JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Rac1 GTPase silencing counteracts microgravity-induced effects on osteoblastic cells.
FASEB J.
PUBLISHED: 06-07-2014
Show Abstract
Hide Abstract
Bone cells exposed to real microgravity display alterations of their cytoskeleton and focal adhesions, two major mechanosensitive structures. These structures are controlled by small GTPases of the Ras homology (Rho) family. We investigated the effects of RhoA, Rac1, and Cdc42 modulation of osteoblastic cells under microgravity conditions. Human MG-63 osteoblast-like cells silenced for RhoGTPases were cultured in the automated Biobox bioreactor (European Space Agency) aboard the Foton M3 satellite and compared to replicate ground-based controls. The cells were fixed after 69 h of microgravity exposure for postflight analysis of focal contacts, F-actin polymerization, vascular endothelial growth factor (VEGF) expression, and matrix targeting. We found that RhoA silencing did not affect sensitivity to microgravity but that Rac1 and, to a lesser extent, Cdc42 abrogation was particularly efficient in counteracting the spaceflight-related reduction of the number of focal contacts [-50% in silenced, scrambled (SiScr) controls vs. -15% for SiRac1], the number of F-actin fibers (-60% in SiScr controls vs. -10% for SiRac1), and the depletion of matrix-bound VEGF (-40% in SiScr controls vs. -8% for SiRac1). Collectively, these data point out the role of the VEGF/Rho GTPase axis in mechanosensing and validate Rac1-mediated signaling pathways as potential targets for counteracting microgravity effects.-Guignandon, A., Faure, C., Neutelings, T., Rattner, A., Mineur, P., Linossier, M.-T., Laroche, N., Lambert, C., Deroanne, C., Nusgens, B., Demets, R., Colige, A., Vico, L. Rac1 GTPase silencing counteracts microgravity-induced effects on osteoblastic cells.
Related JoVE Video
PP2A regulatory subunit B? controls endothelial contractility and vessel lumen integrity via regulation of HDAC7.
EMBO J.
PUBLISHED: 02-08-2013
Show Abstract
Hide Abstract
To supply tissues with nutrients and oxygen, the cardiovascular system forms a seamless, hierarchically branched, network of lumenized tubes. Here, we show that maintenance of patent vessel lumens requires the B? regulatory subunit of protein phosphatase 2A (PP2A). Deficiency of B? in zebrafish precludes vascular lumen stabilization resulting in perfusion defects. Similarly, inactivation of PP2A-B? in cultured ECs induces tubulogenesis failure due to alteration of cytoskeleton dynamics, actomyosin contractility and maturation of cell-extracellular matrix (ECM) contacts. Mechanistically, we show that PP2A-B? controls the activity of HDAC7, an essential transcriptional regulator of vascular stability. In the absence of PP2A-B?, transcriptional repression by HDAC7 is abrogated leading to enhanced expression of the cytoskeleton adaptor protein ArgBP2. ArgBP2 hyperactivates RhoA causing inadequate rearrangements of the EC actomyosin cytoskeleton. This study unravels the first specific role for a PP2A holoenzyme in development: the PP2A-B?/HDAC7/ArgBP2 axis maintains vascular lumens by balancing endothelial cytoskeletal dynamics and cell-matrix adhesion.
Related JoVE Video
Metallothionein-dependent up-regulation of TGF-?2 participates in the remodelling of the myxomatous mitral valve.
Cardiovasc. Res.
PUBLISHED: 12-16-2011
Show Abstract
Hide Abstract
Although an excessive extracellular matrix remodelling has been well described in myxomatous mitral valve (MMV), the underlying pathogenic mechanisms remain largely unknown. Our goal was to identify dysregulated genes in human MMV and then to evaluate their functional role in the progression of the disease.
Related JoVE Video
Development of a chitosan nanofibrillar scaffold for skin repair and regeneration.
