JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Ultrastructure of the Odontocete Organ of Corti: Scanning and transmission electron microscopy.
J. Comp. Neurol.
PUBLISHED: 09-26-2014
Show Abstract
Hide Abstract
The morphological study of the Odontocete organ of Corti, together with possible alterations associated with damage from sound exposure, represents a key conservation approach to assess the effects of acoustic pollution on marine ecosystems. By collaborating with stranding networks from several European countries, 150 ears from 13 species of Odontocetes were collected and analyzed by scanning (SEM) and transmission (TEM) electron microscopy. Based on our analyses, we first describe and compare Odontocete cochlear structures and then propose a diagnostic method to identify inner ear alterations in stranded individuals. The two species analyzed by TEM (Phocoena phocoena and Stenella coeruleoalba) showed morphological characteristics in the lower basal turn of high-frequency hearing species. Among other striking features, outer hair cell bodies were extremely small and were strongly attached to Deiters cells. Such morphological characteristics, shared with horseshoe bats, suggest that there has been convergent evolution of sound reception mechanisms among echolocating species. Despite possible autolytic artifacts due to technical and experimental constraints, the SEM analysis allowed us to detect the presence of scarring processes resulting from the disappearance of outer hair cells from the epithelium. In addition, in contrast to the rapid decomposition process of the sensory epithelium after death (especially of the inner hair cells), the tectorial membrane appeared to be more resistant to postmortem autolysis effects. Analysis of the stereocilia imprint pattern at the undersurface of the tectorial membrane may provide a way to detect possible ultrastructural alterations of the hair cell stereocilia by mirroring them on the tectorial membrane. J. Comp. Neurol., 2014. © 2014 Wiley Periodicals, Inc.
Related JoVE Video
Formation of vacuolar tannin deposits in the chlorophyllous organs of Tracheophyta: from shuttles to accretions.
Protoplasma
PUBLISHED: 02-06-2014
Show Abstract
Hide Abstract
Most Tracheophyta synthesize-condensed tannins (also called proanthocyanidins), polymers of catechins, which appear in the vacuole as uniformly stained deposits-termed tannin accretions-lining the inner face of the tonoplast. A large body of evidence argues that tannins are formed in recently described thylakoid-derived organelles, the tannosomes, which are packed in membrane-bound shuttles (Brillouet et al. 2013); it has been suggested that shuttles agglomerate into tannin accretions. The aim of the study was to describe the ontogenesis of tannin accretions in members of the Tracheophyta. For this purpose, fresh specimens of young tissues from diverse Tracheophyta were cut, gently lacerated in paraformaldehyde, and examined using light, epifluorescence, confocal, and transmission electron microscopy. Fresh samples were also incubated with gelatin-Oregon Green, a fluorescent marker of condensed tannins. Our observations showed that vacuolar accretions (1???40 ?m), that constitute the typical form of tannin storage in tannin-producing Tracheophyta, are formed by agglomeration (not fusion) of shuttles containing various proportions of chlorophylls and tannins.
Related JoVE Video
Retroviral GAG proteins recruit AGO2 on viral RNAs without affecting RNA accumulation and translation.
Nucleic Acids Res.
PUBLISHED: 09-24-2011
Show Abstract
Hide Abstract
Cellular micro(mi)RNAs are able to recognize viral RNAs through imperfect micro-homologies. Similar to the miRNA-mediated repression of cellular translation, this recognition is thought to tether the RNAi machinery, in particular Argonaute 2 (AGO2) on viral messengers and eventually to modulate virus replication. Here, we unveil another pathway by which AGO2 can interact with retroviral mRNAs. We show that AGO2 interacts with the retroviral Group Specific Antigen (GAG) core proteins and preferentially binds unspliced RNAs through the RNA packaging sequences without affecting RNA stability or eliciting translation repression. Using RNAi experiments, we provide evidences that these interactions, observed with both the human immunodeficiency virus 1 (HIV-1) and the primate foamy virus 1 (PFV-1), are required for retroviral replication. Taken together, our results place AGO2 at the core of the retroviral life cycle and reveal original AGO2 functions that are not related to miRNAs and translation repression.
Related JoVE Video
The "acrostyle": a newly described anatomical structure in aphid stylets.
