JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Genome sequence of the model sulfate reducer Desulfovibrio gigas: a comparative analysis within the Desulfovibrio genus.
Microbiologyopen
PUBLISHED: 03-20-2014
Show Abstract
Hide Abstract
Desulfovibrio gigas is a model organism of sulfate-reducing bacteria of which energy metabolism and stress response have been extensively studied. The complete genomic context of this organism was however, not yet available. The sequencing of the D. gigas genome provides insights into the integrated network of energy conserving complexes and structures present in this bacterium. Comparison with genomes of other Desulfovibrio spp. reveals the presence of two different CRISPR/Cas systems in D. gigas. Phylogenetic analysis using conserved protein sequences (encoded by rpoB and gyrB) indicates two main groups of Desulfovibrio spp, being D. gigas more closely related to D. vulgaris and D. desulfuricans strains. Gene duplications were found such as those encoding fumarate reductase, formate dehydrogenase, and superoxide dismutase. Complexes not yet described within Desulfovibrio genus were identified: Mnh complex, a v-type ATP-synthase as well as genes encoding the MinCDE system that could be responsible for the larger size of D. gigas when compared to other members of the genus. A low number of hydrogenases and the absence of the codh/acs and pfl genes, both present in D. vulgaris strains, indicate that intermediate cycling mechanisms may contribute substantially less to the energy gain in D. gigas compared to other Desulfovibrio spp. This might be compensated by the presence of other unique genomic arrangements of complexes such as the Rnf and the Hdr/Flox, or by the presence of NAD(P)H related complexes, like the Nuo, NfnAB or Mnh.
Related JoVE Video
Yap1 mediates tolerance to cobalt toxicity in the yeast Saccharomyces cerevisiae.
Biochim. Biophys. Acta
PUBLISHED: 01-08-2014
Show Abstract
Hide Abstract
Cobalt has a rare occurrence in nature, but may accumulate in cells to toxic levels. In the present study, we have investigated how the transcription factor Yap1 mediates tolerance to cobalt toxicity.
Related JoVE Video
Roles of HynAB and Ech, the only two hydrogenases found in the model sulfate reducer Desulfovibrio gigas.
J. Bacteriol.
PUBLISHED: 08-23-2013
Show Abstract
Hide Abstract
Sulfate-reducing bacteria are characterized by a high number of hydrogenases, which have been proposed to contribute to the overall energy metabolism of the cell, but exactly in what role is not clear. Desulfovibrio spp. can produce or consume H2 when growing on organic or inorganic substrates in the presence or absence of sulfate. Because of the presence of only two hydrogenases encoded in its genome, the periplasmic HynAB and cytoplasmic Ech hydrogenases, Desulfovibrio gigas is an excellent model organism for investigation of the specific function of each of these enzymes during growth. In this study, we analyzed the physiological response to the deletion of the genes that encode the two hydrogenases in D. gigas, through the generation of ?echBC and ?hynAB single mutant strains. These strains were analyzed for the ability to grow on different substrates, such as lactate, pyruvate, and hydrogen, under respiratory and fermentative conditions. Furthermore, the expression of both hydrogenase genes in the three strains studied was assessed through quantitative reverse transcription-PCR. The results demonstrate that neither hydrogenase is essential for growth on lactate-sulfate, indicating that hydrogen cycling is not indispensable. In addition, the periplasmic HynAB enzyme has a bifunctional activity and is required for growth on H2 or by fermentation of pyruvate. Therefore, this enzyme seems to play a dominant role in D. gigas hydrogen metabolism.
Related JoVE Video
Molecular characterization of TaSTOP1 homoeologues and their response to aluminium and proton (H(+)) toxicity in bread wheat (Triticum aestivum L.).
BMC Plant Biol.