Biomacromolecules
PUBLISHED: 08-01-2011
Show Abstract
Hide Abstract
The final goal of the present study was the development of a 3-D chitosan dressing that would shorten the healing time of skin wounds by stimulating migration, invasion, and proliferation of the relevant cutaneous resident cells. Three-dimensional chitosan nanofibrillar scaffolds produced by electrospinning were compared with evaporated films and freeze-dried sponges for their biological properties. The nanofibrillar structure strongly improved cell adhesion and proliferation in vitro. When implanted in mice, the nanofibrillar scaffold was colonized by mesenchymal cells and blood vessels. Accumulation of collagen fibrils was also observed. In contrast, sponges induced a foreign body granuloma. When used as a dressing covering full-thickness skin wounds in mice, chitosan nanofibrils induced a faster regeneration of both the epidermis and dermis compartments. Altogether our data illustrate the critical importance of the nanofibrillar structure of chitosan devices for their full biocompatibility and demonstrate the significant beneficial effect of chitosan as a wound-healing biomaterial.
Related JoVE Video
RhoGDI?-dependent balance between RhoA and RhoC is a key regulator of cancer cell tumorigenesis.
Mol. Biol. Cell
PUBLISHED: 07-14-2011
Show Abstract
Hide Abstract
RhoGTPases are key signaling molecules regulating main cellular functions such as migration, proliferation, survival, and gene expression through interactions with various effectors. Within the RhoA-related subclass, RhoA and RhoC contribute to several steps of tumor growth, and the regulation of their expression affects cancer progression. Our aim is to investigate their respective contributions to the acquisition of an invasive phenotype by using models of reduced or forced expression. The silencing of RhoC, but not of RhoA, increased the expression of genes encoding tumor suppressors, such as nonsteroidal anti-inflammatory drug-activated gene 1 (NAG-1), and decreased migration and the anchorage-independent growth in vitro. In vivo, RhoC small interfering RNA (siRhoC) impaired tumor growth. Of interest, the simultaneous knockdown of RhoC and NAG-1 repressed most of the siRhoC-related effects, demonstrating the central role of NAG-1. In addition of being induced by RhoC silencing, NAG-1 was also largely up-regulated in cells overexpressing RhoA. The silencing of RhoGDP dissociation inhibitor ? (RhoGDI?) and the overexpression of a RhoA mutant unable to bind RhoGDI? suggested that the effect of RhoC silencing is indirect and results from the up-regulation of the RhoA level through competition for RhoGDI?. This study demonstrates the dynamic balance inside the RhoGTPase network and illustrates its biological relevance in cancer progression.
Related JoVE Video
Human papillomavirus entry into NK cells requires CD16 expression and triggers cytotoxic activity and cytokine secretion.
Eur. J. Immunol.
PUBLISHED: 04-21-2011
Show Abstract
Hide Abstract
Human papillomavirus (HPV) infections account for more than 50% of infection-linked cancers in women worldwide. The immune system controls, at least partially, viral infection and around 90% of HPV-infected women clear the virus within two years. However, it remains unclear which immune cells are implicated in this process and no study has evaluated the direct interaction between HPVs and NK cells, a key player in host resistance to viruses and tumors. We demonstrated an NK-cell infiltration in HPV-associated preneoplastic cervical lesions. Since HPVs cannot grow in vitro, virus-like particles (VLPs) were used as a model for studying the NK-cell response against the virus. Interestingly, NK cells displayed higher cytotoxic activity and cytokine production (TNF-? and IFN-?) in the presence of HPV-VLPs. Using flow cytometry and microscopy, we observed that NK-cell stimulation was linked to rapid VLP entry into these cells by macropinocytosis. Using CD16(+) and CD16(-) NK-cell lines and a CD16-blocking antibody, we demonstrated that CD16 is necessary for HPV-VLP internalization, as well as for degranulation and cytokine production. Thus, we show for the first time that NK cells interact with HPVs and can participate in the immune response against HPV-induced lesions.
Related JoVE Video
MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells.
