JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Designing Microarray and RNA-seq Experiments for Greater Systems Biology Discovery in Modern Plant Genomics.
Mol Plant
PUBLISHED: 11-12-2014
Show Abstract
Hide Abstract
Microarray and RNA-seq experiments have become an important part of modern genomics and systems biology. Obtaining meaningful biological data from these experiments is an arduous task that demands close attention to many details. Negligence at any step can lead to gene expression data containing inadequate or composite information that is recalcitrant for pattern extraction. Therefore, it is imperative to carefully consider experimental design before launching a time-consuming and costly experiment. Contemporarily, most genomics experiments have two objectives: (1) generate two or more groups of comparable data for identifying differentially expressed genes, gene families, biological processes, or metabolic pathways under experimental condition. (2) build local gene regulatory networks and identify hierarchically important regulators governing biological processes and pathways of interest. Since the first objective aims to identify the active molecular identities and the second provides a basis for understanding the underlying molecular mechanisms through inferring causality relationships mediated by treatment, an optimal experiment is to produce biologically relevant and extractable data to meet both objectives without substantially increasing the cost. This review discussed the major issues that researchers commonly face when embarking on a microarray or RNA-seq experiments and summarized important aspects of experimental design, which aim to help researchers deliberate how to generate gene expression profiles with low background noise but more interaction to facilitate novel biological knowledge discoveries in modern plant genomics.
Related JoVE Video
Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater.
Bioresour. Technol.
PUBLISHED: 08-07-2014
Show Abstract
Hide Abstract
In this study, pyrite-based denitrification using untreated pyrite (UP) and acid-pretreated pyrite (AP) was evaluated as an alternative to elemental sulfur based denitrification. Pyrite-based denitrification resulted in a favorable nitrate removal rate constant (0.95d(-1)), sulfate production of 388.00mg/L, and a stable pH. The pretreatment of pyrite with acid led to a further increase in the nitrate removal rate constant (1.03d(-1)) and reduction in initial sulfate concentration (224.25±7.50mg/L). By analyzing the microbial community structure using Denaturing Gradient Gel Electrophoresis, it was confirmed that Sulfurimonas denitrificans (S. denitrificans) could utilize pyrite as an electron donor. A stable pH was observed over the entire experimental period, indicating that the use of a pH buffer reagent would not be necessary for pyrite-based denitrification. Therefore, pyrite could effectively replace elemental sulfur as an electron donor in autotrophic denitrification for nitrate-contaminated groundwater remediation.
Related JoVE Video
Optimization of C/N and current density in a heterotrophic/biofilm-electrode autotrophic denitrification reactor (HAD-BER).
Bioresour. Technol.
PUBLISHED: 06-30-2014
Show Abstract
Hide Abstract
In this study, central composite design (CCD) and response surface methodology (RSM) were applied to optimize the C/N and current density in a heterotrophic/biofilm-electrode autotrophic denitrification reactor (HAD-BER). Results showed that nitrate could be effectively reduced over a wide range of C/Ns (0.84-1.3535) and current densities (96.8-370.0 mA/m(2)); however, an optimum C/N of 1.13 and optimum current density of 239.6 mA/m(2) were obtained by RSM. Moreover, the HAD-BER performance under the optimum conditions resulted in almost 100% nitrate-N removal efficiency and low nitrite-N and ammonia-N accumulation. Furthermore, under the optimum conditions, H2 generated from water electrolysis matched the CO2 produced by heterotrophic denitrification by stoichiometric calculation. Therefore, CCD and RSM could be used to acquire optimum operational conditions and improve the nitrate removal efficiency and energy consumption in the HAD-BER.
Related JoVE Video
Influence of geochemical properties and land-use types on the microbial reduction of Fe(III) in subtropical soils.
Environ Sci Process Impacts
PUBLISHED: 06-17-2014
Show Abstract
Hide Abstract
Microbial Fe(III) reduction significantly impacts the geochemical processes and the composition of most subsurface soils. However, up to now, the factors influencing the efficiency of Fe(III) reduction in soils have not been fully described. In this study, soil Fe(III) reduction processes related to geochemical properties and land-use types were systematically investigated using iron-rich soils. The results showed that microbial Fe(III) reduction processes were efficient and their rates varied significantly in different types of soils. Fe(III) reduction rates were 1.1-5.6 times as much in soils with glucose added as in those without glucose. Furthermore, Fe(III) reduction rates were similar in soils from the same parent materials, while they were highest in soils developed from sediments, with a mean rate of 1.87 mM per day when supplemented with glucose. In addition, the Fe(III) reduction rates, reaching 0.99 and 0.59 mM per day on average with and without glucose added, respectively, were higher in the paddy soils affected heavily by human activities than those in the forest soils (average rates of 0.38 and 0.15 mM per day when with and without glucose, respectively). All the soil weathering indices correlated linearly with Fe(III) reduction rates, even though the reduction of iron in soils with higher weathering degrees was partly inhibited by a higher soil protonation trend and fewer available iron reduction sites in the soils, which gives lower reduction rates. These results clearly illustrate that soil Fe(III) reduction rates are greatly dependent on soil geochemical properties and land-use types and help define which soil types exhibit similar degrees of Fe(III) reduction under field conditions.
Related JoVE Video
Convecting particle diffusion in a binary particle system under vertical vibration.
Soft Matter
PUBLISHED: 05-07-2014
Show Abstract
Hide Abstract
We studied the separation behaviour of binary granular particles in a vertically vibrated container. The final separation of the binary particle system exhibited the Brazil-Nut (BN) effect, though it was not complete. Particle convection occurred, and four different typical convection modes were observed when the frequency f changed from 20 Hz to 80 Hz at constant dimensionless acceleration ? = 4?Af(2)/g. However, when ? changed from 2 to 4 at constant f, the system's convection mode stayed almost the same. In our experiments, one type of particle generally moved much faster than the other, so the former was termed the 'convecting' particle, and the latter was termed the 'non-convecting' particle. To study the separation results qualitatively, we divided the system into vertical layers and calculated the mass distribution of the binary particles along the z axis. The results showed that when f increased at constant ? or ? decreased at constant f, the convecting particles, usually the smaller and lighter ones, distributed less to the top side and more to the bottom side of the container. Finally, to explain the experimental results, we derived a mass conservation equation for the convecting particles considering simultaneous convection and diffusion. The equation described the experimental results well. We also analysed the effects of f, ?, diameter ratio, density ratio, etc., on the final separation results.
Related JoVE Video
A soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification (SISSAD) for domestic wastewater treatment.
Bioresour. Technol.
PUBLISHED: 02-16-2014
Show Abstract
Hide Abstract
To enhance the denitrification performance of soil infiltration, a soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification (SISSAD) for domestic wastewater treatment was developed, and the SISSAD performance was evaluated using synthetic domestic wastewater in this study. The aerobic respiration and nitrification were mainly taken place in the upper aerobic stage (AES), removed 88.44% COD and 89.99% NH4(+)-N. Moreover, autotrophic denitrification occurred in the bottom anaerobic stage (ANS), using the CO2 produced from AES as inorganic carbon source. Results demonstrated that the SISSAD showed a remarkable performance on COD removal efficiency of 95.09%, 84.86% for NO3(-)-N, 95.25% for NH4(+)-N and 93.15% for TP. This research revealed the developed system exhibits a promising application prospect for domestic wastewater in the future.
Related JoVE Video
Study on interaction between phosphorus and cadmium in sewage sludge during hydrothermal treatment by adding hydroxyapatite.
Bioresour. Technol.
PUBLISHED: 01-30-2014
Show Abstract
Hide Abstract
This study focused on the behavior of phosphorus (P) and its effect on cadmium (Cd) immobilization in sludge during hydrothermal treatment (HTT). The results showed that, after HTT other forms of P in sludge were almost completely converted into apatite P (AP) and the eco-toxicity and leachability of Cd was sharply decreased, signaling the immobilization effect of HTT on Cd in the sludge. Hydroxyapatite (HAP) addition showed a synergetic effect with HTT on Cd risk reduction, implying the immobilization effect of HTT on Cd could be partly attributed to the strong binding capacity of phosphorus with Cd. P content was found to have a strong relationship with the existing forms of Cd during HTT. The present results suggest that HTT with HAP addition could be a promising method for the safe disposal of Cd-contaminated sludge.
Related JoVE Video
Overexpression of Two PsnAP1 Genes from Populus simonii × P. nigra Causes Early Flowering in Transgenic Tobacco and Arabidopsis.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
In Arabidopsis, AP1 is a floral meristem identity gene and plays an important role in floral organ development. In this study, PsnAP1-1 and PsnAP1-2 were isolated from the male reproductive buds of poplar (Populus simonii × P. nigra), which are the orthologs of AP1 in Arabidopsis, by sequence analysis. Northern blot and qRT-PCR analysis showed that PsnAP1-1 and PsnAP1-2 exhibited high expression level in early inflorescence development of poplar. Subcellular localization showed the PsnAP1-1 and PsnAP1-2 proteins are localized in the nucleus. Overexpression of PsnAP1-1 and PsnAP1-2 in tobacco under the control of a CaMV 35S promoter significantly enhanced early flowering. These transgenic plants also showed much earlier stem initiation and higher rates of photosynthesis than did wild-type tobacco. qRT-PCR analysis further indicated that overexpression of PsnAP1-1 and PsnAP1-2 resulted in up-regulation of genes related to flowering, such as NtMADS4, NtMADS5 and NtMADS11. Overexpression of PsnAP1-1 and PsnAP1-2 in Arabidopsis also induced early flowering, but did not complement the ap1-10 floral morphology to any noticeable extent. This study indicates that PsnAP1-1 and PsnAP1-2 play a role in floral transition of poplar.
Related JoVE Video
Interrelationships between ALOX5AP polymorphisms, serum leukotriene B4 level and risk of acute coronary syndrome.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
We investigated the relationships between the ALOX5AP gene rs10507391 and rs4769874 polymorphisms, serum levels of leukotriene (LT) B4, and risk of acute coronary syndrome (ACS).
Related JoVE Video
Measuring semantic relatedness between Flickr images: from a social tag based view.
