of such deficits. We conducted a comparison of C9ORF72 (n = 8) and sporadic (n = 15) bvFTD cases using a battery of verbal and visual episodic memory tasks, and contrasted their performance with that of Alzheimers disease (AD, n = 15) and healthy older control (n = 15) participants. Behaviourally, the two bvFTD groups displayed comparable episodic memory profiles, irrespective of task administered, with prominent impairments evident relative to Controls. Whole-brain voxel-based morphometry analyses revealed distinct neural correlates of episodic memory dysfunction in each patient group. Widespread atrophy in medial prefrontal, medial and lateral temporal cortices correlated robustly with episodic memory dysfunction in sporadic bvFTD cases. In contrast, atrophy in a distributed set of regions in the frontal, temporal, and parietal lobes including the posterior cingulate cortex, was implicated in episodic memory dysfunction in C9ORF72 cases. Our results demonstrate that while episodic memory is disrupted to the same extent irrespective of genetic predisposition in bvFTD, distinct neural changes specific to each patient group are evident. The involvement of medial and lateral parietal regions in episodic memory dysfunction in C9ORF72 cases is of particular significance and represents an avenue of considerable interest for future studies.
Related JoVE Video
GSK3B and MAPT polymorphisms are associated with grey matter and intracranial volume in healthy individuals.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The microtubule-associated protein tau gene (MAPT) codes for a protein that plays an integral role in stabilisation of microtubules and axonal transport in neurons. As well as its role in susceptibility to neurodegeneration, previous studies have found an association between the MAPT haplotype and intracranial volume and regional grey matter volumes in healthy adults. The glycogen synthase kinase-3? gene (GSK3B) codes for a serine/threonine kinase that phosphorylates various proteins, including tau, and has also been associated with risk for neurodegenerative disorders and schizophrenia. We examined the effects of MAPT and two functional promoter polymorphisms in GSK3B (rs3755557 and rs334558) on total grey matter and intracranial volume in three independent cohorts totaling 776 neurologically healthy individuals. In vitro analyses revealed a significant effect of rs3755557 on gene expression, and altered binding of at least two transcription factors, Octamer transcription factor 1 (Oct-1) and Pre-B-cell leukemia transcription factor 1 (Pbx-1), to the GSK3B promoter. Meta-analysis across the three cohorts revealed a significant effect of rs3755557 on total grey matter volume (summary B?=?0.082, 95% confidence interval?=?0.037-0.128) and intracranial volume (summary B?=?0.113, 95% confidence interval?=?0.082-0.144). No significant effect was observed for MAPT H1/H2 diplotype or GSK3B rs334558 on total grey matter or intracranial volume. Our genetic and biochemical analyses have identified a role for GSK3B in brain development, which could have important aetiological implications for neurodegenerative and neurodevelopmental disorders.
Related JoVE Video
Genetic polymorphisms in sigma-1 receptor and apolipoprotein E interact to influence the severity of Alzheimers disease.
Curr Alzheimer Res
PUBLISHED: 05-25-2011
Show Abstract
Hide Abstract
Apolipoprotein E (APOE) ?4 allele and sigma-1 receptor (SIGMAR1) c.5C (Q2P) polymorphisms have been acknowledged as risk factors for developing Alzheimers disease (AD). However, whether these polymorphisms influence the disease process is unclear. Therefore, two cohorts with a clinical diagnosis of AD were recruited, a postmortem confirmed Australian cohort (82 cases) from the Australian Brain Bank Network, and a Chinese cohort with detailed clinical assessments recruited through an epidemiology study in Shanghai and through the neurology department outpatients clinic of Shanghai Ruijin Hospital (330 cases). SIGMAR1 Q2P and APOE genotyping was performed on all cases. Dementia severity in the Chinese cohort was assessed using MMSE scores, and the stages of senile plaques and neurofibrillary tangles (NFT) assessed in the Australian cohort. Associations between SIGMAR1 Q2P and APOE genotypes and disease severity were assessed using SPSS. Results confirmed that APOE 4 allele associated with increased NFT stages and cognitive decline, with carriers with one APOE ?2 or ?3 allele often having better clinical outcomes compared to carriers with none or two ?2 or ?3 alleles respectively. SIGMAR1 c.5C polymorphism alone did not associate with MMSE score variability in Chinese or with pathological stages in Caucasians. However, the association studies revealed a significant genetic interaction between the APOE ?4 allele and SIGMAR1 2P carriers in both populations, i.e., in APOE non ?4 allele carriers, SIGMAR1 2P variant had increased cognitive dysfunction and more advanced stages of NFT. Our data demonstrate that SIGMAR1 and APOE interact to influence AD severity across ethnic populations.
