JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Nestin expression in mesenchymal stromal cells: regulation by hypoxia and osteogenesis.
BMC Vet. Res.
PUBLISHED: 05-16-2014
Show Abstract
Hide Abstract
The intermediate filament protein nestin is used as a marker for neural stem cells, and its expression is inversely correlated with cellular differentiation. More recently, nestin expression has also been described in other cell types including multipotential mesenchymal stromal cells (MSCs). In this study, we examined the expression of nestin in equine, canine and human bone marrow-derived MSCs undergoing osteogenic differentiation, to determine whether nestin levels were attenuated as the cells acquired a more mature phenotype. In addition, the expression of nestin may be under the influence of cellular hypoxia, as nestin expression is known to increase in areas of ischemic tissue damage. Therefore, we also examined the effects of hypoxia on expression of nestin in human MSCs and examined a role for hypoxia inducible factor 1-alpha (HIF-1?) and vascular endothelial growth factor (VEGF) in the response. Additionally, we quantified the temporal expression of nestin in the fracture callus during bone regeneration, a site that has been characterized as hypoxic.
Related JoVE Video
Remineralized bone matrix as a scaffold for bone tissue engineering.
J Biomed Mater Res A
PUBLISHED: 01-27-2014
Show Abstract
Hide Abstract
There is a need for improved biomaterials for use in treating non-healing bone defects. A number of natural and synthetic biomaterials have been used for the regeneration of bone tissue with mixed results. One approach is to modify native tissue via decellularization or other treatment for use as natural scaffolding for tissue repair. In this study, our goal was to improve on our previously published alternating solution immersion (ASI) method to fabricate a robust, biocompatible, and mechanically competent biomaterial from natural demineralized bone matrix (DBM). The improved method includes an antigen removal (AR) treatment step which improves mineralization and stiffness while removing unwanted proteins. The chemistry of the mineral in the remineralized bone matrix (RBM) was consistent with dicalcium phosphate dihydrate (brushite), a material used clinically in bone healing applications. Mass spectrometry identified proteins removed from the matrix with AR treatment to include ?-2 HS-glycoprotein and osteopontin, noncollagenous proteins (NCPs) and known inhibitors of biomineralization. Additionally, the RBM supported the survival, proliferation, and differentiation of human mesenchymal stromal cells (MSCs) in vitro as well or better than other widely used biomaterials including DBM and PLG scaffolds. DNA content increased more than 10-fold on RBM compared to DBM and PLG; likewise, osteogenic gene expression was significantly increased after 1 and 2 weeks. We demonstrated that ASI remineralization has the capacity to fabricate mechanically stiff and biocompatible RBM, a suitable biomaterial for cell culture applications. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 4480-4490, 2014.
Related JoVE Video
Impaired osteoblast differentiation in annexin A2- and -A5-deficient cells.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Annexins are a class of calcium-binding proteins with diverse functions in the regulation of lipid rafts, inflammation, fibrinolysis, transcriptional programming and ion transport. Within bone, they are well-characterized as components of mineralizing matrix vesicles, although little else is known as to their function during osteogenesis. We employed shRNA to generate annexin A2 (AnxA2)- or annexin A5 (AnxA5)-knockdown pre-osteoblasts, and determined whether proliferation or osteogenic differentiation was altered in knockdown cells, compared to pSiren (Si) controls. We report that DNA content, a marker of proliferation, was significantly reduced in both AnxA2 and AnxA5 knockdown cells. Alkaline phosphatase expression and activity were also suppressed in AnxA2- or AnxA5-knockdown after 14 days of culture. The pattern of osteogenic gene expression was altered in knockdown cells, with Col1a1 expressed more rapidly in knock-down cells, compared to pSiren. In contrast, Runx2, Ibsp, and Bglap all revealed decreased expression after 14 days of culture. In both AnxA2- and AnxA5-knockdown, interleukin-induced STAT6 signaling was markedly attenuated compared to pSiren controls. These data suggest that AnxA2 and AnxA5 can influence bone formation via regulation of osteoprogenitor proliferation, differentiation, and responsiveness to cytokines in addition to their well-studied function in matrix vesicles.