PLoS ONE
PUBLISHED: 01-19-2011
Show Abstract
Hide Abstract
MicroRNAs (miRNAs) are endogenously expressed small non-coding RNAs that regulate gene expression at post-transcriptional level. The recent discovery of the involvement of these RNAs in the control of angiogenesis renders them very attractive in the development of new approaches for restoring the angiogenic balance. Whereas miRNA-21 has been demonstrated to be highly expressed in endothelial cells, the potential function of this miRNA in angiogenesis has never been investigated.
Related JoVE Video
MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with mRNAs targets.
PLoS ONE
PUBLISHED: 01-03-2011
Show Abstract
Hide Abstract
miRNAs are now recognized as key regulator elements in gene expression. Although they have been associated with a number of human diseases, their implication in acute and chronic asthma and their association with lung remodelling have never been thoroughly investigated.
Related JoVE Video
Histological and transcriptional study of angiogenesis and lymphangiogenesis in uninvolved skin, acute pinpoint lesions and established psoriasis plaques: an approach of vascular development chronology in psoriasis.
J. Dermatol. Sci.
PUBLISHED: 01-07-2010
Show Abstract
Hide Abstract
Dysregulation of angiogenesis and lymphangiogenesis could participate in psoriasis pathogenesis. Analysis of nascent psoriasis lesions should help at identifying early vascular anomalies.
Related JoVE Video
P2X1 ion channels promote neutrophil chemotaxis through Rho kinase activation.
J. Immunol.
PUBLISHED: 07-27-2009
Show Abstract
Hide Abstract
ATP, released at the leading edge of migrating neutrophils, amplifies chemotactic signals. The aim of our study was to investigate whether neutrophils express ATP-gated P2X(1) ion channels and whether these channels could play a role in chemotaxis. Whole-cell patch clamp experiments showed rapidly desensitizing currents in both human and mouse neutrophils stimulated with P2X(1) agonists, alphabeta-methylene ATP (alphabetaMeATP) and betagammaMeATP. These currents were strongly impaired or absent in neutrophils from P2X(1)(-/-) mice. In Boyden chamber assays, alphabetaMeATP provoked chemokinesis and enhanced formylated peptide- and IL-8-induced chemotaxis of human neutrophils. This agonist similarly increased W-peptide-induced chemotaxis of wild-type mouse neutrophils, whereas it had no effect on P2X(1)(-/-) neutrophils. In human as in mouse neutrophils, alphabetaMeATP selectively activated the small RhoGTPase RhoA that caused reversible myosin L chain phosphorylation. Moreover, the alphabetaMeATP-elicited neutrophil movements were prevented by the two Rho kinase inhibitors, Y27632 and H1152. In a gradient of W-peptide, P2X(1)(-/-) neutrophils migrated with reduced speed and displayed impaired trailing edge retraction. Finally, neutrophil recruitment in mouse peritoneum upon Escherichia coli injection was enhanced in wild-type mice treated with alphabetaMeATP, whereas it was significantly impaired in the P2X(1)(-/-) mice. Thus, activation of P2X(1) ion channels by ATP promotes neutrophil chemotaxis, a process involving Rho kinase-dependent actomyosin-mediated contraction at the cell rear. These ion channels may therefore play a significant role in host defense and inflammation.
Related JoVE Video
Emerging pathogenic mechanisms in human myxomatous mitral valve: lessons from past and novel data.
Cardiovasc. Pathol.
Show Abstract
Hide Abstract
Myxomatous mitral valve is one of the most common heart valves diseases in human and has been well characterized at a functional and morphological level. Diseased valves are thickened as a result of extracellular matrix remodeling and proteoglycans accumulation accompanied by the disruption of the stratified structures of the leaflets.
Related JoVE Video
New prospects in the roles of the C-terminal domains of VEGF-A and their cooperation for ligand binding, cellular signaling and vessels formation.