Related JoVE Video
Sigma nonopioid intracellular receptor 1 mutations cause frontotemporal lobar degeneration-motor neuron disease.
Ann. Neurol.
PUBLISHED: 10-30-2010
Show Abstract
Hide Abstract
Frontotemporal lobar degeneration (FTLD) is the most common cause of early-onset dementia. Pathological ubiquitinated inclusion bodies observed in FTLD and motor neuron disease (MND) comprise trans-activating response element (TAR) DNA binding protein (TDP-43) and/or fused in sarcoma (FUS) protein. Our objective was to identify the causative gene in an FTLD-MND pedigree with no mutations in known dementia genes.
Related JoVE Video
Impact of the HTR3A gene with early life trauma on emotional brain networks and depressed mood.
Depress Anxiety
PUBLISHED: 08-10-2010
Show Abstract
Hide Abstract
The risk for mental illnesses such as depression is increasingly conceptualized as the product of gene-environment interactions and their impact on brain structure and function. The role of serotonin 3A receptor gene (HTR3A -42C>T polymorphism) and its interaction with early life stress (ELS) was investigated in view of the receptors localization to brain regions central to emotion processing.
Related JoVE Video
COMT Val(108/158)Met polymorphism effects on emotional brain function and negativity bias.
Neuroimage
PUBLISHED: 01-22-2010
Show Abstract
Hide Abstract
Biases toward processing negative versus positive information vary as a function of level of awareness, and are modulated by monoamines. Excessive biases are associated with individual differences in mood and emotional stability, and emotional disorder. Here, we examined the impact of the catechol-O-methyltransferase (COMT) Val(108/158)Met polymorphism, involved in dopamine and norepinephrine catabolism, on both emotional brain function and self-reported negativity bias. COMT genotyping and self-reported level of negativity bias were completed for 46 healthy participants taking part in the Brain Resource International Database. Functional MRI was undertaken during perception of facial expressions of fear and happiness presented under unmasked (consciously identified) and masked (to prevent conscious detection) conditions. Structural MR images were also acquired. A greater number of COMT Met alleles predicted increased activation in brainstem, amygdala, basal ganglia and medial prefrontal regions for conscious fear, but decreased activation for conscious happiness. This pattern was also apparent for brainstem activation for the masked condition. Effects were most apparent for females. These differences could not be explained by gray matter variations. The Met-related profile of activation, particularly prefrontally, predicted greater negativity bias associated with risk for emotional disorder. The findings suggest that the COMT Met allele modulates neural substrates of negative versus positive emotion processing. This effect may contribute to negativity biases, which confer susceptibility for emotional disorders.
Related JoVE Video
Preliminary evidence of the short allele of the serotonin transporter gene predicting poor response to cognitive behavior therapy in posttraumatic stress disorder.
Biol. Psychiatry
PUBLISHED: 01-07-2010
Show Abstract
Hide Abstract
This study was intended to assess the extent to which the low-expression alleles of the serotonin transporter gene promoter predict poor response to cognitive behavior therapy in patients with posttraumatic stress disorder (PTSD).
Related JoVE Video
Brain derived neurotrophic factor Val66Met polymorphism, the five factor model of personality and hippocampal volume: Implications for depressive illness.
Hum Brain Mapp
PUBLISHED: 06-11-2009
Show Abstract
Hide Abstract
Altered hippocampal volume, the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, and neuroticism have each been implicated in the etiology of psychiatric disorders, especially depression. However, the relationship between these variables is not well understood. Here, we determined the effects of the BDNF Val66met polymorphism on the five-factor personality dimensions (assessed using the NEO-FFI), trait depression (assessed with the DASS-21) in a cross-sectional cohort of 467 healthy volunteers. A large matched subset of this cohort was also assessed for grey matter volume of the hippocampus and contiguous temporal cortical regions using magnetic resonance imaging. In Met carriers, elevations in neuroticism and trait depression and stress were associated with lower mean hippocampal volume, but there were no such associations in Val homozygotes. Trait depression, in particular, was found to moderate the effects of BDNF genotypes on hippocampal volume. Met carriers with high trait depression showed a reduction in grey matter volume of the mean hippocampus compared with Val homozygotes. These findings suggest that even in otherwise healthy subjects, trait depression may contribute to the susceptibility of Met carriers to hippocampal grey matter loss.