Related JoVE Video
Detection of bacterial DNA by PCR in dogs with stifle pathology.
Vet Surg
PUBLISHED: 09-09-2013
Show Abstract
Hide Abstract
To determine presence of bacterial DNA in canine stifles with cranial cruciate ligament rupture (CCLR) and medial patellar luxation (MPL) compared to normal canine stifles (control).
Related JoVE Video
Mobilization of endogenous stem cell populations enhances fracture healing in a murine femoral fracture model.
Cytotherapy
PUBLISHED: 03-26-2013
Show Abstract
Hide Abstract
Delivery of bone marrow-derived stem and progenitor cells to the site of injury is an effective strategy to enhance bone healing. An alternate approach is to mobilize endogenous, heterogeneous stem cells that will home to the site of injury. AMD3100 is an antagonist of the chemokine receptor 4 (CXCR4) that rapidly mobilizes stem cell populations into peripheral blood. Our hypothesis was that increasing circulating numbers of stem and progenitor cells using AMD3100 will improve bone fracture healing.
Related JoVE Video
Regulation of tenascin expression in bone.
J. Cell. Biochem.
PUBLISHED: 07-14-2011
Show Abstract
Hide Abstract
Tenascins regulate cell interaction with the surrounding pericellular matrix. Within bone, tenascins C and W influence osteoblast adhesion and differentiation, although little is known about the regulation of tenascin expression. In this study we examined the effect of osteogenic differentiation, bone morphogenetic protein (BMP) and Wnt growth factors, and mechanical loading on tenascin expression in osteogenic cells. Osteogenic differentiation increased tenascin C (TnC), and decreased tenascin W (TnW), expression. Both growth factors and mechanical loading increased both TnC and TnW expression, albeit via distinct signaling mechanisms. Both BMP-2 and Wnt5a induction of tenascin expression were mediated by MAP kinases. These data establish a role for BMP, Wnts, and mechanical loading in the regulation of tenascin expression in osteoblasts.
Related JoVE Video
Hypoxic regulation of mesenchymal stem cell migration: the role of RhoA and HIF-1?.
Cell Biol. Int.
PUBLISHED: 05-18-2011
Show Abstract
Hide Abstract
A variety of pathologies such as skeletal fracture, neoplasia and inflammation compromise tissue perfusion and thereby decrease tissue oxygen tension. We and others have demonstrated that hypoxia is a potent stimulant for MSC (mesenchymal stem cell) recruitment and differentiation, yet to date little research has focused on the effects of oxygen tension on MSC migration. In the present study, we examined the effects of hypoxia and the potential role of the GTPase RhoA and HIF-1? (hypoxia-inducible factor 1?) on MSC migration. Our results demonstrate that hypoxia decreases MSC migration through an HIF-1? and RhoA-mediated pathway. The active GTP-bound form of RhoA was reduced in 1% oxygen, whereas activation of RhoA under hypoxic conditions rescued migration. Furthermore, stabilization of HIF-1? under normoxic conditions attenuated cell migration similar to that of hypoxia. These results suggest that hypoxia negatively affects MSC migration by regulating activation of GTPases. These results highlight the importance of oxygen in regulating the recruitment of progenitor cells to areas of ischaemic tissue damage.
Related JoVE Video
Src is sufficient, but not necessary, for osteopontin induction in osteoblasts.