ScientificWorldJournal
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Relatedness measurement between multimedia such as images and videos plays an important role in computer vision, which is a base for many multimedia related applications including clustering, searching, recommendation, and annotation. Recently, with the explosion of social media, users can upload media data and annotate content with descriptive tags. In this paper, we aim at measuring the semantic relatedness of Flickr images. Firstly, four information theory based functions are used to measure the semantic relatedness of tags. Secondly, the integration of tags pair based on bipartite graph is proposed to remove the noise and redundancy. Thirdly, the order information of tags is added to measure the semantic relatedness, which emphasizes the tags with high positions. The data sets including 1000 images from Flickr are used to evaluate the proposed method. Two data mining tasks including clustering and searching are performed by the proposed method, which shows the effectiveness and robustness of the proposed method. Moreover, some applications such as searching and faceted exploration are introduced using the proposed method, which shows that the proposed method has broad prospects on web based tasks.
Related JoVE Video
Comprehensive transcriptome analysis of developing xylem responding to artificial bending and gravitational stimuli in Betula platyphylla.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Betula platyphylla Suk (birch) is a fast-growing woody species that is important in pulp industries and the biofuels. However, as an important pulp species, few studies had been performed on its wood formation. In the present study, we investigated the molecular responses of birch xylem to artificial bending and gravitational stimuli. After trunks of birch trees were subjected to bending for 8 weeks, the cellulose content was significantly greater in tension wood (TW) than in opposite wood (OW) or normal wood (NW), whereas the lignin content in TW was significantly lower than that in OW and NW. In addition, TW grew more rapidly than OW and generated TW-specific fibers with an additional G-layer. Three transcriptome libraries were constructed from TW, OW and NW of B. platyphylla, respectively, after the plants were subjected to artificial bending. Overall, 80,909 nonredundant unigenes with a mean size of 768 nt were assembled. Expression profiles were generated, and 9,684 genes were found to be significantly differentially expressed among the TW, OW and NW libraries. These included genes involved in secondary cell wall structure, wood composition, and cellulose or lignin biosynthesis. Our study showed that during TW formation, genes involved in cellulose synthesis were induced, while the expression of lignin synthesis-related genes decreased, resulting in increased cellulose content and decreased lignin levels in TW. In addition, fasciclin-like arabinogalactan proteins play important role in TW formation. These findings may provide important insights into wood formation at the molecular level.
Related JoVE Video
Selective removal of cesium from aqueous solutions with nickel (II) hexacyanoferrate (III) functionalized agricultural residue-walnut shell.
J. Hazard. Mater.
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
A novel nickel (II) hexacyanoferrate (III) functionalized agricultural residue-walnut shell (Ni(II)HCF(III)-WS) was developed to selectively remove cesium ion (Cs(+)) from aqueous solutions. This paper showed the first integral study on Cs(+) removal behavior and waste reduction analysis by using biomass adsorption material. The results indicated that the removal process was rapid and reached saturation within 2h. As a special characteristic of Ni(II)HCF(III)-WS, acidic condition was preferred for Cs(+) removal, which was useful for extending the application scope of the prepared biomass material in treating acidic radioactive liquid waste. The newly developed Ni(II)HCF(III)-WS could selectively remove Cs(+) though the coexisting ions (Na(+) and K(+) in this study) exhibited negative effects. In addition, approximately 99.8% (in volume) of the liquid waste was reduced by using Ni(II)HCF(III)-WS and furthermore 91.9% (in volume) of the spent biomass material (Cs-Ni(II)HCF(III)-WS) was reduced after incineration (at 500°C for 2h). Due to its relatively high distribution coefficient and significant volume reduction, Ni(II)HCF(III)-WS is expected to be a promising material for Cs(+) removal in practice.
Related JoVE Video
Nickel oxide grafted andic soil for efficient cesium removal from aqueous solution: adsorption behavior and mechanisms.
ACS Appl Mater Interfaces
PUBLISHED: 10-01-2013
Show Abstract
Hide Abstract
An andic soil, akadama clay, was modified with nickel oxide and tested for its potential application in the removal of cesium from aqueous solution. Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), and powder X-ray diffraction (XRD) results revealed the nickel oxide was successfully grafted into akadama clay. N2 adsorption-desorption isotherms indicated the surface area decreased remarkably after modification while the portion of mesopores increased greatly. Thermogravimetric-differential thermal analysis (TG-DTA) showed the modified akadama clay had better thermostability than the pristine akadama clay. Decreases in cation exchange capacity (CEC) and ?-potential were also detected after the modification. Adsorption kinetic and isotherm studies indicated the adsorption of Cs+ on the modified akadama clay was a monolayer adsorption process. Adsorption capacity was greatly enhanced for the modified akadama clay probably due to the increase in negative surface charge caused by the modification. The adsorption of Cs+ on the modified akadama clay was dominated by an electrostatic adsorption process. Results of this work are of great significance for the application of akadama clay as a promising adsorbent material for cesium removal from aqueous solutions.
Related JoVE Video
Synergistic effect of rice husk addition on hydrothermal treatment of sewage sludge: fate and environmental risk of heavy metals.
Bioresour. Technol.
PUBLISHED: 08-01-2013
Show Abstract
Hide Abstract
Hydrothermal treatment (HTT) at 200°C was applied to immobilize heavy metals (HMs) and the effect of rice husk (RH) addition was investigated based on total HMs concentration, fractionation and leaching tests. The results indicated that a synergistic effect of RH addition and HTT could be achieved on reducing the risk of HMs from medium and low risk to no risk. Metals were redistributed and transformed from weakly bounded state to stable state during the HTT process under RH addition. Notably at a RH/sludge ratio of 1/1.75 (d.w.), all the HMs showed no eco-toxicity and no leaching toxicity, with the concentrations of leachable Cr, Ni, Cu and Cd decreased by 17%, 89%, 95% and 93%, respectively. This synergistic effect of RH addition and HTT on the risk reduction of HMs implies that HTT process with RH addition could be a promising and safe disposal technology for sewage sludge treatment in practice.
Related JoVE Video
Comprehensive transcriptional profiling of NaHCO3-stressed Tamarix hispida roots reveals networks of responsive genes.
Plant Mol. Biol.
PUBLISHED: 07-13-2013
Show Abstract
Hide Abstract
Root tissue is the primary site of perception for stress from soil, and is the main tissue involved in stress response. Tamarix hispida is a woody halophyte that is highly tolerant to salt and drought stress, but little information available about gene expression in roots in response to abiotic stress. In this study, eight transcriptomes from roots of T. hispida treated with NaHCO3 for 0, 12, 24 and 48 h (two biological replicates were set at each time point) were built. In total, 47,324 unigenes were generated, and 6,267 differentially expressed genes (DEGs) were identified. There were 2,510, 3,690, and 2,636 genes significantly differentially expressed after stress for 12, 24 and 48 h, respectively. Co-expressed DEGs were clustered into ten classes (P < 0.001). Gene ontology enrichment analysis showed that 13 pathways were highly enriched, such as signal transduction, cell wall, phosphatase activity, and lipid kinase activity, suggesting that these pathways play important roles in the saline-alkaline response. Furthermore, the genes involved in lignin metabolic processes and biosynthesis of proline and trehalose are found closely involved in NaHCO3 stress response. This systematic analysis may provide an in-depth view of stress tolerance mechanisms in T. hispida.
Related JoVE Video
Characteristics of heterotrophic/biofilm-electrode autotrophic denitrification for nitrate removal from groundwater.
Bioresour. Technol.
PUBLISHED: 07-12-2013
Show Abstract
Hide Abstract
A heterotrophic/biofilm-electrode autotrophic denitrification reactor (HAD-BER) was developed to improve denitrification efficiency and reduce the consumption of organic carbon source. Maximum nitrate removal efficiency of 99.9% was gained under the optimum current density of 200 mA/m(2). The number of heterotrophic denitrification bacteria (HDB) 2.0 × 10(5) and hydrogen autotrophic denitrification bacteria (ADB) 2.0 × 10(3) in per milliliter biofilm solution were observed by the most probable number (MPN) culture, demonstrating that HDB and ADB coexist in the HAD-BER. The inorganic carbon source for autotrophic denitrification was supplied by the dissolved carbon dioxide (CO2) evolved from the heterotrophic denitrification process, indicating that there was synergistic interaction between the HDB and ADB, i.e., the organic carbon source used for denitrification could be decreased in the HAD-BER. Therefore, the developed HAD-BER would be a promising approach for nitrate removal from groundwater.
Related JoVE Video
Degradation of microcystins by an electrochemical oxidative electrode cell.
Environ Technol
PUBLISHED: 07-11-2013
Show Abstract
Hide Abstract
Microcystins (MCs), which are produced by cyanobacteria, are one of the most serious problems that threaten quality of drinking water and public health. In this study, an electrolysis cell with no electrolyte is demonstrated to degrade MCs (MC-RR, MC-YR and MC-LR) in both high and low concentrations. In addition, degradation of MCs was studied under different current densities. The results revealed that the electrolysis cell could degrade MCs successfully. It was observed that degradation of a single MC was faster than mixed types and statistical analysis revealed that the degradation rate of all the three MCs did not show much difference in mixed degradation. Analysis of hydroxyl radical concentration suggested a possible role of the hydroxyl radical in degradation of MCs. We propose that the electrolysis cell could be a promising treatment for effective removal of MCs in situ, especially in water purification plants where low amounts of salts (electrolytes) are present.
Related JoVE Video
Evolutionary toggling of Vpx/Vpr specificity results in divergent recognition of the restriction factor SAMHD1.
PLoS Pathog.
PUBLISHED: 07-01-2013
Show Abstract
Hide Abstract
SAMHD1 is a host restriction factor that blocks the ability of lentiviruses such as HIV-1 to undergo reverse transcription in myeloid cells and resting T-cells. This restriction is alleviated by expression of the lentiviral accessory proteins Vpx and Vpr (Vpx/Vpr), which target SAMHD1 for proteasome-mediated degradation. However, the precise determinants within SAMHD1 for recognition by Vpx/Vpr remain unclear. Here we show that evolution of Vpx/Vpr in primate lentiviruses has caused the interface between SAMHD1 and Vpx/Vpr to alter during primate lentiviral evolution. Using multiple HIV-2 and SIV Vpx proteins, we show that Vpx from the HIV-2 and SIVmac lineage, but not Vpx from the SIVmnd2 and SIVrcm lineage, require the C-terminus of SAMHD1 for interaction, ubiquitylation, and degradation. On the other hand, the N-terminus of SAMHD1 governs interactions with Vpx from SIVmnd2 and SIVrcm, but has little effect on Vpx from HIV-2 and SIVmac. Furthermore, we show here that this difference in SAMHD1 recognition is evolutionarily dynamic, with the importance of the N- and C-terminus for interaction of SAMHD1 with Vpx and Vpr toggling during lentiviral evolution. We present a model to explain how the head-to-tail conformation of SAMHD1 proteins favors toggling of the interaction sites by Vpx/Vpr during this virus-host arms race. Such drastic functional divergence within a lentiviral protein highlights a novel plasticity in the evolutionary dynamics of viral antagonists for restriction factors during lentiviral adaptation to its hosts.