PUBLISHED: 03-12-2013
Show Abstract
Hide Abstract
Aluminium (Al) toxicity is considered to be one of the major constraints affecting crop productivity on acid soils. Being a trait governed by multiple genes, the identification and characterization of novel transcription factors (TFs) regulating the expression of entire response networks is a very promising approach. Therefore, the aim of the present study was to clone, localize, and characterize the TaSTOP1 gene, which belongs to the zinc finger family (Cys2His2 type) transcription factor, at molecular level in bread wheat.
Related JoVE Video
Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains.
J. Biosci. Bioeng.
PUBLISHED: 01-26-2013
Show Abstract
Hide Abstract
Ethanol is a chemical stress factor that inhibits cellular growth and determines metabolic changes leading to reduction of cell viability during fermentation and yeast storage. To determine the effect of time, temperature and ethanol during storage of brewing yeasts we have monitored viability of cells stored for 72 h, at 6 °C or 12 °C, in the presence of various ethanol concentrations. Under the conditions tested, 6 °C is the most favourable temperature to store brewing yeast creams emphasizing the importance of a tight temperature control in the storage vessels. Because W210 is less resistant to storage in the presence of ethanol than W34/70, the optimal storage parameters obtained under our laboratory conditions vary significantly. The ale strain is sensitive to storage under ethanol concentrations higher than 5% (v/v) for more than 48 h at 6 °C whereas at the same temperature the lager strain tolerates ethanol up to 7.5% (v/v) for 72 h. Also, the viability assays indicate that the antioxidant protein Yap1 is an important factor to storage resistance of BY4741 laboratory strain. To investigate the molecular mechanisms underlying tolerance of brewing yeast strains to ethanol, we have performed phenotypic analysis, localization studies and have monitored the activation of antioxidant and protection genes as well as the intracellular contents of glycogen and trehalose. Overall, our data suggest that the ale strain W210 has a defective antioxidant defence system and that ethanol may induce the antioxidant defences as well as glycogen and trehalose protection mechanisms in laboratory and brewing yeast strains.
Related JoVE Video
Role of NorR-like transcriptional regulators under nitrosative stress of the ?-proteobacterium, Desulfovibrio gigas.
Biochem. Biophys. Res. Commun.
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
NorR protein was shown to be responsible for the transcriptional regulation of flavorubredoxin and its associated oxidoreductase in Escherichia coli. Since Desulfovibrio gigas has a rubredoxin:oxygen oxidoreductase (ROO) that is involved in both oxidative and nitrosative stress response, a NorR-like protein was searched in D. gigas genome. We have found two putative norR coding units in its genome. To study the role of the protein designated as NorR1-like (NorR1L) in the presence of nitrosative stress, a norR1L null mutant of D. gigas was created and a phenotypic analysis was performed under the nitrosating agent GSNO. We show that under these conditions, the growth of both D. gigas mutants ?roo and ?norR1-like is impaired. In order to confirm that D. gigas NorR1-like may play identical function as the NorR of E. coli, we have complemented the E. coli ?norR mutant strain with the norR1-like gene and have evaluated growth when nitrosative stress was imposed. The growth phenotype of E. coli ?norR mutant strain was recovered under these conditions. We also found that induction of roo gene expression is completely abolished in the norR1L mutant strain of D. gigas subjected to nitrosative stress. It is identified in ?-proteobacteria, for the first time a transcription factor that is involved in nitrosative stress response and regulates the rd-roo gene expression.
Related JoVE Video
Yeast protective response to arsenate involves the repression of the high affinity iron uptake system.
Biochim. Biophys. Acta
PUBLISHED: 01-04-2013
Show Abstract
Hide Abstract
Arsenic is a double-edge sword. On the one hand it is powerful carcinogen and on the other it is used therapeutically to treat acute promyelocytic leukemia. Here we report that arsenic activates the iron responsive transcription factor, Aft1, as a consequence of a defective high-affinity iron uptake mediated by Fet3 and Ftr1, whose mRNAs are drastically decreased upon arsenic exposure. Moreover, arsenic causes the internalization and degradation of Fet3. Most importantly, fet3ftr1 mutant exhibits increased arsenic resistance and decreased arsenic accumulation over the wild-type suggesting that Fet3 plays a role in arsenic toxicity. Finally we provide data suggesting that arsenic also disrupts iron uptake in mammals and the link between Fet3, arsenic and iron, can be relevant to clinical applications.