Related JoVE Video
Disturbances in selective information processing associated with the BDNF Val66Met polymorphism: evidence from cognition, the P300 and fronto-hippocampal systems.
Biol Psychol
PUBLISHED: 05-09-2009
Show Abstract
Hide Abstract
In this study, we examined whether the Met allele of the BDNF Val66Met polymorphism is associated with selective disruptions to task-relevant information processing. In 475 non-clinical participants for whom BDNF genotype status was determined we used the IntegNeuro computerized battery of neuropsychological tests to assess cognitive performance, an auditory oddball task to elicit the P300 event-related potential (ERP) and, in smaller subsets of these subjects, high resolution structural MRI imaging to quantify fronto-hippocampal grey matter (n=161), and functional magnetic resonance imaging to assess fronto-hippocampal BOLD activation (n=37). Met/Met (MM) homozygotes had higher verbal recall errors, in the absence of differences in attention, executive function, verbal ability or sensori-motor function. Further, MM homozygotes demonstrated a slowed P300 ERP during the oddball task, with corresponding alterations in hippocampal and lateral prefrontal activation, and a localized reduction in hippocampal grey matter. These results are consistent with a subtle impact of the Met allele on fronto-hippocampal systems involved in selective information processing of stimulus context and memory updating within the normal population. The findings also indicate that heritable endophenotypes such as the P300 have value in elucidating genotype-phenotype relationships.
Related JoVE Video
A polymorphism of the MAOA gene is associated with emotional brain markers and personality traits on an antisocial index.
Neuropsychopharmacology
PUBLISHED: 02-04-2009
Show Abstract
Hide Abstract
Association studies suggest that the low activity variant of the monoamine oxidase A (MAOA)-uVNTR polymorphism confers risk for emotional disturbances associated with antisocial traits, particularly in males. Here, we assessed the low (MAOA-L) activity variant in relation to both brain function and a behavioral index of antisocial traits. From an initial sample of 290 healthy participants, 210 had low (MAOA-L) or high (MAOA-H) activity variants. Participants underwent a brief assessment of personality traits and event-related potential (ERP) recording during an emotion-processing task. Genotype differences in ERPs were localized using LORETA. The MAOA-L genotype was distinguished by elevated scores on the index of antisocial traits. These traits were related to altered ERPs elicited 120-280ms post-stimulus, particularly for negative emotion. Altered neural processing of anger in MAOA-L genotypes was localized to medial frontal, parietal, and superior temporo-occipital regions in males, but only to the superior occipital cortex in females. The MAOA low activity variant may increase susceptibility to antisocial traits through alterations to the neural systems for processing threat-related emotion, especially for males. Monoamines such as noradrenalin and serotonin may modulate these relationships, given that their metabolism varies according to MAOA variants, and that they modulate both emotional brain systems and antisocial aggression.
Related JoVE Video
The functional epistasis of 5-HTTLPR and BDNF Val66Met on emotion processing: a preliminary study.
Brain Behav
Show Abstract
Hide Abstract
An epistatic interaction of 5-HTTLPR and BDNF Val66Met polymorphisms has been implicated in the structure of rostral anterior cingulate cortex (rACC) and amygdala (AMY): key regions associated with emotion processing. However, a functional epistasis of 5-HTTLPR and BDNF Val66Met on overt emotion processing has yet to be determined. Twenty-eight healthy, Caucasian female participants provided saliva samples for genotyping and underwent functional magnetic resonance imaging (fMRI) during which an emotion processing protocol were presented. Confirming the validity of this protocol, we observed blood oxygen level-dependent (BOLD) activity consistent with fMRI meta-analyses on emotion processing. Region-of-interest analysis of the rACC and AMY revealed main effects of 5-HTTLPR and BDNF Val66Met, and an interaction of 5-HTTLPR and BDNF Val66Met. The effect of the BDNF Met66 allele was dependent on 5-HTTLPR alleles, such that participants with S and Met alleles had the greatest rACC and AMY activation during the presentation of emotional images relative to other genetic groupings. Increased activity in these regions was interpreted as increased reactivity to emotional stimuli, suggesting that those with S and Met alleles are more reactive to emotional stimuli relative to other groups. Although limited by a small sample, this study contributes novel and preliminary findings relating to a functional epistasis of the 5-HTTLPR and BDNF Val66Met genes in emotion processing and provides guidance on appropriate methods to determine genetic epistasis in fMRI.
