JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
3?-Acetyl tormentic acid reverts MRP1/ABCC1 mediated cancer resistance through modulation of intracellular levels of GSH and inhibition of GST activity.
Eur. J. Pharmacol.
PUBLISHED: 08-09-2014
Show Abstract
Hide Abstract
ABC transporter overexpression is an important mechanism of multidrug resistance (MDR) and one of the main obstacles to successful cancer treatment. As these proteins actively remove chemotherapeutics from the tumor cells, the pharmacological inhibition of their activity is a possible strategy to revert drug resistance. Moreover, the ability of MDR inhibitors to sensitize resistant cells to conventional drugs is important for their clinical use. Evidence has shown that the multidrug resistance protein 1 (MRP1/ABCC1) is a negative prognostic marker in patients with lung, gastric, or breast cancers or neuroblastoma. Previous data have shown that 3?-acetyl tormentic acid (3ATA) inhibits the transport activity of the protein MRP1/ABCC1. In this study, we evaluated the ability of 3ATA to sensitize an MDR cell line (GLC4/ADR), which overexpresses MRP1, and investigated the anti-MRP1 mechanisms activated by 3ATA. The results showed that 3ATA is able to reverse the resistance of the MDR cell line to doxorubicin and vincristine, two drugs that are commonly used in cancer chemotherapy. Regarding the sensitizing mechanism induced by 3ATA, this work shows that the triterpene does not modulate the expression of MRP1/ABCC1 but is able to reduce total intracellular glutathione (GSH) levels and decrease the activity of glutathione-s-transferase (GST), the enzyme responsible for the glutathione conjugation of xenobiotics. Together, these results show that 3ATA sensitizes the MDR cell line overexpressing MRP1/ABCC1 to antineoplastic drugs and that this effect is mediated by the modulation of intracellular levels of GSH and GST activity.
Related JoVE Video
Apoptosis-inducing effects of Melissa officinalis L. essential oil in glioblastoma multiforme cells.
Cancer Invest.
PUBLISHED: 04-18-2014
Show Abstract
Hide Abstract
Current therapies for glioblastoma multiforme (GBM) are not effective. This study investigated the activity of the M. officinalis essential oil (EO) and its major component (citral) in GBM cell lines. Both EO and citral decreased the viability and induced apoptosis of GBM cells as demonstrated by DNA fragmentation and caspase-3 activation. Antioxidant prevented citral-induced death, indicating its dependence on the production of reactive oxygen species. Citral downmodulated the activity and inhibited the expression of multidrug resistance associated protein 1 (MRP1). These results show that EO, through its major component, citral, may be of potential interest for the treatment of GBM.
Related JoVE Video
Oleanolic acid improves pulmonary morphofunctional parameters in experimental sepsis by modulating oxidative and apoptotic processes.
Respir Physiol Neurobiol
PUBLISHED: 07-09-2013
Show Abstract
Hide Abstract
We compared the effects of oleanolic acid (OA) vs. dexamethasone on lung mechanics and histology, inflammation, and apoptosis in lung and distal organs in experimental sepsis. Seventy-eight BALB/c mice were randomly divided into two groups. Sepsis was induced by cecal ligation and puncture, while the control group underwent sham surgery. 1h after surgery, all animals were further randomized to receive saline (SAL), OA and dexamethasone (DEXA) intraperitoneally. Both OA and DEXA improved lung mechanics and histology, which were associated with fewer lung neutrophils and less cell apoptosis in lung, liver, and kidney than SAL. However, only animals in the DEXA group had lower levels of interleukin (IL)-6 and KC (murine analog of IL-8) in bronchoalveolar lavage fluid than SAL animals. Conversely, OA was associated with lower inducible nitric oxide synthase expression and higher superoxide dismutase than DEXA. In the experimental sepsis model employed herein, OA and DEXA reduced lung damage and distal organ apoptosis through distinct anti-inflammatory mechanisms.
Related JoVE Video
Oleanolic acid initiates apoptosis in non-small cell lung cancer cell lines and reduces metastasis of a B16F10 melanoma model in vivo.
PLoS ONE
PUBLISHED: 01-03-2011
Show Abstract
Hide Abstract
Drug resistance, a process mediated by multiple mechanisms, is a critical determinant for treating lung cancer. The aim of this study is to determine if oleanolic acid (OA), a pentacyclic triterpene present in several plants, is able to circumvent the mechanisms of drug resistance present in non-small cell lung cancer (NSCLC) cell lines and to induce their death.