Related JoVE Video
Two Residues in the Basic Region of the Yeast Transcription Factor Yap8 Are Crucial for Its DNA-Binding Specificity.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
In Saccharomyces cerevisiae, the transcription factor Yap8 is a key determinant in arsenic stress response. Contrary to Yap1, another basic region-leucine zipper (bZIP) yeast regulator, Yap8 has a very restricted DNA-binding specificity and only orchestrates the expression of ACR2 and ACR3 genes. In the DNA-binding basic region, Yap8 has three distinct amino acids residues, Leu26, Ser29 and Asn31, at sites of highly conserved positions in the other Yap family of transcriptional regulators and Pap1 of Schizosaccharomyces pombe. To evaluate whether these residues are relevant to Yap8 specificity, we first built a homology model of the complex Yap8bZIP-DNA based on Pap1-DNA crystal structure. Several Yap8 mutants were then generated in order to confirm the contribution of the residues predicted to interact with DNA. Using bioinformatics analysis together with in vivo and in vitro approaches, we have identified several conserved residues critical for Yap8-DNA binding. Moreover, our data suggest that Leu26 is required for Yap8 binding to DNA and that this residue together with Asn31, hinder Yap1 response element recognition by Yap8, thus narrowing its DNA-binding specificity. Furthermore our results point to a role of these two amino acids in the stability of the Yap8-DNA complex.
Related JoVE Video
Tungsten and molybdenum regulation of formate dehydrogenase expression in Desulfovibrio vulgaris Hildenborough.
J. Bacteriol.
PUBLISHED: 04-15-2011
Show Abstract
Hide Abstract
Formate is an important energy substrate for sulfate-reducing bacteria in natural environments, and both molybdenum- and tungsten-containing formate dehydrogenases have been reported in these organisms. In this work, we studied the effect of both metals on the levels of the three formate dehydrogenases encoded in the genome of Desulfovibrio vulgaris Hildenborough, with lactate, formate, or hydrogen as electron donors. Using Western blot analysis, quantitative real-time PCR, activity-stained gels, and protein purification, we show that a metal-dependent regulatory mechanism is present, resulting in the dimeric FdhAB protein being the main enzyme present in cells grown in the presence of tungsten and the trimeric FdhABC? protein being the main enzyme in cells grown in the presence of molybdenum. The putatively membrane-associated formate dehydrogenase is detected only at low levels after growth with tungsten. Purification of the three enzymes and metal analysis shows that FdhABC? specifically incorporates Mo, whereas FdhAB can incorporate both metals. The FdhAB enzyme has a much higher catalytic efficiency than the other two. Since sulfate reducers are likely to experience high sulfide concentrations that may result in low Mo bioavailability, the ability to use W is likely to constitute a selective advantage.
Related JoVE Video
Deciphering human heat shock transcription factor 1 regulation via post-translational modification in yeast.