Arthropod Struct Dev
PUBLISHED: 02-10-2010
Show Abstract
Hide Abstract
The recent demonstration that a plant virus could be retained on protein receptors located exclusively in a small area inside the common duct at the tip of aphid maxillary stylets indicated the possible existence of a distinct anatomical structure at this level. Since no distinct feature within the common duct of any aphid species has ever been reported in the literature, we first carefully re-examined the distal extremity of the maxillary stylets of Acyrthosiphon pisum using transmission- and scanning-electron microscopy. Here, we describe an area of the cuticle surface displaying a different structure that is limited to a "band" paving the bottom of the common duct in each opposing maxillary stylet. This band starts at the very distal extremity, adopts a "comma-like" shape as it continues up towards the salivary canal, reducing in width and disappearing before actually reaching it. Investigations on several aphid species led to the conclusion that this anatomical feature-which we have tentatively named the "acrostyle"-is highly conserved among aphids. We then produced an antibody recognizing a consensus peptide located in the middle of the RR-2 motif of cuticular proteins from A. pisum and showed that this motif is accessible specifically within the acrostyle, indicating a higher concentration of cuticular proteins. While it is clear that at least some viruses can use the acrostyle to interact with their aphid vectors to ensure plant-to-plant transmission, the role of this new "organ" in aphid biology is unknown and calls for further investigation in the near future.
Related JoVE Video
The symplekin/ZONAB complex inhibits intestinal cell differentiation by the repression of AML1/Runx1.
Gastroenterology
PUBLISHED: 02-24-2009
Show Abstract
Hide Abstract
Symplekin is a ubiquitously expressed protein involved in RNA polyadenylation and transcriptional regulation that localizes at tight junctions in epithelial cells. The association between symplekin and the Y-box transcription factor ZONAB activates proliferation in intestinal and kidney cells. We analyzed symplekin expression in human colonic crypts and investigated its function in differentiation.
Related JoVE Video
The human OPA1delTTAG mutation induces premature age-related systemic neurodegeneration in mouse.
Brain
Show Abstract
Hide Abstract
Dominant optic atrophy is a rare inherited optic nerve degeneration caused by mutations in the mitochondrial fusion gene OPA1. Recently, the clinical spectrum of dominant optic atrophy has been extended to frequent syndromic forms, exhibiting various degrees of neurological and muscle impairments frequently found in mitochondrial diseases. Although characterized by a specific loss of retinal ganglion cells, the pathophysiology of dominant optic atrophy is still poorly understood. We generated an Opa1 mouse model carrying the recurrent Opa1(delTTAG) mutation, which is found in 30% of all patients with dominant optic atrophy. We show that this mouse displays a multi-systemic poly-degenerative phenotype, with a presentation associating signs of visual failure, deafness, encephalomyopathy, peripheral neuropathy, ataxia and cardiomyopathy. Moreover, we found premature age-related axonal and myelin degenerations, increased autophagy and mitophagy and mitochondrial supercomplex instability preceding degeneration and cell death. Thus, these results support the concept that Opa1 protects against neuronal degeneration and opens new perspectives for the exploration and the treatment of mitochondrial diseases.
Related JoVE Video
Fatp1 deficiency affects retinal light response and dark adaptation, and induces age-related alterations.
PLoS ONE
Show Abstract
Hide Abstract
FATP1 is involved in lipid transport into cells and in intracellular lipid metabolism. We showed previously that this protein interacts with and inhibits the limiting-step isomerase of the visual cycle RPE65. Here, we aimed to analyze the effect of Fatp1-deficiency in vivo on the visual cycle, structure and function, and on retinal aging. Among the Fatp family members, we observed that only Fatp1 and 4 are expressed in the control retina, in both the neuroretina and the retinal pigment epithelium. In the neuroretina, Fatp1 is mostly expressed in photoreceptors. In young adult Fatp1(-/-) mice, Fatp4 expression was unchanged in retinal pigment epithelium and reduced two-fold in the neuroretina as compared to Fatp1(+/+) mice. The Fatp1(-/-) mice had a preserved retinal structure but a decreased electroretinogram response to light. These mice also displayed a delayed recovery of the b-wave amplitude after bleaching, however, visual cycle speed was unchanged, and both retinal pigment epithelium and photoreceptors presented the same fatty acid pattern compared to controls. In 2 year-old Fatp1(-/-) mice, transmission electron microscopy studies showed specific abnormalities in the retinas comprising choroid vascularization anomalies and thickening of the Bruch membrane with material deposits, and sometimes local disorganization of the photoreceptor outer segments. These anomalies lead us to speculate that the absence of FATP1 accelerates the aging process.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.