Related JoVE Video
Agrobacterium tumefaciens-mediated genetic transformation of Salix matsudana Koidz. using mature seeds.
Tree Physiol.
PUBLISHED: 06-14-2013
Show Abstract
Hide Abstract
An Agrobacterium tumefaciens-mediated transformation method was developed for Salix matsudana Koidz. using mature seeds as starting material. Multiple shoots were induced directly from embryonic shoot apices of germinating seeds. Although thidiazuron, 6-benzylaminopurine and zeatin induced multiple shoot induction with high frequency, zeatin (4.5 ?M) was more effective for elongation of shoots and roots. The binary vector pCAMBIA1303, which contained neomycin phosphotransferase as a selectable marker gene and ?-glucuronidase as a reporter gene, was used for transformation. Factors affecting transformation efficiency were examined for optimization of the procedure. Up to 35 of 180 seeds regenerated kanamycin-resistant shoots under optimal transformation conditions as follows: seeds were precultured for 4 days, apices of embryonic shoots were removed and infected with A. tumefaciens strain LBA4404 grown to a cell density equivalent (OD600) of 0.6, and then the infected explants were cultivated at 21 °C for 4 days. Storage of seeds at -20 °C for as long as 3 years had no significant effect on the induction of kanamycin-resistant shoots. Using this method, transgenic plants were obtained within ?5 months with a transformation frequency of 7.2%. Analysis by polymerase chain reaction (PCR) showed that 36.4-93.8% of plants from all 13 tested kanamycin-resistant lines were PCR positive. Several escapes were eliminated by a second round of selection. PCR, Southern blot and reverse transcriptase-PCR analyses of selected transgenic individuals 2 years after cutting propagation confirmed the successful generation of stable transformants. Our method, which minimizes the duration of axenic culture, may provide an alternative procedure for transformation of other recalcitrant Salix species.
Related JoVE Video
Influence of operating conditions on electrochemical reduction of nitrate in groundwater.
Water Environ. Res.
PUBLISHED: 04-16-2013
Show Abstract
Hide Abstract
The influences of current density, initial pH, cation and anion concentrations, and the coexistence of Ca2+ and HCO3- on the efficiency of electrochemical nitrate reduction by a copper cathode and Ti/IrO2 anode in an undivided cell were studied. In the presence of 5 mM of sodium chloride (NaCl), the nitrate-nitrogen concentration decreased from 3.57 to 0.69 mM in 120 minutes, and no ammonia or nitrite byproducts were detected. The nitrate reduction rate increased as the current density increased. The electrochemical method performed well at an initial pH range of 3.0 to 11.0. The rate of nitrate reduction increased as concentrations of Na+, K+, and Ca2+ increased. The anion of the supporting electrolyte decreased the rate of reduction in the order Cl- > HCO3(2-) = CO3(2-) > SO4(2-) at both 5 mM and 10 mM of anion. The coexistence of Ca2+ and HCO3- ions could inhibit nitrate reduction. The concentration of nitrate-nitrogen in polluted groundwater decreased from 2.80 to 0.31 mM after electrolysis for 120 minutes.
Related JoVE Video
Efficiencies of multilayer infiltration systems for the removal of urban runoff pollutants.
Water Sci. Technol.
PUBLISHED: 04-13-2013
Show Abstract
Hide Abstract
Current rates of urban development will result in water runoff becoming a major complication of urban water pollution. To address the worsening situation regarding water resource shortage and pollution, novel multilayer infiltration systems were designed and their effectiveness for removing pollutants in urban runoff tested experimentally. The multilayer infiltration systems effectively removed most pollutants, including organic matter (chemical oxygen demand (CODCr)), total nitrogen (TN), ammonia-nitrogen (NH4(+)-N) and total phosphorus (TP). CODCr, TN, NH4(+)-N, and TP were reduced by 68.67, 23.98, 82.66 and 92.11%, respectively. The main mechanism for nitrogen removal was biological nitrogen removal through nitrification and denitrification. Phosphorus in the urban runoff was removed mainly by fixation processes in the soil, such as adsorption and chemical precipitation. The results indicate that the proposed novel system has potential for removal of pollutants from urban runoff and subsequent reuse of the treated water.
Related JoVE Video
Airborne particulate polycyclic aromatic hydrocarbon (PAH) pollution in a background site in the North China Plain: concentration, size distribution, toxicity and sources.
Sci. Total Environ.
PUBLISHED: 03-26-2013
Show Abstract
Hide Abstract
The size-fractionated characteristics of particulate polycyclic aromatic hydrocarbons (PAHs) were studied from January 2011 to October 2011 using a Micro-orifice Uniform Deposit Impactor (MOUDI) at the Yellow River Delta National Nature Reserve (YRDNNR), a background site located in the North China Plain. The average annual concentration of total PAHs in the YRDNNR (18.95 ± 16.51 ng/m(3)) was lower than that in the urban areas of China; however, it was much higher than that in other rural or remote sites in developed countries. The dominant PAHs, which were found in each season, were fluorene (5.93%-26.80%), phenanthrene (8.17%-26.52%), fluoranthene (15.23%-27.12%) and pyrene (9.23%-16.31%). A bimodal distribution was found for 3-ring PAHs with peaks at approximately 1.0-1.8 ?m and 3.2-5.6 ?m; however, 4-6 ring PAHs followed a nearly unimodal distribution, with the highest peak in the 1.0-1.8 ?m range. The mass median diameter (MMD) values for the total PAHs averaged 1.404, 1.467, 1.218 and 0.931 ?m in spring, summer, autumn and winter, respectively. The toxicity analysis indicated that the carcinogenic potency of particulate PAHs existed primarily in the <1.8 ?m size range. Diagnostic ratios and PCA analysis indicated that the PAHs in aerosol particles were mainly derived from coal combustion. In addition, back-trajectory calculations demonstrated that atmospheric PAHs were produced primarily by local anthropogenic sources.
Related JoVE Video
Tetramerization of SAMHD1 is required for biological activity and inhibition of HIV infection.
J. Biol. Chem.
PUBLISHED: 02-20-2013
Show Abstract
Hide Abstract
SAMHD1 is a dGTP-activated dNTPase that has been implicated as a modulator of the innate immune response. In monocytes and their differentiated derivatives, as well as in quiescent cells, SAMHD1 strongly inhibits HIV-1 infection and, to a lesser extent, HIV-2 and simian immunodeficiency virus (SIV) because of their virion-associated virulence factor Vpx, which directs SAMHD1 for proteasomal degradation. Here, we used a combination of biochemical and virologic approaches to gain insights into the functional organization of human SAMHD1. We found that the catalytically active recombinant dNTPase is a dGTP-induced tetramer. Chemical cross-linking studies revealed SAMHD1 tetramers in human monocytic cells, in which it strongly restricts HIV-1 infection. The propensity of SAMHD1 to maintain the tetrameric state in vitro is regulated by its C terminus, located outside of the catalytic domain. Accordingly, we show that the C terminus is required for the full ability of SAMHD1 to deplete dNTP pools and to inhibit HIV-1 infection in U937 monocytes. Interestingly, the human SAMHD1 C terminus contains a docking site for HIV-2/SIVmac Vpx and is known to have evolved under positive selection. This evidence indicates that Vpx targets a functionally important element in SAMHD1. Together, our findings imply that SAMHD1 tetramers are the biologically active form of this dNTPase and provide new insights into the functional organization of SAMHD1.
Related JoVE Video
Simultaneous sulfide removal and electricity generation with corn stover biomass as co-substrate in microbial fuel cells.
Bioresour. Technol.
PUBLISHED: 02-01-2013
Show Abstract
Hide Abstract
Microbial fuel cells (MFCs), representing a promising method to treat combined pollutants with energy recovery, were utilized to remove sulfide and recover power with corn stover filtrate (CSF) as the co-substrate in present study. A maximum power density of 744 mW/m(2) was achieved with sulfide removal of 91% during 72 h operation when the CSF concentrations (mg-COD/l) and the electrolyte conductivity were set at 800 mg/l and 10.06 mS/cm, respectively, while almost 52% COD was removed due to the microbial degradation of CSF to the volatile organic carbons. CSF concentrations and electrolyte conductivities had significant effects on the performance of the MFCs. Simultaneous removals of inorganic pollutant and complex organic compounds with electricity generation in MFCs are reported for the first time. These results provide a good reference for multiple contaminations treatment especially sulfide containing wastewaters based on the MFC technology.
Related JoVE Video
A novel tablet porous material developed as adsorbent for phosphate removal and recycling.
J Colloid Interface Sci
PUBLISHED: 01-31-2013
Show Abstract
Hide Abstract
In the present study, a novel tablet porous material (TPM) was developed from Kanuma clay (K-clay), corn starch, and calcium oxide. Laboratory-scale batch experiments were conducted to evaluate the phosphate adsorption capacity of TPM from aqueous solution. The adsorption isotherms, adsorption kinetics, phosphate recycling, and major factors such as temperature, pH, and dosage were investigated. The phosphate adsorption results fitted the Freundlich isotherm model very well, and the adsorption process was an endothermic and spontaneous reaction which could be described by a pseudo second-order kinetic model. The maximum phosphate adsorption capacity was 4.39 mg g(-1), and its equilibrium could be attained in 2h. The solution pH had little effect on TPM phosphate removal when pH varied from 5.0 to 9.0. 70.29% of adsorbed phosphate could be recycled when 0.2N HCl was used as eluant, and the present developed TPM could be recovered and reused for 5 times. This novel developed TPM is a promising adsorbent than other clay mineral materials for phosphate removal from wastewater.
Related JoVE Video
Immobilization of heavy metals in sewage sludge by using subcritical water technology.
Bioresour. Technol.
PUBLISHED: 01-24-2013
Show Abstract
Hide Abstract
Heavy metals (HMs) immobilization in sewage sludge was investigated by using subcritical water technology (SCWT) in this study. The characteristics of sludge and toxicity of HMs were analyzed after SCWT process. The results showed that besides large reduction in sludge volume, SCWT had some positive effect on HMs dissolution into liquid phase, while the majority of HMs was still accumulated in solid phase. The direct toxicity and bioavailability of HMs in sludge was greatly decreased with no toxicity fractions of HMs highly increased. Pb was always at low risk level and the risk of other HMs was greatly reduced from low risk to no risk after SCWT treatment. Moreover, the leaching toxicity of HMs declined after SCWT and the best result was obtained at 280°C with the metal concentrations in leachate decreased by 97.46%, 93.91%, 86.14%, 73.67%, 71.93% and 10.71% for Cu, Cd, Zn, Cr, Ni and Pb, respectively.
