JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Structural and functional features of Crl proteins and identification of conserved surface residues required for interaction with the RpoS/?S subunit of RNA polymerase.
Biochem. J.
PUBLISHED: 07-25-2014
Show Abstract
Hide Abstract
In many ?-proteobacteria, the RpoS/?S sigma factor associates with the core RNAP (RNA polymerase) to modify global gene transcription in stationary phase and under stress conditions. The small regulatory protein Crl stimulates the association of ?S with the core RNAP in Escherichia coli and Salmonella enterica serovar Typhimurium, through direct and specific interaction with ?S. The structural determinants of Crl involved in ?S binding are unknown. In the present paper we report the X-ray crystal structure of the Proteus mirabilis Crl protein (CrlPM) and a structural model for Salmonella Typhimurium Crl (CrlSTM). Using a combination of in vivo and in vitro assays, we demonstrated that CrlSTM and CrlPM are structurally similar and perform the same biological function. In the Crl structure, a cavity enclosed by flexible arms contains two patches of conserved and exposed residues required for ?S binding. Among these, charged residues that are likely to be involved in electrostatic interactions driving Crl-?S complex formation were identified. CrlSTM and CrlPM interact with domain 2 of ?S with the same binding properties as with full-length ?S. These results suggest that Crl family members share a common mechanism of ?S binding in which the flexible arms of Crl might play a dynamic role.
Related JoVE Video
DNA topoisomerase VIII: a novel subfamily of type IIB topoisomerases encoded by free or integrated plasmids in Archaea and Bacteria.
Nucleic Acids Res.
PUBLISHED: 07-02-2014
Show Abstract
Hide Abstract
Type II DNA topoisomerases are divided into two families, IIA and IIB. Types IIA and IIB enzymes share homologous B subunits encompassing the ATP-binding site, but have non-homologous A subunits catalyzing DNA cleavage. Type IIA topoisomerases are ubiquitous in Bacteria and Eukarya, whereas members of the IIB family are mostly present in Archaea and plants. Here, we report the detection of genes encoding type IIB enzymes in which the A and B subunits are fused into a single polypeptide. These proteins are encoded in several bacterial genomes, two bacterial plasmids and one archaeal plasmid. They form a monophyletic group that is very divergent from archaeal and eukaryotic type IIB enzymes (DNA topoisomerase VI). We propose to classify them into a new subfamily, denoted DNA topoisomerase VIII. Bacterial genes encoding a topoisomerase VIII are present within integrated mobile elements, most likely derived from conjugative plasmids. Purified topoisomerase VIII encoded by the plasmid pPPM1a from Paenibacillus polymyxa M1 had ATP-dependent relaxation and decatenation activities. In contrast, the enzyme encoded by mobile elements integrated into the genome of Ammonifex degensii exhibited DNA cleavage activity producing a full-length linear plasmid and that from Microscilla marina exhibited ATP-independent relaxation activity. Topoisomerases VIII, the smallest known type IIB enzymes, could be new promising models for structural and mechanistic studies.
Related JoVE Video
Mycobacterium tuberculosis DNA gyrase ATPase domain structures suggest a dissociative mechanism that explains how ATP hydrolysis is coupled to domain motion.
Biochem. J.