Related JoVE Video
3?-acetyl tormentic acid induces apoptosis of resistant leukemia cells independently of P-gp/ABCB1 activity or expression.
Invest New Drugs
PUBLISHED: 03-10-2010
Show Abstract
Hide Abstract
Chronic myeloid leukemia (CML) is a potentially fatal stem-cell cancer. P-glycoprotein (P-gp/ABCB1) activity has been described as a relevant factor in the chemotherapeutic failure and correlated to a poor prognosis in these malignancies. In the present study, we investigated the mechanism of the antineoplastic activity of 3?-acetyl tormentic acid (3ATA), a triterpene isolated from C. lyratiloba, on Lucena-1, an MDR leukemia cell line, that overexpressed P-gp/ABCB1. Results showing that this triterpene induced DNA-fragmentation, activation of caspase-3 and cytochrome c release indicated that its activity is mediated by the activation of the intrinsic pathway of apoptosis. Interestingly, this triterpene did not interfere with P-gp/ABCB1 expression or activity, indicating that induction of death is not mediated by any effect on this protein. Moreover, the results show that none of the others triterpenes from C. lyratiloba were able to modulate the activity of P-gp/ABCB1. Together these results suggest 3ATA and the other triterpenes as a promising material for the development of anti-neoplastic drugs for leukemia and other tumors independent of P-gp/ABCB1 activity or expression.
Related JoVE Video
Betulinic acid does not modulate the activity of P-gp/ABCB1 or MRP1/ABCC1 in a non-tumoral renal cell line: Possible utility in multidrug resistance cancer chemotherapy.
Mol Med Rep
PUBLISHED: 03-01-2009
Show Abstract
Hide Abstract
Multidrug resistance (MDR) is a multifactorial phenomenon considered to be the main cause of failure in cancer chemotherapy. One of the underlying mechanisms of MDR is the overexpression of membrane transporter proteins, such as P-glycoprotein (P-gp/ABCB1) and multidrug resistance-associated protein 1 (MRP1/ABCC1). As these proteins are also expressed in normal tissues, considerable attention has been dedicated to the search for cytotoxic drugs that are not substrates for these proteins. This study investigated the effects of betulinic acid (BA) on the activity of ABCB1 and ABCC1 in Ma-104, a non-tumoral renal cell line constitutively expressing both proteins. The results indicated that concentrations of BA with low cytotoxicity to Ma-104 did not alter the activity of ABCB1 or ABCC1, nor did BA interfere with the accumulation of a classic chemotherapeutic, methotrexate. This suggests it would also be a good choice for use in drug cocktails. The lack of effect of BA on ABCB1 and ABCC1, as well as its antitumoral properties, suggest that this triterpene is a viable chemotherapeutic agent for MDR tumors.
Related JoVE Video
Effects of 3?-acethyl tormentic acid (3ATA) on ABCC proteins activity.
Int J Mol Sci
Show Abstract
Hide Abstract
Multidrug resistance (MDR) is considered the main cause of cancer chemotherapy failure and patient relapse. The active drug efflux mediated by transporter proteins of the ABC (ATP-binding cassette) family is the most investigated mechanism leading to MDR. With the aim of inhibiting this transport and circumventing MDR, a great amount of work has been dedicated to identifying pharmacological inhibitors of specific ABC transporters. We recently showed that 3?-acetyl tormentic acid (3ATA) had no effect on P-gp/ABCB1 activity. Herein, we show that 3ATA strongly inhibited the activity of MRP1/ABCC1. In the B16/F10 and Ma104 cell lines, this effect was either 20X higher or similar to that observed with MK571, respectively. Nevertheless, the low inhibitory effect of 3ATA on A549, a cell line that expresses MRP1-5, suggests that it may not inhibit other MRPs. The use of cells transfected with ABCC2, ABCC3 or ABCC4 showed that 3ATA was also able to modulate these transporters, though with an inhibition ratio lower than that observed for MRP1/ABCC1. These data point to 3ATA as a new ABCC inhibitor and call attention to its potential use as a tool to investigate the function of MRP/ABCC proteins or as a co-adjuvant in the treatment of MDR tumors.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.