Related JoVE Video
Histone deacetylases and their functions in plants.
Plant Cell Rep.
PUBLISHED: 01-24-2013
Show Abstract
Hide Abstract
Histone deacetylases (HDACs) mediate histone deacetylation and act in concert with histone acetyltransferases to regulate dynamic and reversible histone acetylation which modifies chromatin structure and function, affects gene transcription, thus, controlling multiple cellular processes. HDACs are widely distributed in almost all eukaryotes, and there have been many researches focusing on plant HDACs recently. An increasing number of HDAC genes have been identified and characterized in a variety of plant species and the functions of certain HDACs have been studied. The present studies indicate that HDACs play a key role in regulating plant growth, development and stress responses. This paper reviews recent findings on HDACs and their functions in plants, especially their roles in development and stress responses.
Related JoVE Video
Behavior of total phosphorus removal in an intelligent controlled sequencing batch biofilm reactor for municipal wastewater treatment.
Bioresour. Technol.
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
The behavior of total phosphorus removal was investigated in present study in sequencing batch biofilm reactor (SBBR) controlled by an intelligent control system (ICS) with less energy consumption for municipal wastewater treatment. Stable total phosphorus (TP) removal efficiency of 93.9 ± 2.2% was achieved in comparison to that of 93.3 ± 2.5% in a conventional timer control system (TCS-SBBR). Significant anaerobic phosphorus release was not observed in ICS-SBBR, which was unlike the conventional TCS-SBBR. Moreover, lower accumulations/transformations of polyhydroxyalkanoates (PHAs) and higher transformation of glycogen occurred in the ICS-SBBR, indicating that PHAs was the main energy source while glycogen played a supporting role when PHAs were inadequate, which was different from the traditional mechanism of biological phosphorus removal in TCS-SBBR. The possible biochemical metabolism of phosphorus removal in ICS-SBBR was also elucidated.
Related JoVE Video
Effective adsorption of Cr (VI) from aqueous solution using natural Akadama clay.
J Colloid Interface Sci
PUBLISHED: 01-05-2013
Show Abstract
Hide Abstract
In this study, natural Akadama clay was used for Cr (VI) removal from aqueous solution. Batch experiments were carried out to investigate the effect of contact time, initial pH, and adsorbent dose on Cr (VI) adsorption. Results showed that Cr (VI) adsorption on natural Akadama clay reached equilibrium in 180 min. The Cr (VI) removal efficiency of 46.8% without pH adjustment increased to 73.8% at the optimum initial pH of 2. The maximum adsorption capacity was 4.29 mg g(-1) at an initial concentration of 50.0 mg L(-1) and adsorbent dosage of 5 g L(-1). The equilibrium data fitted Freundlich isotherm better than Langmuir isotherm, and they were well explained by pseudo-second-order kinetic model. Adsorption mechanism analysis proved that electrostatic adsorption dominated during the removal process. Results from this study demonstrate that natural Akadama clay has the potential to be an efficient adsorbent for Cr (VI) adsorption compared to other natural mineral adsorbents.
Related JoVE Video
Overexpression of a MADS-box gene from birch (Betula platyphylla) promotes flowering and enhances chloroplast development in transgenic tobacco.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
In this study, a MADS-box gene (BpMADS), which is an ortholog of AP1 from Arabidopsis, was isolated from birch (Betula platyphylla). Transgenic Arabidopsis containing a BpMADS promoter::GUS construct was produced, which exhibited strong GUS staining in sepal tissues. Ectopic expression of BpMADS significantly enhanced the flowering of tobacco (35S::BpMADS). In addition, the chloroplasts of transgenic tobacco exhibited much higher growth and division rates, as well rates of photosynthesis, than wild-type. A grafting experiment demonstrated that the flowering time of the scion was not affected by stock that overexpressed BpMADS. In addition, the overexpression of BpMADS resulted in the upregulation of some flowering-related genes in tobacco.
Related JoVE Video
Overexpression of a heat shock protein (ThHSP18.3) from Tamarix hispida confers stress tolerance to yeast.
Mol. Biol. Rep.
PUBLISHED: 11-17-2011
Show Abstract
Hide Abstract
It is well known that plant heat shock proteins (HSPs) play important roles both in response to adverse environmental conditions and in various developmental processes. However, among plant HSPs, the functions of tree plant HSPs are poorly characterized. To improve our understanding of tree HSPs, we cloned and characterized an HSP gene (ThHSP18.3) from Tamarix hispida. Sequence alignment reveals that ThHSP18.3 belongs to the class I small heat shock protein family. A transient expression assay showed that ThHSP18.3 protein was targeted to the cell nucleus. Treatment of Tamarix hispida with cold and heat shock highly induced ThHSP18.3 expression in all studied leaves, roots and stems, whereas, treatment of T. hispida with NaCl, NaHCO(3), and PEG induced ThHSP18.3 expression in leaves and decreased its expression in roots and stems. Further, to study the role of ThHSP18.3 in stress tolerance under different stress conditions, we cloned ThHSP18.3 into the pYES2 vector, transformed and expressed the vector in yeast Saccharomyces cerevisiae. Yeast cells transformed with an empty pYES2 vector were employed as a control. Compared to the control, yeast cells expressing ThHSP18.3 showed greater tolerance to salt, drought, heavy metals, and both low and high temperatures, indicating that ThHSP18.3 confers tolerance to these stress conditions. These results suggested that ThHSP18.3 is involved in tolerance to a variety of stress conditions in T. hispida.
Related JoVE Video
Behavior of autotrophic denitrification and heterotrophic denitrification in an intensified biofilm-electrode reactor for nitrate-contaminated drinking water treatment.
Bioresour. Technol.
PUBLISHED: 10-31-2011
Show Abstract
Hide Abstract
An intensified biofilm-electrode reactor (IBER) was developed to treat nitrate-contaminated drinking water. Different running conditions were conducted to investigate the behavior of autotrophic denitrification (AD) and heterotrophic denitrification (HD) in the IBER. In AD process, the nitrate nitrogen coulomb-reduction rate was used to evaluate the performance of the reactor. The maximum NO(3)(-)-N removal efficiency was 6.8% at the current of 60 mA, while nitrate nitrogen coulomb-reduction rate was 0.024 mg C(-1). The optimum conditions for HD process were C/N=0.8 and HRT=8h, under which complete NO(3)(-)-N removal and no NO(2)(-)-N accumulation were observed. With the cooperative effect of AD and HD in the heterotrophic and autotrophic denitrification (HAD) process, large treatment capacity, high denitrification efficiency, and low nitrite and ammonia accumulation were achieved. The results proved that HAD process was superior to single AD and HD for nitrate removal in the IBER.
Related JoVE Video
Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora.
J. Proteome Res.
PUBLISHED: 08-08-2011
Show Abstract
Hide Abstract
Soil salinity poses a serious threat to agriculture productivity throughout the world. Studying mechanisms of salinity tolerance in halophytic plants will provide valuable information for engineering plants for enhanced salt tolerance. Monocotyledonous Puccinellia tenuiflora is a halophytic species that widely distributed in the saline-alkali soil of the Songnen plain in northeastern China. Here we investigate the molecular mechanisms underlying moderate salt tolerance of P. tenuiflora using a combined physiological and proteomic approach. The changes in biomass, inorganic ion content, osmolytes, photosynthesis, defense-related enzyme activities, and metabolites in the course of salt treatment were analyzed in the leaves. Comparative proteomic analysis revealed 107 identities (representing 93 unique proteins) differentially expressed in P. tenuiflora leaves under saline conditions. These proteins were mainly involved in photosynthesis, stress and defense, carbohydrate and energy metabolism, protein metabolism, signaling, membrane, and transport. Our results showed that reduction of photosynthesis under salt treatment was attributed to the down-regulation of the light-harvesting complex (LHC) and Calvin cycle enzymes. Selective uptake of inorganic ions, high K(+)/Na(+) ratio, Ca(2+) concentration changes, and an accumulation of osmolytes contributed to ion balance and osmotic adjustment in leaf cells. Importantly, P. tenuiflora plants developed diverse reactive oxygen species (ROS) scavenging mechanisms in their leaves to cope with moderate salinity, including enhancement of the photorespiration pathway and thermal dissipation, synthesis of the low-molecular-weight antioxidant ?-tocopherol, and an accumulation of compatible solutes. This study provides important information toward improving salt tolerance of cereals.
Related JoVE Video
Performance of sequencing batch biofilm reactors with different control systems in treating synthetic municipal wastewater.
Bioresour. Technol.
PUBLISHED: 05-14-2011
Show Abstract
Hide Abstract
This study aimed to evaluate the performances of sequencing batch biofilm reactors (SBBRs) in removing nitrogen and phosphorus from synthetic municipal wastewater with different carbon to total nitrogen (C/N) ratios. The effect of control systems, including an intelligent control system (ICS) and conventional timer control system (TCS) on the performance of SBBRs was also investigated. When C/N ratios were 10.0, 5.0 and 3.3, the average COD removal efficiencies in the ICS-SBBR reached 87.7%, 92.3% and 97.6%, while total phosphorous (TP) removals reached 95.0%, 97.0% and 97.2%. When the C/N ratio was 5.0, the TN removal efficiency was 81.0% under ICS and 65.4% under TCS. Moreover, compared with TCS-SBBR, both reaction time and aeration time were shortened by 180 min and 157 min, respectively, in the ICS-SBBR. Therefore, the ICS-SBBR has potential in practical applications for significant nitrogen and phosphorus removal and energy savings.
Related JoVE Video
Inhibition of the growth of two blue-green algae species (Microsystis aruginosa and Anabaena spiroides) by acidification treatments using carbon dioxide.
Bioresour. Technol.
PUBLISHED: 03-04-2011
Show Abstract
Hide Abstract
The effect of pH adjusted by aeration with carbon dioxide (CO(2)) on the growth of two species of blue-green algae, Microcystis aeruginosa and Anabaena spiroides, was investigated. Three conditions (pH 5.5, 6.0 and 6.5) were found to have significant inhibitory effects on the growth of the two algae species when acidification treatment was conducted during the logarithmic phase. Differences in the inhibition effect of acidification existed between the two species algae. The tolerance of M. aeruginosa to these conditions was also investigated. The results indicated that M. aeruginosa was inhibited significantly, but not dead at pH 6.5, whereas death occurred at pH 5.5 and 6.0. The greatest inhibitory effect of acidification treatment conducted during the stable breeding phase of M. aeruginosa occurred at pH 5.5, while no inhibitory effect was found at pH 6.5.