Related JoVE Video
A role for transcription factor GTF2IRD2 in executive function in Williams-Beuren syndrome.
PLoS ONE
Show Abstract
Hide Abstract
Executive functions are amongst the most heritable cognitive traits with twin studies indicating a strong genetic origin. However genes associated with this domain are unknown. Our research into the neurodevelopmental disorder Williams-Beuren syndrome (WBS) has identified a gene within the causative recurrent 1.5/1.6 Mb heterozygous microdeletion on chromosome 7q11.23, which may be involved in executive functioning. Comparative genome array screening of 55 WBS patients revealed a larger ?1.8 Mb microdeletion in 18% of cases, which results in the loss of an additional gene, the transcription factor GTF2IRD2. The GTF gene family of transcription factors (GTF2I, GTF2IRD1 and GTF2IRD2) are all highly expressed in the brain, and GTF2I and GTF2IRD1 are involved in the pathogenesis of the cognitive and behavioural phenotypes associated with WBS. A multi-level analysis of cognitive, behavioural and psychological functioning in WBS patients showed that those with slightly larger deletions encompassing GTF2IRD2 were significantly more cognitively impaired in the areas of spatial functioning, social reasoning, and cognitive flexibility (a form of executive functioning). They also displayed significantly more obsessions and externalizing behaviours, a likely manifestation of poor cognitive flexibility and executive dysfunction. We provide the first evidence for a role for GTF2IRD2 in higher-level (executive functioning) abilities and highlight the importance of integrating detailed molecular characterisation of patients with comprehensive neuropsychological profiling to uncover additional genotype-phenotype correlations. The identification of specific genes which contribute to executive function has important neuropsychological implications in the treatment of patients with conditions like WBS, and will allow further studies into their mechanism of action.
Related JoVE Video
Association between serotonin transporter promoter polymorphisms and psychological distress in a diabetic population.
Psychiatry Res
Show Abstract
Hide Abstract
Investigations into serotonin transporter and anxiety and depression have shown an association between stress, depression onset and genotype. We investigated the relationship between 5-HTTLPR genotype and depression and anxiety in a population with diabetes mellitus, a condition associated with high rates of stress and depression. Participants were classified according to S and L alleles as well as the modification of the single nucleotide polymorphism (SNP) rs25531. The 5-HTTLPR low-expression genotype group (S or L(G) allele carriers) had significantly higher psychological distress (K10) scores (N=234, P=0.047). Subsequent analysis revealed that the effect of genotype was related to anxiety symptoms rather than depression symptoms. Furthermore, the main effect of genotype was not observed when the modification of the SNP polymorphism was not taken into account. Findings suggest that 5-HTTLPR/rs25531 genotype is associated with psychological distress in a sample of subjects with diabetes.
Related JoVE Video
C9ORF72 repeat expansion in clinical and neuropathologic frontotemporal dementia cohorts.
Neurology
Show Abstract
Hide Abstract
To determine the frequency of a hexanucleotide repeat expansion in C9ORF72, a gene of unknown function implicated in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), in Australian FTD patient cohorts and to examine the clinical and neuropathologic phenotypes associated with this expansion.
Related JoVE Video
The contribution of BDNF and 5-HTT polymorphisms and early life stress to the heterogeneity of major depressive disorder: a preliminary study.
Aust N Z J Psychiatry
Show Abstract
Hide Abstract
Two reported genetic polymorphisms related to the production of brain-derived neurotrophic factor (BNDF) and reuptake by the serotonin transporter (5-HTT) appear to contribute to depression in combination with stressful life events. The aim of the current study was to investigate the contribution of early life stress (ELS), BDNF (Val versus Met alleles) and 5-HTT polymorphisms (L versus S alleles) to melancholic (n = 65) and non-melancholic depression (n = 59).
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.