PUBLISHED: 09-11-2013
Show Abstract
Hide Abstract
DNA gyrase, a type II topoisomerase, regulates DNA topology by creating a double-stranded break in one DNA duplex and transporting another DNA duplex [T-DNA (transported DNA)] through this break. The ATPase domains dimerize, in the presence of ATP, to trap the T-DNA segment. Hydrolysis of only one of the two ATPs, and release of the resulting Pi, is rate-limiting in DNA strand passage. A long unresolved puzzle is how the non-hydrolysable ATP analogue AMP-PNP (adenosine 5-[?,?-imido]triphosphate) can catalyse one round of DNA strand passage without Pi release. In the present paper we discuss two crystal structures of the Mycobacterium tuberculosis DNA gyrase ATPase domain: one complexed with AMP-PCP (adenosine 5-[?,?-methylene]triphosphate) was unexpectedly monomeric, the other, an AMP-PNP complex, crystallized as a dimer. In the AMP-PNP structure, the unprotonated nitrogen (P-N=P imino) accepts hydrogen bonds from a well-ordered ATP lid, which is known to be required for dimerization. The equivalent CH2 group, in AMP-PCP, cannot accept hydrogen bonds, leaving the ATP lid region disordered. Further analysis suggested that AMP-PNP can be converted from the imino (P-N=P) form into the imido form (P-NH-P) during the catalytic cycle. A main-chain NH is proposed to move to either protonate AMP-P-N=P to AMP-P-NH-P, or to protonate ATP to initiate ATP hydrolysis. This suggests a novel dissociative mechanism for ATP hydrolysis that could be applicable not only to GHKL phosphotransferases, but also to unrelated ATPases and GTPases such as Ras. On the basis of the domain orientation in our AMP-PCP structure we propose a mechanochemical scheme to explain how ATP hydrolysis is coupled to domain motion.
Related JoVE Video
Mycobacterium tuberculosis DNA gyrase possesses two functional GyrA-boxes.
Biochem. J.
PUBLISHED: 07-23-2013
Show Abstract
Hide Abstract
In contrast with most bacteria which possess two type II topoisomerases (topoisomerase IV and DNA gyrase), Mycobacterium tuberculosis possesses only one, DNA gyrase, which is functionally a hybrid enzyme. Functional differences between the two type IIA topoisomerases are thought to be specified by a CTD (C-terminal DNA-binding domain), which controls DNA recognition. To explore the molecular mechanism responsible for the hybrid functions of the M. tuberculosis DNA gyrase, we conducted a series of sequence analyses and structural and biochemical experiments with the isolated GyrA CTD and the holoenzyme. Although the CTD displayed a global structure similar to that of bona fide GyrA and ParC paralogues, it harbours a second key motif similar in all respects to that of the conserved GyrA-box sequence motif. Biochemical assays showed that the GyrA-box is responsible for DNA supercoiling, whereas the second GyrA-box-l (GyrA-box-like motif) is responsible for the enhanced decatenation activity, suggesting that the mechanistic originality of M. tuberculosis DNA gyrase depends largely on the particular DNA path around the CTD allowed for by the presence of GyrA-box-l. The results of the present study also provide, through phylogenetic exploration of the entire Corynebacterineae suborder, a new and broader insight into the functional diversity of bacterial type IIA topoisomerases.
Related JoVE Video
Purification, crystallization and preliminary X-ray crystallographic studies of the Mycobacterium tuberculosis DNA gyrase ATPase domain.
Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
PUBLISHED: 04-09-2013
Show Abstract
Hide Abstract
Mycobacterium tuberculosis DNA gyrase, a nanomachine involved in the regulation of DNA topology, is the only type II topoisomerase present in this organism and hence is the sole target of fluoroquinolones in the treatment of tuberculosis. The ATPase domain provides the energy required for catalysis by ATP hydrolysis. Two constructs corresponding to this 43 kDa domain, Mtb-GyrB47(C1) and Mtb-GyrB47(C2), have been overproduced, purified and crystallized. Diffraction data were collected from three crystal forms. The crystals belonged to space groups P1 and P21 and diffracted to resolutions of 2.9 and 3.3 Å, respectively.
Related JoVE Video
DNA gyrase inhibition assays are necessary to demonstrate fluoroquinolone resistance secondary to gyrB mutations in Mycobacterium tuberculosis.
Antimicrob. Agents Chemother.