Related JoVE Video
Study on a fixed zeolite bioreactor for anaerobic digestion of ammonium-rich swine wastes.
Bioresour. Technol.
PUBLISHED: 02-11-2011
Show Abstract
Hide Abstract
In this study, a fixed zeolite bioreactor was developed for the anaerobic digestion of ammonium-rich swine wastes (NH(4)(+)-N=3770 mg/l). To investigate the performance of the reactor, a sunken zeolite bioreactor and a bioreactor without zeolite were used as controls. The new bioreactor exhibited good performance, with startup time on the 14th day and methane production of 178.5 ml/g-VS during all 32 days of the experiment at 35°C. This bioreactor significantly shortened startup time, enhanced methane gas yield more than twofold and made COD removal more efficient than under the other models. Furthermore, it reduced the inhibition of high ammonium concentration during the anaerobic digestion of ammonium-rich swine wastes via effective ammonium removal and the immobilisation of microorganisms. Because of its simple structure and good performance, the fixed zeolite bioreactor can be recommended for future use.
Related JoVE Video
Time-course analyses of abscisic acid level and the expression of genes involved in abscisic acid biosynthesis in the leaves of Betula platyphylla.
Mol. Biol. Rep.
PUBLISHED: 01-29-2011
Show Abstract
Hide Abstract
Abscisic acid (ABA) is a plant hormone regulating the essential physiological processes of plants and plant responses to various environmental stresses. Recent studies revealed that the key enzymes involved in ABA biosynthesis were zeaxanthin epoxidase (ZEP), 9-cis-epoxycarotenoid dioxygenases (NCED), short-chain dehydrogenase/reductase (SDR), and ABA-aldehyde oxidase (AAO). In this study, we cloned 12 unique genes potentially involved in ABA synthesis, including 5 of BpNCEDs, 1 of BpAAO, and 6 of BpZEPs from birch leaves. We analyzed the time-course expression of these 12 genes during the phase from May to August by real time reverse transcriptase-polymerase chain reaction (RT-PCR). Further, we determined birch endogenous ABA content during this period by liquid chromatography tandem mass spectrometry (LC-MS/MS). The results indicated that ABA level significantly (P < 0.05) increased during the early stages of development and ABA was present in birch leaves throughout the studied period, suggesting that endogenous ABA is necessary for the normal growth and development of plants. The correlation between the expression of above-mentioned genes and ABA levels was analyzed by Pearson correlation analysis. The results revealed that the expression of three genes, namely, BpNCED4, BpNCED5 and BpZE6 significantly (P < 0.05) correlated with the ABA level. Therefore, these three genes may play important roles in ABA biosynthesis.
Related JoVE Video
Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor.
J. Hazard. Mater.
PUBLISHED: 01-12-2011
Show Abstract
Hide Abstract
An intensified biofilm-electrode reactor (IBER) combining heterotrophic and autotrophic denitrification was developed for treatment of nitrate contaminated groundwater. The reactor was evaluated with synthetic groundwater (NO(3)(-)-N50 mg L(-1)) under different hydraulic retention times (HRTs), carbon to nitrogen ratios (C/N) and electric currents (I). The experimental results demonstrate that high nitrate and nitrite removal efficiency (100%) were achieved at C/N = 1, HRT = 8h, and I = 10 mA. C/N ratios were reduced from 1 to 0.5 and the applied electric current was changed from 10 to 100 mA, showing that the optimum running condition was C/N = 0.75 and I = 40 mA, under which over 97% of NO(3)(-)-N was removed and organic carbon (methanol) was completely consumed in treated water. Simultaneously, the denitrification mechanism in this system was analyzed through pH variation in effluent. The CO(2) produced from the anode acted as a good pH buffer, automatically controlling pH in the reaction zone. The intensified biofilm-electrode reactor developed in the study was effective for the treatment of groundwater polluted by nitrate.
Related JoVE Video
[Isolation, identification and soil remediation of atrazine-degrading strain T3 AB1].
Wei Sheng Wu Xue Bao
PUBLISHED: 12-10-2010
Show Abstract
Hide Abstract
To provide new atrazine-degrading strains for atrazine-polluted soil, we isolated the high-efficiency degradation bacterium from contaminated soil, identified with taxonomy, and studied the degrading characteristics and remediation capability of the strain in black soil.
Related JoVE Video
Removal of fluoride from aqueous solution by adsorption onto Kanuma mud.
Water Sci. Technol.
PUBLISHED: 10-22-2010
Show Abstract
Hide Abstract
Kanuma mud, a geomaterial, is used as an adsorbent for the removal of fluoride from water. The influences of contact time, solution pH, adsorbent dosage, initial fluoride concentration and co-existing ions were investigated by batch equilibration studies. The rate of adsorption was rapid with equilibrium being attained after about 2?h, and the maximum removal of fluoride was obtained at pH 5.0-8.0. The Freundlich isotherm model was found to represent the measured adsorption data well. The negative value of the thermodynamic parameter ?G suggests the adsorption of fluoride by Kanuma mud was spontaneous, the endothermic nature of adsorption was confirmed by the positive ?H value. The negative ?S value for adsorbent denoted decreased randomness at the solid/liquid interface. The adsorption process using Kanuma mud followed the pseudo-second-order kinetic model. Fluoride uptake by the Kanuma mud was a complex process and intra-particle diffusion played a major role in the adsorption process. It was found that adsorbed fluoride could be easily desorbed by washing the adsorbent with a solution of pH 12. This indicates the material could be easily recycled.
Related JoVE Video
Preparation and characterization of porous granular ceramic containing dispersed aluminum and iron oxides as adsorbents for fluoride removal from aqueous solution.
J. Hazard. Mater.
PUBLISHED: 08-20-2010
Show Abstract
Hide Abstract
Porous granular ceramic adsorbents containing dispersed aluminum and iron oxides were synthesized by impregnating with salt solutions followed by precipitation at 600°C. In the present work detailed studies were carried out to investigate the effect of contact time, adsorbent dose, initial solution pH and co-existing anions. Characterization studies on the adsorbent by SEM, XRD, EDS, and BET analysis were carried out to clarify the adsorption mechanism. The adsorbents were sphere in shape, 2-3mm in particle size, highly porous and showed specific surface area of 50.69 sq m/g. The fluoride adsorption capacity of prepared adsorbent was 1.79 mg/g, and the maximum fluoride removal was obtained at pH 6. Both the Langmuir and Freundlich isotherm models were found to represent the measured adsorption data well. The experimental data were well explained with pseudo-second-order kinetic model. Results from this study demonstrated potential utility of Al/Fe dispersed in porous granular ceramics that could be developed into a viable technology for fluoride removal from aqueous solution.
Related JoVE Video
Ultrasensitively sensing acephate using molecular imprinting techniques on a surface plasmon resonance sensor.
Talanta
PUBLISHED: 07-12-2010
Show Abstract
Hide Abstract
An ultrathin molecularly imprinted polymer film was anchored on an Au surface for fabricating a surface plasmon resonance sensor sensitive to acephate by a surface-bound photo-radical initiator. The polymerization in the presence of acephate resulted in a molecular-imprinted matrix for the enhanced binding of acephate. Analysis of the SPR wavenumber changes in the presence of different concentrations of acephate gave a calibration curve that included the ultrasensitive detection of acephate by the imprinted sites in the composite, K(ass) for the association of acephate to the imprinted sites, 7.7×10(12) M(-1). The imprinted ultrathin film revealed impressive selectivity. The selectivity efficiencies for acephate and other structurally related analogues were 1.0 and 0.11-0.37, respectively. Based on a signal to noise ratio of 3, the detection limits were 1.14×10(-13) M for apple sample and 4.29×10(-14) M for cole sample. The method showed good recoveries and precision for the apple and cole samples spiked with acephate solution. This suggests that a combination of SPR sensing with MIP film is a promising alternative method for the detection of organophosphate compounds.
Related JoVE Video
Heavy metal contamination in soils and vegetables near an e-waste processing site, South China.
J. Hazard. Mater.
PUBLISHED: 07-08-2010
Show Abstract
Hide Abstract
Environmental pollution due to uncontrolled e-waste recycling activities has been reported in a number of locations of China. In the present study, metal pollution to the surrounding environment from a primitive e-waste processing facility was investigated. Soils at sites where e-waste is burned in the open air, those of surrounding paddy fields and vegetable gardens, as well as common vegetable samples were collected and analyzed for heavy metals. The results showed that the soils of former incineration sites had the highest concentrations of Cd, Cu, Pb, and Zn with mean values of 17.1, 11,140, 4500, and 3690 mg kg(-1), respectively. The soils of nearby paddy fields and vegetable gardens also had relatively high concentrations of Cd and Cu. In the edible tissues of vegetables, the concentrations of Cd and Pb in most samples exceeded the maximum level permitted for food in China. Sequential leaching tests revealed that the Cu, Pb, and Zn were predominantly associated with the residual fraction, followed by the carbonate/specifically adsorbed phases with the exception of Cd, which was mainly in the extractable form in paddy fields and vegetable soils. The data showed that uncontrolled e-waste processing operations caused serious pollution to local soils and vegetables. The cleaning up of former incineration sites should be a priority in any future remediation program.
Related JoVE Video
CHD7 functions in the nucleolus as a positive regulator of ribosomal RNA biogenesis.
Hum. Mol. Genet.
PUBLISHED: 06-29-2010
Show Abstract
Hide Abstract
De novo mutation of the gene encoding chromodomain helicase DNA-binding protein 7 (CHD7) is the primary cause of CHARGE syndrome, a complex developmental disorder characterized by the co-occurrence of a specific set of birth defects. Recent studies indicate that CHD7 functions as a transcriptional regulator in the nucleoplasm. Here, we report based on immunofluorescence and western blotting of subcellular fractions that CHD7 is also constitutively localized to the nucleolus, the site of rRNA transcription. Standard chromatin immunoprecipitation (ChIP) assays indicate that CHD7 physically associates with rDNA, a result that is also observable upon alignment of whole-genome CHD7 ChIP coupled with massively parallel DNA sequencing data to the rDNA reference sequence. ChIP-chop analyses demonstrate that CHD7 specifically associates with hypomethylated, active rDNA, suggesting a role as a positive regulator of rRNA synthesis. Consistent with this hypothesis, siRNA-mediated depletion of CHD7 results in hypermethylation of the rDNA promoter and a concomitant reduction of 45S pre-rRNA levels. Accordingly, cells overexpressing CHD7 show increased levels of 45S pre-rRNA compared with control cells. Depletion of CHD7 also reduced cell proliferation and protein synthesis. Lastly, compared with wild-type ES cells, the levels of 45S pre-rRNA are reduced in both Chd7(+/-) and Chd7(-/-) mouse ES cells, as well as in Chd7(-/-) whole mouse embryos and multiple tissues dissected from Chd7(+/-) embryos. Together with previously published studies, these results indicate that CHD7 dually functions as a regulator of both nucleoplasmic and nucleolar genes and provide a novel avenue for investigation into the pathogenesis of CHARGE syndrome.