PLoS ONE
PUBLISHED: 01-06-2011
Show Abstract
Hide Abstract
Heat shock transcription factor 1 (HSF1) plays an important role in the cellular response to proteotoxic stresses. Under normal growth conditions HSF1 is repressed as an inactive monomer in part through post-translation modifications that include protein acetylation, sumoylation and phosphorylation. Upon exposure to stress HSF1 homotrimerizes, accumulates in nucleus, binds DNA, becomes hyper-phosphorylated and activates the expression of stress response genes. While HSF1 and the mechanisms that regulate its activity have been studied for over two decades, our understanding of HSF1 regulation remains incomplete. As previous studies have shown that HSF1 and the heat shock response promoter element (HSE) are generally structurally conserved from yeast to metazoans, we have made use of the genetically tractable budding yeast as a facile assay system to further understand the mechanisms that regulate human HSF1 through phosphorylation of serine 303. We show that when human HSF1 is expressed in yeast its phosphorylation at S303 is promoted by the MAP-kinase Slt2 independent of a priming event at S307 previously believed to be a prerequisite. Furthermore, we show that phosphorylation at S303 in yeast and mammalian cells occurs independent of GSK3, the kinase primarily thought to be responsible for S303 phosphorylation. Lastly, while previous studies have suggested that S303 phosphorylation represses HSF1-dependent transactivation, we now show that S303 phosphorylation also represses HSF1 multimerization in both yeast and mammalian cells. Taken together, these studies suggest that yeast cells will be a powerful experimental tool for deciphering aspects of human HSF1 regulation by post-translational modifications.
Related JoVE Video
The Yap family and its role in stress response.
Yeast
PUBLISHED: 02-12-2010
Show Abstract
Hide Abstract
The budding yeast Saccharomyces cerevisiae possesses a very flexible and complex programme of gene expression when exposed to several environmental challenges. Homeostasis is achieved through a highly coordinated mechanism of transcription regulation involving several transcription factors, each one acting singly or in combination to perform specific functions. Here, we review our current knowledge of the function of the Yap transcription factors in stress response. They belong to b-ZIP proteins comprising eight members with specificity at the DNA-binding domain distinct from that of the conventional yeast AP-1 factor, Gcn4. We finish with new insights into the links of transcriptional networks controlling several cellular processes. The data reviewed in this article illustrate how much our comprehension of the biology of Yap family involved in stress response has advanced, and how much research is still needed to unravel the complexity of the role of these transcriptional factors. The complexities of these regulatory interactions, as well as the dynamics of these processes, are important to understand in order to elucidate the control of stress response, a highly conserved process in eukaryotes.
Related JoVE Video
Yap4 PKA- and GSK3-dependent phosphorylation affects its stability but not its nuclear localization.
Yeast
PUBLISHED: 09-24-2009
Show Abstract
Hide Abstract
Yap4 is a nuclear-resident transcription factor induced in Saccharomyces cerevisiae when exposed to several stress conditions, which include mild hyperosmotic and oxidative stress, temperature shift or metal exposure. This protein is also phosphorylated. Here we report that this modification is driven by PKA and GSK3. In order to ascertain whether Yap4 is directly or indirectly phosphorylated by PKA, we searched for stress and PKA-related kinases that could phosphorylate Yap4. We show that phosphorylation is independent of the kinases Rim15, Yak1, Sch9, Slt2, Ste20 and Ptk2. In addition, we showed that Yap4 phosphorylation is also abrogated in the triple GSK3 mutant mck1 rim11 yol128c. Furthermore, our data reveal that Yap4 nuclear localization is independent of its phosphorylation state. This protein has several putative phosphorylation sites, but only the mutation of residues T192 and S196 impairs its phosphorylation under different stress conditions. The ability of the non-phosphorylated forms of Yap4 to partially rescue the hog1 severe sensitivity phenotype is not affected, suggesting that Yap4 activity is maintained in the absence of phosphorylation. However, this modification seems to be required for stability of the protein, as the non-phosphorylated form has a shorter half-life than the phosphorylated one.
Related JoVE Video
Arsenic stress elicits cytosolic Ca(2+) bursts and Crz1 activation in Saccharomyces cerevisiae.
Microbiology (Reading, Engl.)
