JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Tendon structure, disease, and imaging.
Muscles Ligaments Tendons J
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Tendon imaging plays a critical role in evaluating tendon diseases and injuries including mechanical, degenerative, and overuse disease, inflammatory enthesitis, as well as partial and full thickness tears. Ultrasound and magnetic resonance imaging (MRI), each with unique benefits and limitations, are commonly utilized to assist in diagnosing these diseases and conditions. This review delineates important structural properties of tendon and biochemical changes occurring in tendon pathology. This review also examines commonly injured tendons including tendons of the elbow, tendons of the rotator cuff of the shoulder, hip abductor tendons, patellar tendons, and the Achilles tendon to help clinicians better recognize tendon disease. Finally, this paper introduces several emerging imaging techniques including T2 mapping, ultra-short echo time MRI, and sonoelastography as ways in which tendon imaging and evaluation may be improved.
Related JoVE Video
Reporters for the analysis of N-glycosylation in Candida albicans.
Fungal Genet. Biol.
PUBLISHED: 03-05-2013
Show Abstract
Hide Abstract
A large proportion of Candida albicans cell surface proteins are decorated post-translationally by glycosylation. Indeed N-glycosylation is critical for cell wall biogenesis in this major fungal pathogen and for its interactions with host cells. A detailed understanding of N-glycosylation will yield deeper insights into host-pathogen interactions. However, the analysis of N-glycosylation is extremely challenging because of the complexity and heterogeneity of these structures. Therefore, in an attempt to reduce this complexity and facilitate the analysis of N-glycosylation, we have developed new synthetic C. albicans reporters that carry a single N-linked glycosylation site derived from Saccharomyces cerevisiae Suc2. These glycosylation reporters, which carry C.albicans Hex1 or Sap2 signal sequences plus carboxy-terminal FLAG? and His? tags, were expressed in C.albicans from the ACT1 promoter. The reporter proteins were successfully secreted and hyperglycosylated by C.albicans cells, and their outer chain glycosylation was dependent on Och1 and Pmr1, which are required for N-mannan synthesis, but not on Mnt1 and Mnt2 which are only required for O-mannosylation. These reporters are useful tools for the experimental dissection of N-glycosylation and other related processes in C.albicans, such as secretion.
Related JoVE Video
Recognition and blocking of innate immunity cells by Candida albicans chitin.
Infect. Immun.
PUBLISHED: 02-28-2011
Show Abstract
Hide Abstract
Chitin is a skeletal cell wall polysaccharide of the inner cell wall of fungal pathogens. As yet, little about its role during fungus-host immune cell interactions is known. We show here that ultrapurified chitin from Candida albicans cell walls did not stimulate cytokine production directly but blocked the recognition of C. albicans by human peripheral blood mononuclear cells (PBMCs) and murine macrophages, leading to significant reductions in cytokine production. Chitin did not affect the induction of cytokines stimulated by bacterial cells or lipopolysaccharide (LPS), indicating that blocking was not due to steric masking of specific receptors. Toll-like receptor 2 (TLR2), TLR4, and Mincle (the macrophage-inducible C-type lectin) were not required for interactions with chitin. Dectin-1 was required for immune blocking but did not bind chitin directly. Cytokine stimulation was significantly reduced upon stimulation of PBMCs with heat-killed chitin-deficient C. albicans cells but not with live cells. Therefore, chitin is normally not exposed to cells of the innate immune system but is capable of influencing immune recognition by blocking dectin-1-mediated engagement with fungal cell walls.
Related JoVE Video
Glycosylation status of the C. albicans cell wall affects the efficiency of neutrophil phagocytosis and killing but not cytokine signaling.
Med. Mycol.
PUBLISHED: 01-24-2011
Show Abstract
Hide Abstract
The cell wall of the opportunistic human fungal pathogen, Candida albicans is a complex, layered network of rigid structural polysaccharides composed of ?-glucans and chitin that is covered with a fibrillar matrix of highly glycosylated mannoproteins. Polymorphonuclear cells (PMNs, neutrophils) are the most prevalent circulating phagocytic leukocyte in peripheral blood and they are pivotal in the clearance of invading fungal cells from tissues. The importance of cell-wall mannans for the recognition and uptake of C. albicans by human PMNs was therefore investigated. N- and O-glycosylation-deficient mutants were attenuated in binding and phagocytosis by PMNs and this was associated with reduced killing of C. albicans yeast cells. No differences were found in the production of the respiratory burst enzyme myeloperoxidase (MPO) and the neutrophil chemokine IL-8 in PMNs exposed to control and glycosylation-deficient C. albicans strains. Thus, the significant decrease in killing of glycan-deficient C. albicans strains by PMNs is a consequence of a marked reduction in phagocytosis rather than changes in the release of inflammatory mediators by PMNs.
Related JoVE Video
Radiofrequency ablation in an infant with recurrent supraventricular tachycardia and cyanosis.
Ann Pediatr Cardiol
PUBLISHED: 07-01-2009
Show Abstract
Hide Abstract
We report an unusual presentation of supraventricular tachycardia, in an infant, with cyanosis. The child had atrial septal defect with hypoplastic right ventricle. Radiofrequency ablation was performed in view of drug resistant SVT.
Related JoVE Video
Bisphosphonates-related osteonecrosis of the jaws: a preliminary study of salivary interleukins.
J. Oral Pathol. Med.
Show Abstract
Hide Abstract
The aim of this preliminary study was analyze the possible alterations in some salivary interleukins, usually associated with the inflammatory processes.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.