Related JoVE Video
Functional characterization of a plasma membrane Na+/H+ antiporter from alkali grass (Puccinellia tenuiflora).
Mol. Biol. Rep.
PUBLISHED: 06-03-2010
Show Abstract
Hide Abstract
We have cloned a Na(+)/H(+) antiporter gene (GenBank accession no EF440291, PtNHA1) from Puccinellia tenuiflora (so-called alkali grass in Chinese) roots under NaCl salt stress. Its cDNA is 3775 bp and contains a 3414 bp open reading frame. The amino acid sequences of PtNHA1 show high identities with a putative plasma membrane Na(+)/H(+) antiporter from wheat. PtNHA1 was predicted to contain 11 hypothetical transmembrane domains in the N-terminal part and to localize in the plasma membrane. Genomic DNA gel blot analysis shows that PtNHA1 is a single-copy gene in the alkali grass genome. PtNHA1 is highly expressed in leaves, roots and shoots by RNA gel blot analysis. Furthermore, PtNHA1 gene expression of alkali grass was clearly up-regulated by NaCl salt stress. Overexpression of PtNHA1 in Arabidopsis resulted in enhanced tolerance of transgenic plants to NaCl stress. The ion contents analysis shows that, compared with the wild-type (WT), less Na(+) and more K(+) were accumulated in transgenic plants under NaCl stress. The results indicate that PtNHA1 play an important role in NaCl salt stress. Additionally, compared with the WT, total activities of ascorbate peroxidase (APX) and catalase (CAT), two key reactive oxygen species (ROS) detoxifying enzymes were high in transgenic plants under salt stress, respectively. The transcript levels of two APX genes (Apx1, s/mApx) and two CAT genes (Cat1, Cat2) in transgenic plants were higher than those in WT. This suggests that overexpression of PtNHA1 results in enhanced ROS-scavenging enzymes of transgenic plants under NaCl salt stress.
Related JoVE Video
A novel vacuolar membrane H+-ATPase c subunit gene (ThVHAc1) from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae.
Mol. Biol. Rep.
PUBLISHED: 05-21-2010
Show Abstract
Hide Abstract
Plant vacuolar H(+)-ATPase (V-ATPase) plays an important role in response to different adverse environmental conditions. In the present study, we cloned and characterized a V-ATPase c subunit gene (ThVHAc1) from Tamarix hispida. The deduced ThVHAc1 amino acid sequence lacks a signal peptide and ThVHAc1 is a highly hydrophobic protein with four transmembrane regions. A transient expression assay showed that the ThVHAc1-GFP fusion protein is expressed on onion epidermal endomembrane cells. Real-time RT-PCR demonstrated that ThVHAc1 gene expression was induced by NaCl, NaHCO(3), PEG and CdCl(2) stress in T. hispida roots, stems and leaves. Exogenous application of abscisic acid (ABA) also stimulated ThVHAc1 transcript levels in the absence of stress, suggesting that ThVHAc1 is involved in ABA-dependent stress signaling pathway. Furthermore, the transgenic yeast expressing ThVHAc1 increased salt, drought, ultraviolet (UV), oxidative, heavy metal, cold and high temperature tolerance. Our results suggested that the ThVHAc1 gene from T. hispida serves a stress tolerance role in the species.
Related JoVE Video
An excellent fluoride sorption behavior of ceramic adsorbent.
J. Hazard. Mater.
PUBLISHED: 05-02-2010
Show Abstract
Hide Abstract
A new material, ceramic adsorbent, has been developed and undertaken to evaluate the feasibility for fluoride removal from aqueous environment. Batch experiments were performed to study the influence of various experimental parameters such as contact time (0-48 h), initial fluoride concentration (20-100 mg/L), pH (2-12) and the presence of competing anions on the adsorption of fluoride on ceramic adsorbent. The experimental data revealed that both the Langmuir and Freundlich isotherm models fitted well with the fluoride sorption process. The maximum adsorption capacity of ceramic adsorbent for fluoride removal was 2.16 mg/g. The optimum fluoride removal was observed between pH ranges of 4.0-11.0. The sorption process was well explained with pseudo-second-order kinetic model. The fluoride adsorption was decreased in the presence of phosphate followed by carbonate and sulfate. Results from this study demonstrated potential utility of ceramic adsorbent that could be developed into a viable technology for fluoride removal from aqueous environment.
Related JoVE Video
eIF2alpha phosphorylation tips the balance to apoptosis during osmotic stress.
J. Biol. Chem.
PUBLISHED: 03-25-2010
Show Abstract
Hide Abstract
Regulation of cell volume is of great importance because persistent swelling or shrinkage leads to cell death. Tissues experience hypertonicity in both physiological (kidney medullar cells) and pathological states (hypernatremia). Hypertonicity induces an adaptive gene expression program that leads to cell volume recovery or apoptosis under persistent stress. We show that the commitment to apoptosis is controlled by phosphorylation of the translation initiation factor eIF2alpha, the master regulator of the stress response. Studies with cultured mouse fibroblasts and cortical neurons show that mutants deficient in eIF2alpha phosphorylation are protected from hypertonicity-induced apoptosis. A novel link is revealed between eIF2alpha phosphorylation and the subcellular distribution of the RNA-binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1). Stress-induced phosphorylation of eIF2alpha promotes apoptosis by inducing the cytoplasmic accumulation of hnRNP A1, which attenuates internal ribosome entry site-mediated translation of anti-apoptotic mRNAs, including Bcl-xL that was studied here. Hypertonic stress induced the eIF2alpha phosphorylation-independent formation of cytoplasmic stress granules (SGs, structures that harbor translationally arrested mRNAs) and the eIF2alpha phosphorylation-dependent accumulation of hnRNP A1 in SGs. The importance of hnRNP A1 was demonstrated by induction of apoptosis in eIF2alpha phosphorylation-deficient cells that express exogenous cytoplasmic hnRNP A1. We propose that eIF2alpha phosphorylation during hypertonic stress promotes apoptosis by sequestration of specific mRNAs in SGs in a process mediated by the cytoplasmic accumulation of hnRNP A1.
Related JoVE Video
Fluoride removal from water by granular ceramic adsorption.
J Colloid Interface Sci
PUBLISHED: 02-18-2010
Show Abstract
Hide Abstract
A new medium, granular ceramic, has been developed for fluoride removal from water. Granular ceramic is a solid-phase medium that produces a stable Al-Fe surface complex for fluoride adsorption. BET, SEM, and EDS were used to characterize the physical attributes (particle size, pore size and distribution, surface roughness) of the granular ceramic. Fluoride adsorption characteristics were studied in a batch system with respect to changes in initial concentration of fluoride, pH of solution, and coexisting ions. Fluoride adsorption was found to be pH dependent and the maximum removal of fluoride was obtained at pH 5.0-8.0. equilibrium adsorption data were obtained at 293, 303, and 323 K, and interpreted in terms of the Langmuir and Freundlich isotherm equations. The experimental data revealed that the Freundlich isotherm equation gives a more satisfactory fit for fluoride removal. The adsorption process was observed to follow a pseudo-second-order kinetic model and intraparticle diffusion was indicated to play a major role in fluoride uptake. Fluoride adsorption was reduced in the presence of phosphate and sulfate ions and increased slightly in the presence of chloride and nitrate ions.
Related JoVE Video
Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd(2+), Zn(2+), Cu(2+), and NaCl in transgenic yeast.
Mol. Biol. Rep.
PUBLISHED: 02-09-2010
Show Abstract
Hide Abstract
A metallothionein-like gene, ThMT3, encoding a type 3 metallothionein, was isolated from a Tamarix hispida leaf cDNA library. Expression analysis revealed that mRNA of ThMT3 was upregulated by high salinity as well as by heavy metal ions, and that ThMT3 was predominantly expressed in the leaf. Transgenic yeast (Saccharomyces cerevisiae) expressing ThMT3 showed increased tolerance to Cd(2+), Zn(2+), Cu(2+), and NaCl stress. Transgenic yeast also accumulated more Cd(2+), Zn(2+), and NaCl, but not Cu(2+). Analysis of the expression of four genes (GLR1, GTT2, GSH1, and YCF1) that aid in transporting heavy metal (Cd(2+)) from the cytoplasm to the vacuole demonstrated that none of these genes were induced under Cd(2+), Zn(2+), Cu(2+), and NaCl stress in ThMT3-transgenic yeast. H(2)O(2) levels in transgenic yeast under such stress conditions were less than half those in control yeast under the same conditions. Three antioxidant genes (SOD1, CAT1, and GPX1) were specifically expressed under Cd(2+), Zn(2+), Cu(2+), and NaCl stress in the transgenic yeast. Cd(2+), Zn(2+), and Cu(2+) increased the expression levels of SOD1, CAT1, and GPX1, respectively, whereas NaCl induced the expression of SOD1 and GPX1.
Related JoVE Video
Treatment of nitrate contaminated water using an electrochemical method.
Bioresour. Technol.
PUBLISHED: 02-03-2010
Show Abstract
Hide Abstract
Treatment of nitrate contaminated water which is unsuitable for biological removal using an electrochemical method with Fe as a cathode and Ti/IrO(2)-Pt as an anode in an undivided cell was studied. In the absence and presence of 0.50 g/L NaCl, the nitrate-N decreased from 100.0 to 7.2 and 12.9 mg/L in 180 min, respectively, and no ammonia and nitrite by-products were detected in the presence of NaCl. The nitrate reduction rate increased with increasing current density, with the nitrate reduction rate constant k(1) increasing from 0.008 min(-1) (10 mA/cm(2)) to 0.016 min(-1) (60 mA/cm(2)) but decreasing slightly with increasing NaCl concentration. High temperature favoured nitrate reduction and the reaction followed first order kinetics. The combination of the Fe cathode and Ti/IrO(2)-Pt anode was suitable for nitrate reduction between initial pH values 3.0 and 11.0. e.g. k(1)=0.010 min(-1) (initial pH 3.0) and k(1)=0.013 min(-1) (initial pH 11.0). Moreover, the surface of all used cathodes appeared rougher than unused electrodes, which may have increased the nitrate reduction rate (4-6%).
