JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Localization Microscopy using Noncovalent Fluorogen Activation by Genetically Encoded Fluorogen-Activating Proteins.
Chemphyschem
PUBLISHED: 08-16-2013
Show Abstract
Hide Abstract
The noncovalent equilibrium activation of a fluorogenic malachite green dye and its cognate fluorogen-activating protein (FAP) can produce a sparse labeling distribution of densely tagged genetically encoded proteins, enabling single molecule detection and super-resolution imaging in fixed and living cells. These sparse labeling conditions are achieved by control of the dye concentration in the milieu, and do not require any photoswitching or photoactivation. The labeling is achieved by using physiological buffers and cellular media, in which additives and switching buffers are not required to obtain super-resolution images. We evaluate the super-resolution properties and images obtained from a selected FAP clone fused to actin, and show that the photon counts per object are between those typically reported for fluorescent proteins and switching-dye pairs, resulting in 10-30?nm localization precision per object. This labeling strategy complements existing approaches, and may simplify multicolor labeling of cellular structures.
Related JoVE Video
Malachite green mediates homodimerization of antibody VL domains to form a fluorescent ternary complex with singular symmetric interfaces.
J. Mol. Biol.
PUBLISHED: 06-26-2013
Show Abstract
Hide Abstract
We report that a symmetric small-molecule ligand mediates the assembly of antibody light chain variable domains (VLs) into a correspondent symmetric ternary complex with novel interfaces. The L5* fluorogen activating protein is a VL domain that binds malachite green (MG) dye to activate intense fluorescence. Crystallography of liganded L5* reveals a 2:1 protein:ligand complex with inclusive C2 symmetry, where MG is almost entirely encapsulated between an antiparallel arrangement of the two VL domains. Unliganded L5* VL domains crystallize as a similar antiparallel VL/VL homodimer. The complementarity-determining regions are spatially oriented to form novel VL/VL and VL/ligand interfaces that tightly constrain a propeller conformer of MG. Binding equilibrium analysis suggests highly cooperative assembly to form a very stable VL/MG/VL complex, such that MG behaves as a strong chemical inducer of dimerization. Fusion of two VL domains into a single protein tightens MG binding over 1000-fold to low picomolar affinity without altering the large binding enthalpy, suggesting that bonding interactions with ligand and restriction of domain movements make independent contributions to binding. Fluorescence activation of a symmetrical fluorogen provides a selection mechanism for the isolation and directed evolution of ternary complexes where unnatural symmetric binding interfaces are favored over canonical antibody interfaces. As exemplified by L5*, these self-reporting complexes may be useful as modulators of protein association or as high-affinity protein tags and capture reagents.
Related JoVE Video
STED nanoscopy in living cells using Fluorogen Activating Proteins.
Bioconjug. Chem.
PUBLISHED: 01-01-2009
Show Abstract
Hide Abstract
We demonstrate the effectiveness of a genetically encoded Malachite Green (MG) binding fluorogen activating protein (FAP) for live cell stimulated emission depletion nanoscopy (STED). Both extracellular and intracellular FAPs were tested in living cells using fluorogens with either membrane expressed FAP or as an intracellular FAP-actin fusion. Structures with FWHM of 110-122nm were observed. Depletion data however suggests a resolution of 70nm with the given instrument.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.