Angiogenesis
Show Abstract
Hide Abstract
VEGF-A is a crucial growth factor for blood vessel homeostasis and pathological angiogenesis. Due to alternative splicing of its pre-mRNA, VEGF-A is produced under several isoforms characterized by the combination of their C-terminal domains, which determines their respective structure, availability and affinity for co-receptors. As controversies still exist about the specific roles of these exon-encoded domains, we systematically compared the properties of eight natural and artificial variants containing the domains encoded by exons 1-4 and various combinations of the domains encoded by exons 5, 7 and 8a or 8b. All the variants (VEGF111a, VEGF111b, VEGF121a, VEGF121b, VEGF155a, VEGF155b, VEGF165a, VEGF165b) have a similar affinity for VEGF-R2, as determined by Surface plasmon resonance analyses. They strongly differ however in terms of binding to neuropilin-1 and heparin/heparan sulfate proteoglycans. Data indicate that the 6 amino acids encoded by exon 8a must be present and cooperate with those of exons 5 or 7 for efficient binding, which was confirmed in cell culture models. We further showed that VEGF165b has inhibitory effects in vitro, as previously reported, but that the shortest VEGF variant possessing also the 6 amino acids encoded by exon 8b (VEGF111b) is remarkably proangiogenic, demonstrating the critical importance of domain interactions for defining the VEGF properties. The number, size and localization of newly formed blood vessels in a model of tumour angiogenesis strongly depend also on the C-terminal domain composition, suggesting that association of several VEGF isoforms may be more efficient for treating ischemic diseases than the use of any single variant.
Related JoVE Video
The angiogenesis suppressor gene AKAP12 is under the epigenetic control of HDAC7 in endothelial cells.
Angiogenesis
Show Abstract
Hide Abstract
Histone deacetylases (HDACs) are a family of 18 enzymes that deacetylate lysine residues of both histone and nonhistone proteins and to a large extent govern the process of angiogenesis. Previous studies have shown that specific inhibition of HDAC7 blocks angiogenesis both in vitro and in vivo. However, the underlying molecular mechanisms are not fully understood and hence preclude any meaningful development of suitable therapeutic modalities. The goal of the present study was to further the understanding of HDAC7 epigenetic control of angiogenesis in human endothelial cells using the proteomic approach. The underlying problem was approached through siRNA-mediated gene-expression silencing of HDAC7 in human umbilical vein endothelial cells (HUVECs). To this end, HUVEC proteins were extracted and proteomically analyzed. The emphasis was placed on up-regulated proteins, as these may represent potential direct epigenetic targets of HDAC7. Among several proteins, A-kinase anchor protein 12 (AKAP12) was the most reproducibly up-regulated protein following HDAC7 depletion. This overexpression of AKAP12 was responsible for the inhibition of migration and tube formation in HDAC7-depleted HUVEC. Mechanistically, H3 histones associated with AKAP12 promoter were acetylated following the removal of HDAC7, leading to an increase in its mRNA and protein levels. AKAP12 is responsible for protein kinase C mediated phosphorylation of signal transducer and activator of transcription 3 (STAT3). Phosphorylated STAT3 increasingly binds to the chromatin and AKAP12 promoter and is necessary for maintaining the elevated levels of AKAP12 following HDAC7 knockdown. We demonstrated for the first time that AKAP12 tumor/angiogenesis suppressor gene is an epigenetic target of HDAC7, whose elevated levels lead to a negative regulation of HUVEC migration and inhibit formation of tube-like structures.
Related JoVE Video
Rho proteins crosstalk via RhoGDIalpha: At random or hierarchically ordered?
Commun Integr Biol
Show Abstract
Hide Abstract
The small GTPases of the Rho family are key signaling molecules regulating a plethora of biological pathways. They can exert diverse, sometimes opposite, contributions to specific cellular processes explaining why their regulation and their crosstalk must be finely tuned. Several mechanisms driving crosstalk between Rho GTPases have been described in the literature. They implicate proteins regulating their activity or common downstream effectors. Among the proteins regulating Rho GTPases cycling, RhoGDIs were viewed until very recently as passive inhibitors. Here, we will focus on recent data supporting a role for RhoGDIalpha in the crosstalk between RhoGTPases and present our results suggesting that "preferential" RhoGDIalpha-mediated crosstalk takes place between closely related Rho GTPases.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.