Show Abstract
Hide Abstract
Although arsenic is notoriously poisonous to life, its utilization in therapeutics brings many benefits to human health, so it is therefore essential to discover the molecular mechanisms underlying arsenic stress responses in eukaryotic cells. Aiming to determine the contribution of Ca(2+) signalling pathways to arsenic stress responses, we took advantage of the use of Saccharomyces cerevisiae as a model organism. Here we show that Ca(2+) enhances the tolerance of the wild-type and arsenic-sensitive yap1 strains to arsenic stress in a Crz1-dependent manner, thus providing the first evidence that Ca(2+) signalling cascades are involved in arsenic stress responses. Moreover, our results indicate that arsenic shock elicits a cytosolic Ca(2+) burst in these strains, without the addition of exogenous Ca(2+) sources, strongly supporting the notion that Ca(2+) homeostasis is disrupted by arsenic stress. In response to an arsenite-induced increase of Ca(2+) in the cytosol, Crz1 is dephosphorylated and translocated to the nucleus, and stimulates CDRE-driven expression of the lacZ reporter gene in a Cnb1-dependent manner. The activation of Crz1 by arsenite culminates in the induction of the endogenous genes PMR1, PMC1 and GSC2. Taken together, these data establish that activation of Ca(2+) signalling pathways and the downstream activation of the Crz1 transcription factor contribute to arsenic tolerance in the eukaryotic model organism S. cerevisiae.
Related JoVE Video
Oxidative stress in Alzheimers and Parkinsons diseases: insights from the yeast Saccharomyces cerevisiae.
Oxid Med Cell Longev
Show Abstract
Hide Abstract
Alzheimers (AD) and Parkinsons (PD) diseases are the two most common causes of dementia in aged population. Both are protein-misfolding diseases characterized by the presence of protein deposits in the brain. Despite growing evidence suggesting that oxidative stress is critical to neuronal death, its precise role in disease etiology and progression has not yet been fully understood. Budding yeast Saccharomyces cerevisiae shares conserved biological processes with all eukaryotic cells, including neurons. This fact together with the possibility of simple and quick genetic manipulation highlights this organism as a valuable tool to unravel complex and fundamental mechanisms underlying neurodegeneration. In this paper, we summarize the latest knowledge on the role of oxidative stress in neurodegenerative disorders, with emphasis on AD and PD. Additionally, we provide an overview of the work undertaken to study AD and PD in yeast, focusing the use of this model to understand the effect of oxidative stress in both diseases.
Related JoVE Video
Iron and neurodegeneration: from cellular homeostasis to disease.
Oxid Med Cell Longev
Show Abstract
Hide Abstract
Accumulation of iron (Fe) is often detected in the brains of people suffering from neurodegenerative diseases. High Fe concentrations have been consistently observed in Parkinsons, Alzheimers, and Huntingtons diseases; however, it is not clear whether this Fe contributes to the progression of these diseases. Other conditions, such as Friedreichs ataxia or neuroferritinopathy are associated with genetic factors that cause Fe misregulation. Consequently, excessive intracellular Fe increases oxidative stress, which leads to neuronal dysfunction and death. The characterization of the mechanisms involved in the misregulation of Fe in the brain is crucial to understand the pathology of the neurodegenerative disorders and develop new therapeutic strategies. Saccharomyces cerevisiae, as the best understood eukaryotic organism, has already begun to play a role in the neurological disorders; thus it could perhaps become a valuable tool also to study the metalloneurobiology.
Related JoVE Video
The role of the Yap5 transcription factor in remodeling gene expression in response to Fe bioavailability.
PLoS ONE
Show Abstract
Hide Abstract
The budding yeast Saccharomyces cerevisiae has developed several mechanisms to avoid either the drastic consequences of iron deprivation or the toxic effects of iron excess. In this work, we analysed the global gene expression changes occurring in yeast cells undergoing iron overload. Several genes directly or indirectly involved in iron homeostasis showed altered expression and the relevance of these changes are discussed. Microarray analyses were also performed to identify new targets of the iron responsive factor Yap5. Besides the iron vacuolar transporter CCC1, Yap5 also controls the expression of glutaredoxin GRX4, previously known to be involved in the regulation of Aft1 nuclear localization. Consistently, we show that in the absence of Yap5 Aft1 nuclear exclusion is slightly impaired. These studies provide further evidence that cells control iron homeostasis by using multiple pathways.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.