Related JoVE Video
Effects of gas flow on granular size separation.
Phys. Rev. Lett.
PUBLISHED: 01-28-2010
Show Abstract
Hide Abstract
A gas flow is introduced into a vibrating bed from its perforated bottom to clarify the effects of gas flow on granular size separation. The rising or sinking time of a single intruder does not follow a monotonic relationship, and the granular mixtures show four different types of distribution with increasing gas velocity. The different drag forces exerted on large particles and small ones are the main factors that influence the granular size separation. Under the "wall effect" the gas flow may speed up the rising of the large particle, and cause a change in size distribution.
Related JoVE Video
Cloning and expression analysis of 14 lipid transfer protein genes from Tamarix hispida responding to different abiotic stresses.
Tree Physiol.
PUBLISHED: 10-06-2009
Show Abstract
Hide Abstract
Plant lipid transfer proteins (LTPs) are ubiquitous lipid-binding proteins that are involved in various stress responses. In this study, we cloned 14 unique LTP genes (ThLTP 1-14) from Tamarix hispida Willd. (Tamaricaceae) to investigate their roles under various abiotic stress conditions. The expression profiles of the 14 ThLTPs in response to NaCl, polyethylene glycol (PEG), NaHCO(3), CdCl(2) and abscisic acid (ABA) exposure in root, stem and leaf tissues were investigated using real-time RT-PCR. The results showed that all 14 ThLTPs were expressed in root, stem and leaf tissues under normal growth conditions. However, under normal growth conditions, ThLTP abundance varied in each organ, with expression differences of 9000-fold in leaves, 540-fold in stems and 3700-fold in roots. These results indicated that activity and/or physiological importance of these ThLTPs are quite different. Differential expression of the 14 ThLTPs was observed (> 2-fold) for NaCl, PEG, NaHCO(3) and CdCl(2) in at least one tissue indicating that they were all involved in abiotic stress responses. All ThLTP genes were highly induced (> 2-fold) under ABA treatment in roots, stems and/or leaves, and particularly in roots, suggesting that ABA-dependent signaling pathways regulated ThLTPs. We hypothesize that ThLTP expression constitutes an adaptive response to abiotic stresses in T. hispida and plays an important role in abiotic stress tolerance.
Related JoVE Video
Simultaneous reduction of nitrate and oxidation of by-products using electrochemical method.
J. Hazard. Mater.
PUBLISHED: 06-11-2009
Show Abstract
Hide Abstract
Electrochemical denitrification was studied with an objective to enhance the selectivity of nitrate to nitrogen gas and to remove the by-products in an undivided electrochemical cell, in which Cu-Zn cathode and Ti/IrO(2)-Pt anode were assembled. In the presence of 0.50 g/L NaCl as supporting electrolyte, the NO(3)(-)-N decreased from 100.0 to 9.7 mg/L after 300 min electrolysis; no ammonia and nitrite were detected in the treated solution. The surface of the cathode was appeared to be rougher than unused after electrolysis at initial pH 6.5 and 12.0. After electrolysis of 5h at the initial pH 3.0, passivation of the Cu-Zn cathode was observed. The reduction rate slightly increased with increasing current density in the range of 10-60 mA/cm(2) and temperatures had little effect on nitrate reduction. Nitrate could be completely removed by the simultaneous reduction and oxidation developed in this study, which is suitable for deep treatment of nitrate polluted water.
Related JoVE Video
A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants.
J. Plant Physiol.
PUBLISHED: 04-09-2009
Show Abstract
Hide Abstract
Basic leucine zipper proteins (bZIPs) are transcription factors that bind abscisic acid (ABA)-responsive elements (ABREs) and enable plants to withstand adverse environmental conditions. In the present study, a novel bZIP gene, ThbZIP1 was cloned from Tamarix hispida. Expression studies in T. hispida showed differential regulation of ThbZIP1 in response to treatment with NaCl, polyethylene glycol (PEG) 6000, NaHCO(3), and CdCl(2), suggesting that ThbZIP1 is involved in abiotic stress responses. To identify the physiological responses mediated by ThbZIP1, transgenic tobacco plants overexpressing exogenous ThbZIP1 were generated. Various physiological parameters related to salt stress were measured and compared between transgenic and wild type (WT) plants. Our results indicate that overexpression of ThbZIP1 can enhance the activity of both peroxidase (POD) and superoxide dismutase (SOD), and increase the content of soluble sugars and soluble proteins under salt stress conditions. These results suggest that ThbZIP1 contributes to salt tolerance by mediating signaling through multiple physiological pathways. Furthermore, ThbZIP1 confers stress tolerance to plants by enhancing reactive oxygen species (ROS) scavenging, facilitating the accumulation of compatible osmolytes, and inducing and/or enhancing the biosynthesis of soluble proteins.
Related JoVE Video
Electrochemical degradation of phenol using electrodes of Ti/RuO(2)-Pt and Ti/IrO(2)-Pt.
J. Hazard. Mater.
PUBLISHED: 04-03-2009
Show Abstract
Hide Abstract
Electrochemical degradation of phenol was evaluated at two typical anodes, Ti/RuO(2)-Pt and Ti/IrO(2)-Pt, for being a treatment method in toxic aromatic compounds. The influences of current density, dosage of NaCl, initial phenol concentration on electrochemical phenol degradation were investigated. It was found that Ti/RuO(2)-Pt anode had a higher oxygen evolution potential than Ti/IrO(2)-Pt anode, which will increase the current efficiency for electrochemical degradation, and the instantaneous current efficiency (ICE) was relatively higher at the initial time during phenol electrolysis. HOCl formed during electrolysis would play an important role on the oxidation of phenol. For the Ti/RuO(2)-Pt anode, phenol concentration decreased from around 8mg/L to zero after 30min of electrolysis with 0.3g/L NaCl as supporting electrolyte at the current density of 10mA/cm(2). Although phenol could be completely electrochemical degraded at both Ti/RuO(2)-Pt and Ti/IrO(2)-Pt anodes, phenol degradation was slower at the Ti/IrO(2)-Pt anode than at the Ti/RuO(2)-Pt anode due to the fact that passivation was to be found at the Ti/IrO(2)-Pt anode.
Related JoVE Video
Electrochemical regeneration of zeolites and the removal of ammonia.
J. Hazard. Mater.
PUBLISHED: 04-01-2009
Show Abstract
Hide Abstract
The electrochemical regeneration of zeolites was investigated with the objective of removing ammonia from water harmlessly and reusing the regeneration solution in an undivided electrochemical cell assembled with a Ti/IrO(2)-Pt anode and a Cu/Zn cathode. Zeolites could be completely regenerated through the electrochemical method in this study. With NaCl as a supporting electrolyte, the conversion rate of ammonia adsorbed by the zeolites into nitrogen gas was more that 96%, while the conversion rate to nitrate was less than 4%; no ammonia or nitrite was detected in the solution after electrolysis. The surface of the cathode appeared to be rougher after electrolysis than before. More nitrate was produced when the amount of NaCl was raised or when the current density was increased to the range of 20-60 mA/cm(2). The regeneration solution can be repeatedly reused over a long period of time with the proper amount of NaCl added to the solution. Even after the solution was reused for five times, it could still completely regenerate the zeolites, saving both water resources and the chemical reagent.
Related JoVE Video
Denitrification of nitrate contaminated groundwater with a fiber-based biofilm reactor.
Bioresour. Technol.
PUBLISHED: 03-11-2009
Show Abstract
Hide Abstract
A fiber-based biofilm reactor was developed using a laboratory-scale apparatus for treatment of nitrate-contaminated groundwater. Denitrification bacteria were inoculated by anaerobic sludge from a wastewater treatment plant. Nitrate removal efficiency, nitrite accumulation, COD and pH in the treated water were investigated under various conditions set by several parameters including hydraulic retention times (HRTs) (24, 20, 16, 12, 8, 4 and 2h), influent nitrate loading (around 50, 100 and 150 NO(3)(-)-N mg L(-1)), pH (5, 6, 7, 8, and 9) and ratios of carbon to nitrogen (C/N=3.00, 2.00, 1.50 1.25 and 1.00). The experimental results demonstrated that the optimum reaction parameters were pH 7-7.5,C/N=1.25 and HRT=8h, under which over 99% of NO(3)(-)-N was removed, almost no NO(2)(-)-N accumulated and COD was nearly zero in treated water when the concentration of NO(3)(-)-N was around 100.00 mg L(-1) in influent.
Related JoVE Video
The hnRNA-binding proteins hnRNP L and PTB are required for efficient translation of the Cat-1 arginine/lysine transporter mRNA during amino acid starvation.
Mol. Cell. Biol.
PUBLISHED: 03-09-2009
Show Abstract
Hide Abstract
The response to amino acid starvation involves the global decrease of protein synthesis and an increase in the translation of some mRNAs that contain an internal ribosome entry site (IRES). It was previously shown that translation of the mRNA for the arginine/lysine amino acid transporter Cat-1 increases during amino acid starvation via a mechanism that utilizes an IRES in the 5 untranslated region of the Cat-1 mRNA. It is shown here that polypyrimidine tract binding protein (PTB) and an hnRNA binding protein, heterogeneous nuclear ribonucleoprotein L (hnRNP L), promote the efficient translation of Cat-1 mRNA during amino acid starvation. Association of both proteins with Cat-1 mRNA increased during starvation with kinetics that paralleled that of IRES activation, although the levels and subcellular distribution of the proteins were unchanged. The sequence CUUUCU within the Cat-1 IRES was important for PTB binding and for the induction of translation during amino acid starvation. Binding of hnRNP L to the IRES or the Cat-1 mRNA in vivo was independent of PTB binding but was not sufficient to increase IRES activity or Cat-1 mRNA translation during amino acid starvation. In contrast, binding of PTB to the Cat-1 mRNA in vivo required hnRNP L. A wider role of hnRNP L in mRNA translation was suggested by the decrease of global protein synthesis in cells with reduced hnRNP L levels. It is proposed that PTB and hnRNP L are positive regulators of Cat-1 mRNA translation via the IRES under stress conditions that cause a global decrease of protein synthesis.
Related JoVE Video
Foliar application of two silica sols reduced cadmium accumulation in rice grains.