Biorheology
PUBLISHED: 04-26-2011
Show Abstract
Hide Abstract
The ability of bone cells to detect and transduce mechanical signals is central to the mechanism whereby bone adapts to mechanical load and maintains healthy bone mass. Src, a non-receptor tyrosine kinase, is located in focal adhesions, highly specialized and localized sites of attachment, that are thought to be a primary site of mechanotransduction. While Src is activated by mechanical loads in other cell types, its role in osteoblast mechanotransduction is unclear. In this study we examined whether oscillatory fluid flow influenced Src phosphorylation, and Srcs role in the flow-induced osteopontin response. Additionally, we investigated the effect of constitutively active Src on osteopontin expression. Oscillatory fluid flow induced a statistically significant increase in phosphorylation of Src at tyrosine residue 416 after a 15 min exposure. Transfection with constitutively-active Src resulted in an increase in Src-Y416 phosphorylation and an increase in osteopontin mRNA transcript under static conditions. However, inhibition of Src activity had no effect on oscillatory fluid flow-stimulated osteopontin expression or ERK1/2 phosphorylation. These data suggest that although Src activity regulates osteopontin expression under static conditions, and is induced under conditions of shear stress, it is not required for load-induced osteopontin expression.
Related JoVE Video
Prostaglandin E2 signals through PTGER2 to regulate sclerostin expression.
PLoS ONE
PUBLISHED: 02-14-2011
Show Abstract
Hide Abstract
The Wnt signaling pathway is a robust regulator of skeletal homeostasis. Gain-of-function mutations promote high bone mass, whereas loss of Lrp5 or Lrp6 co-receptors decrease bone mass. Similarly, mutations in antagonists of Wnt signaling influence skeletal integrity, in an inverse relation to Lrp receptor mutations. Loss of the Wnt antagonist Sclerostin (Sost) produces the generalized skeletal hyperostotic condition of sclerosteosis, which is characterized by increased bone mass and density due to hyperactive osteoblast function. Here we demonstrate that prostaglandin E(2) (PGE(2)), a paracrine factor with pleiotropic effects on osteoblasts and osteoclasts, decreases Sclerostin expression in osteoblastic UMR106.01 cells. Decreased Sost expression correlates with increased expression of Wnt/TCF target genes Axin2 and Tcf3. We also show that the suppressive effect of PGE(2) is mediated through a cyclic AMP/PKA pathway. Furthermore, selective agonists for the PGE(2) receptor EP2 mimic the effect of PGE(2) upon Sost, and siRNA reduction in Ptger2 prevents PGE(2)-induced Sost repression. These results indicate a functional relationship between prostaglandins and the Wnt/?-catenin signaling pathway in bone.
Related JoVE Video
Comparison of the osteogenic potential of equine mesenchymal stem cells from bone marrow, adipose tissue, umbilical cord blood, and umbilical cord tissue.
Am. J. Vet. Res.
PUBLISHED: 10-06-2010
Show Abstract
Hide Abstract
To determine the optimal osteogenic source of equine mesenchymal stem cells (eMSCs) and optimize collection of and expansion conditions for those cells.
Related JoVE Video
Osteogenic proliferation and differentiation of canine bone marrow and adipose tissue derived mesenchymal stromal cells and the influence of hypoxia.
Res. Vet. Sci.
PUBLISHED: 06-30-2010
Show Abstract
Hide Abstract
The aim of this study was to compare the osteogenic and proliferative potential of canine mesenchymal stromal cells (cMSCs) derived from bone marrow (BM-cMSCs) and adipose tissue (AT-cMSCs). Proliferation potential was determined under varying oxygen tensions (1%, 5%, and 21% O(2)). Effects of reduced oxygen levels on the osteogenic differentiation of AT-cMSCs were also investigated. AT-cMSCs proliferated at a significantly faster rate than BM-cMSCs, although both cell types showed robust osteogenic differentiation. Culture in 5% and 1% O(2) impaired proliferation in cMSC from both sources and osteogenic differentiation in AT-cMSCs. Our data suggests that AT-cMSCs might be more suitable for use in a clinical situation, where large cell numbers are required for bone repair, due to their rapid proliferation combined with robust osteogenic potential. Our data also suggests that the inhibitory effects of hypoxia on both cell proliferation and differentiation should be considered when using MSCs in a potentially hypoxic environment such as a fracture site.