PUBLISHED: 07-18-2011
Show Abstract
Hide Abstract
The main mechanism of fluoroquinolone (FQ) resistance in Mycobacterium tuberculosis is mutation in DNA gyrase (GyrA(2)GyrB(2)), especially in gyrA. However, the discovery of unknown mutations in gyrB whose implication in FQ resistance is unclear has become more frequent. We investigated the impact on FQ susceptibility of eight gyrB mutations in M. tuberculosis clinical strains, three of which were previously identified in an FQ-resistant strain. We measured FQ MICs and also DNA gyrase inhibition by FQs in order to clarify the role of these mutations in FQ resistance. Wild-type GyrA, wild-type GyrB, and mutant GyrB subunits produced from engineered gyrB alleles by mutagenesis were overexpressed in Escherichia coli, purified to homogeneity, and used to reconstitute highly active gyrase complexes. MICs and DNA gyrase inhibition were determined for moxifloxacin, gatifloxacin, ofloxacin, levofloxacin, and enoxacin. We demonstrated that the eight substitutions in GyrB (D473N, P478A, R485H, S486F, A506G, A547V, G551R, and G559A), recently identified in FQ-resistant clinical strains or encountered in M. tuberculosis strains isolated in France, are not implicated in FQ resistance. These results underline that, as opposed to phenotypic FQ susceptibility testing, the DNA gyrase inhibition assay is the only way to prove the role of a DNA gyrase mutation in FQ resistance. Therefore, the use of FQ in the treatment of tuberculosis (TB) patients should not be ruled out only on the basis of the presence of mutations in gyrB.
Related JoVE Video
Conformational transition of DNA bound to Hfq probed by infrared spectroscopy.
Phys Chem Chem Phys
PUBLISHED: 11-16-2010
Show Abstract
Hide Abstract
Hfq is a bacterial protein involved in RNA metabolism. Besides this, Hfqs role in DNA restructuring has also been suggested. Since this mechanism remains unclear, we examined the DNA conformation upon Hfq binding by combining vibrational spectroscopy and neutron scattering. Our analysis reveals that Hfq, which preferentially interacts with deoxyadenosine rich sequences, induces partial opening of dA-dT sequences accompanied by sugar repuckering of the dA strand and hence results in a heteronomous A/B duplex. Sugar repuckering is probably correlated with a global dehydration of the complex. By taking into account Hfqs preferential binding to A-tracts, which are commonly found in promoters, potential biological implications of Hfq binding to DNA are discussed.
Related JoVE Video
Crl binds to domain 2 of ?(S) and confers a competitive advantage on a natural rpoS mutant of Salmonella enterica serovar Typhi.
J. Bacteriol.
PUBLISHED: 10-08-2010
Show Abstract
Hide Abstract
The RpoS sigma factor (?(S)) is the master regulator of the bacterial response to a variety of stresses. Mutants in rpoS arise in bacterial populations in the absence of stress, probably as a consequence of a subtle balance between self-preservation and nutritional competence. We characterized here one natural rpoS mutant of Salmonella enterica serovar Typhi (Ty19). We show that the rpoS allele of Ty19 (rpoS(Ty19)) led to the synthesis of a ?(S)(Ty19) protein carrying a single glycine-to-valine substitution at position 282 in ?(S) domain 4, which was much more dependent than the wild-type ?(S) protein on activation by Crl, a chaperone-like protein that increases the affinity of ?(S) for the RNA polymerase core enzyme (E). We used the bacterial adenylate cyclase two-hybrid system to demonstrate that Crl bound to residues 72 to 167 of ?(S) domain 2 and that G282V substitution did not directly affect Crl binding. However, this substitution drastically reduced the ability of ?(S)(Ty19) to bind E in a surface plasmon resonance assay, a defect partially rescued by Crl. The modeled structure of the E?(S) holoenzyme suggested that substitution G282V could directly disrupt a favorable interaction between ?(S) and E. The rpoS(Ty19) allele conferred a competitive fitness when the bacterial population was wild type for crl but was outcompeted in ?crl populations. Thus, these results indicate that the competitive advantage of the rpoS(Ty19) mutant is dependent on Crl and suggest that crl plays a role in the appearance of rpoS mutants in bacterial populations.