J. Hazard. Mater.
PUBLISHED: 03-04-2009
Show Abstract
Hide Abstract
In the present study, pot experiments were conducted to investigate the effects of foliar application of two silica (Si) sols on the alleviation of cadmium (Cd) toxicity in contaminated soil to rice. Results showed that the foliar application of Si sols significantly increased the dry weight of grains (without husk) and shoots in rice grown in Cd contaminated soil, whereas the Cd concentration in the grains and shoots decreased obviously. The total accumulation of Cd in rice grains also decreased with the application of both of the Si sols, but no significant effect was found on the Cd accumulation in the shoots. For the optimal effect, Si-sol-B should be foliar applied at the tillering-stage during rice growth. The mechanism of Si foliar application to alleviate the toxicity and accumulation of Cd in grains of rice may be related to the probable Cd sequestration in the shoot cell walls.
Related JoVE Video
Membranous layers of the pituitary gland: histological anatomic study and related clinical issues.
Neurosurgery
PUBLISHED: 02-26-2009
Show Abstract
Hide Abstract
The purpose of this study was to examine the membranous layers of the human pituitary gland and their relationships with invasive adenomas.
Related JoVE Video
Identification of genes responsive to salt stress on Tamarix hispida roots.
Gene
PUBLISHED: 01-17-2009
Show Abstract
Hide Abstract
Plant roots are the primary site of perception and injury for salinity stress. In order to characterize the complexity of adaptation to salty environments in roots of Tamarix hispida, a woody halophyte, expressed sequence tag (EST) analysis was performed. Three cDNA libraries were generated from root tissues of T. hispida that were exposed to 0.4 M NaCl for 0 (control), 24 and 48 h. A total of 7726 ESTs were generated from the three libraries, and were assembled into 1142 contigs and 3026 singletons. EST analysis was performed to compare gene expression in the three cDNA libraries. Ninety redundant unique transcripts responsive to NaCl treatment were identified. Of them, 21 genes were novel or of unknown function while others were involved in the functional activities, such as ROS scavenging, lipid metabolism, osmolyte biosynthesis, signal transduction, transport, lignin synthesis and homeostasis. The genes, including those for metallothionein-like protein, polyubiquitin, hypothetical protein, and glycine-rich cell wall structural protein, were abundant in the libraries and showed obvious up-regulation after NaCl treatments, suggesting important roles in NaCl tolerance. The results of this study may contribute to our understanding of the molecular mechanism of salt tolerance in the roots of plants.
Related JoVE Video
Four Novel Cellulose Synthase (CESA) Genes from Birch (Betula platyphylla Suk.) Involved in Primary and Secondary Cell Wall Biosynthesis.
Int J Mol Sci
Show Abstract
Hide Abstract
Cellulose synthase (CESA), which is an essential catalyst for the generation of plant cell wall biomass, is mainly encoded by the CesA gene family that contains ten or more members. In this study; four full-length cDNAs encoding CESA were isolated from Betula platyphylla Suk., which is an important timber species, using RT-PCR combined with the RACE method and were named as BplCesA3, -4, -7 and -8. These deduced CESAs contained the same typical domains and regions as their Arabidopsis homologs. The cDNA lengths differed among these four genes, as did the locations of the various protein domains inferred from the deduced amino acid sequences, which shared amino acid sequence identities ranging from only 63.8% to 70.5%. Real-time RT-PCR showed that all four BplCesAs were expressed at different levels in diverse tissues. Results indicated that BplCESA8 might be involved in secondary cell wall biosynthesis and floral development. BplCESA3 appeared in a unique expression pattern and was possibly involved in primary cell wall biosynthesis and seed development; it might also be related to the homogalacturonan synthesis. BplCESA7 and BplCESA4 may be related to the formation of a cellulose synthase complex and participate mainly in secondary cell wall biosynthesis. The extremely low expression abundance of the four BplCESAs in mature pollen suggested very little involvement of them in mature pollen formation in Betula. The distinct expression pattern of the four BplCesAs suggested they might participate in developments of various tissues and that they are possibly controlled by distinct mechanisms in Betula.
Related JoVE Video
Adsorption of high ammonium nitrogen from wastewater using a novel ceramic adsorbent and the evaluation of the ammonium-adsorbed-ceramic as fertilizer.
J Colloid Interface Sci
Show Abstract
Hide Abstract
A novel ceramic adsorbent was developed to adsorb ammonium from high concentration ammonium contaminated wastewater. Typical gardening cultivation mediums in Japan-Kanuma clay and Akadama clay were used to synthesize the ceramic adsorbent. Static batch experiments were conducted to investigate the effect of various parameters such as contact time, initial ammonium concentration, adsorbent dosage, and competing cations during the ammonium adsorption process. The results revealed that the Freundlich isotherm model fitted better with the adsorption process than the Langmuir model, and the adsorption process was well described by pseudo-second-order kinetic model. The maximum nitrogen adsorption capacity of the ceramic adsorbent was 75.5 mg g(-1) at an initial NH(4)(+)-N concentration of 10,000 mg L(-1), dosage of 20 g L(-1), and contact time of 480 min. Results demonstrated that the low-cost ceramic adsorbent directly used as nitrogen fertilizer was feasible for its high ammonium nitrogen content, nontoxic effect on the environment and excellent soil properties.
Related JoVE Video
[Characteristics of the eukaryotic community structure in acid mine drainage lake in Anhui Province, China].
Wei Sheng Wu Xue Bao
Show Abstract
Hide Abstract
We characterized eukaryotic community structure and the relationship between the community structure and environmental factors in acidic mine drainage (AMD) lake of a sulfide mine in Anhui Province, China.
Related JoVE Video
Investigation and optimization of the novel UASB-MFC integrated system for sulfate removal and bioelectricity generation using the response surface methodology (RSM).
Bioresour. Technol.
Show Abstract
Hide Abstract
COD/sulfate ratio and hydraulic residence time (HRT), both of which influence sulfate loadings jointly, are recognized as the most two important affecting factors for sulfate removal and bioelectricity generation in the novel up-flow anaerobic sludge blanket reactor-microbial fuel cell (UASB-MFC) integrated system. The response surface methodology (RSM) was employed for the optimization of this system and the optimum condition with COD/sulfate ratio of 2.3 and HRT of 54.3h was obtained with the target of maximizing the power output. In terms of maximizing the total sulfate removal efficiency, the obtained optimum condition was COD/sulfate ratio of 3.7 and HRT of 55.6h. Experimental results indicated the undistorted simulation and reliable optimized results. These demonstrated that RSM was effective to evaluate and optimize the UASB-MFC system for sulfate removal and energy recovery, providing a promising guide to further improvement of the system for potential applications.
Related JoVE Video
Enhancement of nitrate removal in synthetic groundwater using wheat rice stone.
Water Sci. Technol.
Show Abstract
Hide Abstract
To enhance the efficiency of nitrate removal from synthetic groundwater, wheat rice stone (WRS) and granular activated carbon (GAC) were employed as biofilm carriers for denitrification under different HRT (hydraulic retention time) and C/N ratios. Four different ratios of GAC to WRS (0, 0.5, 1.0, and 2.0) were investigated to determine the most appropriate ratio of GAC and WRS. The NO(3)(-)-N, NO(2)(-)-N, COD levels and pH of the effluent were also investigated under various HRT and C/N ratios. The results showed that the column at a GAC/WRS ratio of 1.0 performed best under a C/N ratio of 0.9 and an HRT of 8 h, with 99% nitrate being removed. In addition, little nitrite accumulation and chemical oxygen demand (COD) were observed in effluent under these conditions. These results demonstrated that, with no addition of phosphor in the influent, the nitrate removal efficiency can be enhanced by WRS because WRS can leach trace elements and phosphor to promote the growth of bacteria.
Related JoVE Video
The association between endothelial lipase -384A/C gene polymorphism and acute coronary syndrome in a Chinese population.
Mol. Biol. Rep.
Show Abstract
Hide Abstract
Endothelial lipase (EL) is a novel member of the triglyceride (TG) lipase family. A growing body of evidence has indicated that EL gene polymorphism might contribute to the process of cardiovascular diseases. This study was aimed to reveal the potential relationship between EL -384A/C gene polymorphism and acute coronary syndrome (ACS) in a Chinese Han population. The subjects were composed of 320 ACS patients and 315 age- and gender- matched controls. We detected the EL -384A/C genotypes and allele frequencies by using polymerase chain reaction-restriction fragment length polymorphism analysis. There was significant difference in AA genotype and AC+CC genotype between ACS and control groups (P = 0.014). The A allele frequency was significantly higher in ACS group than in control group (87.8 vs 83.8 %, P = 0.041). The relationship between the variant and ACS remained significant after adjusting for current smoker, hypertension, diabetes mellitus, total cholesterol and TG (OR = 0.682, 95 % CI = 0.472-0.986). The levels of HDL and ApoA-I were significantly higher in AC+CC genotype than in AA genotype (HDL: 1.20 ± 0.35 vs 1.11 ± 0.29 mmol/L, P = 0.001; ApoA-I: 1.14 ± 0.25 vs 1.08 ± 0.21 g/L, P = 0.009). We found that the EL -384A/C gene polymorphism might be associated with ACS in Chinese Han population, suggesting that the variant might be involved in the pathogenesis of ACS.
Related JoVE Video
Bacterial communities in the sediments of Dianchi Lake, a partitioned eutrophic waterbody in China.
PLoS ONE
Show Abstract
Hide Abstract
Bacteria play an important role in the decomposition and cycling of a variety of compounds in freshwater aquatic environments, particularly nutrient-rich eutrophic lakes. A unique Chinese eutrophic lake--Dianchi--was selected for study because it has two separate and distinct basins, Caohai with higher organic carbon levels and Waihai with lower organic carbon levels. Sediment bacterial communities were studied in the two basins using samples collected in each season from June 2010 to March 2011. Barcoded pyrosequencing based on the 16 S rRNA gene found that certain common phyla, Proteobacteria, Bacteroidetes, Firmicutes and Chloroflexi, were dominant in the sediments from both basins. However, from the class to genus level, the dominant bacterial groups found in the sediments were distinct between the two basins. Correlation analysis revealed that, among the environmental parameters examined, total organic carbon (TOC) accounted for the greatest proportion of variability in bacterial community. Interestingly, study results suggest that increasing allochthonous organic carbon could enhance bacterial diversity and biomass in the sediment. In addition, analysis of function genes (amoA and nosZ) demonstrated that ammonia-oxidizing bacteria (AOB) were dominant in sediments, with 99% belonging to Nitrosomonas. Denitrifying bacteria were comparatively diverse and were associated with some cultivatable bacteria.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.