Related JoVE Video
Hypoxia increases Annexin A2 expression in osteoblastic cells via VEGF and ERK.
Bone
PUBLISHED: 06-15-2010
Show Abstract
Hide Abstract
Vascular endothelial growth factor (VEGF)-stimulated angiogenesis is critical for endochondral ossification that occurs during bone development and bone repair. Under these circumstances, VEGF production appears to be driven by low oxygen tension, under the control of the hypoxia-inducible factor-? family of transcription factors (HIF-?). Annexin 2 (AnxA2) a calcium-dependent phospholipid binding protein has been implicated in VEGF-mediated retinal neovascularization and is upregulated by VEGF in choroid retinal endothelial cells. AnxA2 is also expressed in cells of the osteoblast lineage and chondrocytes and may play a role in matrix mineralization. In this paper, we examined the effects of hypoxia (1% O(2)) and VEGF on the expression of AnxA2 in osteoblastic MC3T3-E1 cells. Hypoxia, desferrioxamine (hypoxia mimetic), and recombinant VEGF all increased AnxA2 mRNA and protein levels in osteoblastic cells. The hypoxia-induced increase in AnxA2 was inhibited by a blocking antibody to VEGF-R1; however, VEGF(120), a VEGF-R1 agonist, demonstrated no influence upon Anxa2 expression. This suggests that VEGF induction of Annexin A2 is not mediated via VEGF-R1 agonism alone but by VEGF-R1 and Neuropilin-1 or Neuropilin-2 heterodimers. In addition, we demonstrated that VEGF-stimulated changes in AnxA2 expression via a pathway involving Src and MEK kinase. These data demonstrate that AnxA2 expression in osteoblasts is under the control of VEGF, which may have implications for both angiogenesis and bone mineralization under low oxygen conditions.
Related JoVE Video
Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts.
J. Cell. Biochem.
PUBLISHED: 03-26-2010
Show Abstract
Hide Abstract
Mutations in sclerostin function or expression cause sclerosing bone dysplasias, involving decreased antagonism of Wnt/Lrp5 signaling. Conversely, deletion of the VHL tumor suppressor in osteoblasts, which stabilize HIF-alpha isoforms and thereby enables HIF-alpha/beta-driven gene transcription, increases bone mineral content and cross-sectional area compared to wild-type controls. We examined the influence of cellular hypoxia (1% oxygen) upon sclerostin expression and canonical Wnt signaling. Osteoblasts and osteocytes cultured under hypoxia revealed decreased sclerostin transcript and protein, and increased expression and nuclear localization of activated beta-catenin. Similarly, both hypoxia and the hypoxia mimetic DFO increased beta-catenin gene reporter activity. Hypoxia and its mimetics increased expression of the BMP antagonists gremlin and noggin and decreased Smad-1/5/8 phosphorylation. As a partial explanation for the mechanism of regulation of sclerostin by oxygen, MEF2 reporter assays revealed decreased activity. Modulation of VEGF signaling under normoxia or hypoxia revealed no influence upon Sost transcription. These data suggest that hypoxia inhibits sclerostin expression, through enhanced antagonism of BMP signaling independent of VEGF.
Related JoVE Video
Oxygen tension differentially influences osteogenic differentiation of human adipose stem cells in 2D and 3D cultures.
J. Cell. Biochem.
PUBLISHED: 03-10-2010
Show Abstract
Hide Abstract
Skeletal defects commonly suffer from poor oxygen microenvironments resulting from compromised vascularization associated with injury or disease. Adipose stem cells (ASCs) represent a promising cell population for stimulating skeletal repair by differentiating toward the osteogenic lineage or by secreting trophic factors. However, the osteogenic or trophic response of ASCs to reduced oxygen microenvironments is poorly understood. Moreover, a direct comparison between 2D and 3D response of ASCs to hypoxia is lacking. Thus, we characterized the osteogenic and angiogenic potential of human ASCs under hypoxic (1%), normoxic (5%), and atmospheric (21%) oxygen tensions in both 2D and 3D over 4 weeks in culture. We detected greatest alkaline phosphatase activity and extracellular calcium deposition in cells cultured in both 2D and 3D under 21% oxygen, and reductions in enzyme activity corresponded to reductions in oxygen tension. ASCs cultured in 1% oxygen secreted more vascular endothelial growth factor (VEGF) over the 4-week period than cells cultured in other conditions, with cells cultured in 2D secreting VEGF in a more sustained manner than those in 3D. Expression of osteogenic markers revealed temporal changes under different oxygen conditions with peak expression occurring earlier in 3D. In addition, the increase of most osteogenic markers was significantly higher in 2D compared to 3D cultures at 1% and 5% oxygen. These results suggest that oxygen, in conjunction with dimensionality, affects the timing of the differentiation program in ASCs. These findings offer new insights for the use of ASCs in bone repair while emphasizing the importance of the culture microenvironment.
Related JoVE Video
The effect of oxygen tension on the long-term osteogenic differentiation and MMP/TIMP expression of human mesenchymal stem cells.
Cells Tissues Organs (Print)
PUBLISHED: 05-07-2009
Show Abstract
Hide Abstract
The use of mesenchymal stem cells in tissue engineering to augment the repair of a variety of tissues including bone is a rapidly growing and exciting field. Although oxygen tension is a powerful stimulus for cells both in vitro and in vivo, the oxygen environment in which such cells would undergo differentiation is commonly overlooked. We examined the effect of long-term (21-days) low oxygen tension (1, 2 and 5%) on the osteogenic differentiation and matrix metalloproteinase (MMP)/tissue inhibitor of MMP (TIMP) expression of human mesenchymal stem cells (MSCs). Our data suggest that MSCs undergo osteoblastic differentiation most rapidly under 21% oxygen while oxygen tensions below 5% have an inhibitory effect. Interestingly, there was not a statistically significant difference in osteogenic markers between 5 and 21% oxygen. In addition, our data suggest that oxygen tension affects the expression of individual MMP and TIMPs differently. Low oxygen tension has an inhibitory effect on MMP-13 and TIMP-1 expression, which are involved in extracellular matrix remodeling and potentially vascular invasion. In contrast, MMP-2, a metalloproteinase involved in cell migration was not affected by oxygen tension. This data suggests that 21% oxygen may be beneficial for rapid osteogenic differentiation as would be required for the production of individual patient ex vivo constructs. In addition, this has important in vivo implications relating to the importance of early vascularization of sites of orthopedic injury. By augmenting the neovascularization process, it may be possible to facilitate more rapid differentiation of progenitors and thus the repair process.
Related JoVE Video
Prostaglandin expression profile in hypoxic osteoblastic cells.
J. Bone Miner. Metab.
PUBLISHED: 04-09-2009
Show Abstract
Hide Abstract
Conditions such as fracture and unloading have been shown to be associated with tissue and cellular hypoxia in bone. The effects of hypoxia on bone cell physiology and ultimately its impact on bone tissue repair and remodeling are not well understood. In this study, we investigated the role of hypoxia on prostaglandin release from osteoblastic cells cultured in 2% (hypoxia), 5% (potentially cellular normoxia), and 21% (normoxia for standard cell culture conditions) oxygen for up to 24 h. We quantified the effects of reduced oxygen tension on the release of prostaglandin (PG)E(2), PGF(2alpha), PGD(2), and PGI(2). The mechanism by which hypoxia increases PG production was investigated by examining the various regulatory components of the PG biosynthetic pathway. Our data show that PGE(2) levels alone are significantly elevated under hypoxic conditions. Also, we show that cyclooxygenase (COX)-1 and COX-2 play an important role in hypoxia-induced PGE(2) production, possibly via a mechanism involving changes in their respective activity levels under low oxygen conditions. The effect of hypoxia on PGE(2) levels was mimicked by dimethyloxaloglycine, a known activator of the HIF pathway. In addition, we confirmed that HIF-1alpha was stabilized in osteoblastic cells under hypoxia. Taken together these data suggest a role for the HIF pathway in regulation of PGE(2) levels under hypoxic conditions. Previous studies have detected release of prostaglandins from areas of damaged bone, such as a fracture site, and our data may contribute to an understanding of how this release is regulated.
Related JoVE Video
HIF-1alpha regulates hypoxia-induced EP1 expression in osteoblastic cells.
J. Cell. Biochem.
PUBLISHED: 03-12-2009
Show Abstract
Hide Abstract
Changes in regional oxygen tension that occur during skeletal development and fracture stimulate local bone cell activity to regulate bone formation, maintenance, and repair. The adaptive responses of bone cells to hypoxia are only beginning to be understood. The transcription factor hypoxia-inducible factor-1alpha (HIF-1alpha) is activated under hypoxia and promotes expression of genes required for adaptation and cell survival, and also regulates both bone development and fracture repair. We have previously demonstrated that hypoxic osteoblasts increase PGE(2) release and expression of the PGE(2) receptor EP1. In the present studies, we investigated the impact of altered HIF-1alpha activity and expression on EP1 expression in osteoblasts. HIF-1alpha stabilization was induced in cells cultured in 21% oxygen by treatment with dimethyloxaloglycine (DMOG) or siRNA targeted against PHD2. To implicate HIF-1alpha in hypoxia-induced EP1 expression, osteoblastic cells were treated with siRNA targeted against HIF-1alpha prior to exposure to hypoxia. EP1 expression was significantly increased in cells cultured in 21% oxygen with DMOG or PHD2 siRNA treatment compared to controls. Hypoxia responsive element (HRE) activation in hypoxia was attenuated in cells treated with HIF-1alpha siRNA compared to controls, indicating HIF-1alpha as the functional HIF-alpha isoform in this system. Furthermore, hypoxic cells treated with HIF-1alpha siRNA demonstrated reduced EP1 expression in hypoxia compared to controls. Inhibition of SAPK/JNK activity significantly reduced hypoxia-induced EP1 expression but had no impact on HIF-1alpha expression or activity. These data strongly implicate a role for HIF-1alpha in hypoxia-induced EP1 expression and may provide important insight into the mechanisms by which HIF-1alpha regulates bone development and fracture repair.
Related JoVE Video
Long-term administration of AMD3100, an antagonist of SDF-1/CXCR4 signaling, alters fracture repair.
J. Orthop. Res.
Show Abstract
Hide Abstract
Fracture healing involves rapid stem and progenitor cell migration, homing, and differentiation. SDF-1 (CXCL12) is considered a master regulator of CXCR4-positive stem and progenitor cell trafficking to sites of ischemic (hypoxic) injury and regulates their subsequent differentiation into mature reparative cells. In this study, we investigated the role of SDF-1/CXCR4 signaling in fracture healing where vascular disruption results in hypoxia and SDF-1 expression. Mice were injected with AMD3100, a CXCR4 antagonist, or vehicle twice daily until euthanasia with the intent to impair stem cell homing to the fracture site and/or their differentiation. Fracture healing was evaluated using micro-computed tomography, histology, quantitative PCR, and mechanical testing. AMD3100 administration resulted in a significantly reduced hyaline cartilage volume (day 14), callus volume (day 42) and mineralized bone volume (day 42) and reduced expression of genes associated with endochondral ossification including collagen Type 1 alpha 1, collagen Type 2 alpha 1, vascular endothelial growth factor, Annexin A5, nitric oxide synthase 2, and mechanistic target of rapamycin. Our data suggest that the SDF-1/CXCR4 signaling plays a central role in bone healing possibly by regulating the recruitment and/or differentiation of stem and progenitor cells.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.