Related JoVE Video
Structural insights into the quinolone resistance mechanism of Mycobacterium tuberculosis DNA gyrase.
PLoS ONE
PUBLISHED: 04-22-2010
Show Abstract
Hide Abstract
Mycobacterium tuberculosis DNA gyrase, an indispensable nanomachine involved in the regulation of DNA topology, is the only type II topoisomerase present in this organism and is hence the sole target for quinolone action, a crucial drug active against multidrug-resistant tuberculosis. To understand at an atomic level the quinolone resistance mechanism, which emerges in extensively drug resistant tuberculosis, we performed combined functional, biophysical and structural studies of the two individual domains constituting the catalytic DNA gyrase reaction core, namely the Toprim and the breakage-reunion domains. This allowed us to produce a model of the catalytic reaction core in complex with DNA and a quinolone molecule, identifying original mechanistic properties of quinolone binding and clarifying the relationships between amino acid mutations and resistance phenotype of M. tuberculosis DNA gyrase. These results are compatible with our previous studies on quinolone resistance. Interestingly, the structure of the entire breakage-reunion domain revealed a new interaction, in which the Quinolone-Binding Pocket (QBP) is blocked by the N-terminal helix of a symmetry-related molecule. This interaction provides useful starting points for designing peptide based inhibitors that target DNA gyrase to prevent its binding to DNA.
Related JoVE Video
Purification, crystallization and preliminary X-ray diffraction experiments on the breakage-reunion domain of the DNA gyrase from Mycobacterium tuberculosis.
Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
PUBLISHED: 08-31-2009
Show Abstract
Hide Abstract
Mycobacterium tuberculosis DNA gyrase, a nanomachine that is involved in the regulation of DNA topology, is the only type II topoisomerase present in this organism and hence is the sole target for fluoroquinolone action. The breakage-reunion domain of the A subunit plays an essential role in DNA binding during the catalytic cycle. Two constructs of 53 and 57 kDa (termed GA53BK and GA57BK) corresponding to this domain have been overproduced, purified and crystallized. Diffraction data were collected from four crystal forms. The resolution limits ranged from 4.6 to 2.7 angstrom depending on the crystal form. The best diffracting crystals belonged to space group C2, with a biological dimer in the asymmetric unit. This is the first report of the crystallization and preliminary X-ray diffraction analysis of the breakage-reunion domain of DNA gyrase from a species containing one unique type II topoisomerase.
Related JoVE Video
Structure of the archaeal pab87 peptidase reveals a novel self-compartmentalizing protease family.
PLoS ONE
PUBLISHED: 01-03-2009
Show Abstract
Hide Abstract
Self-compartmentalizing proteases orchestrate protein turnover through an original architecture characterized by a central catalytic chamber. Here we report the first structure of an archaeal member of a new self-compartmentalizing protease family forming a cubic-shaped octamer with D(4) symmetry and referred to as CubicO. We solved the structure of the Pyrococcus abyssi Pab87 protein at 2.2 A resolution using the anomalous signal of the high-phasing-power lanthanide derivative Lu-HPDO3A. A 20 A wide channel runs through this supramolecular assembly of 0.4 MDa, giving access to a 60 A wide central chamber holding the eight active sites. Surprisingly, activity assays revealed that Pab87 degrades specifically d-amino acid containing peptides, which have never been observed in archaea. Genomic context of the Pab87 gene showed that it is surrounded by genes involved in the amino acid/peptide transport or metabolism. We propose that CubicO proteases are involved in the processing of d-peptides from environmental origins.
Related JoVE Video
Purification, crystallization and preliminary X-ray crystallographic studies of the Mycobacterium tuberculosis DNA gyrase CTD.
Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
Show Abstract
Hide Abstract
Mycobacterium tuberculosis DNA gyrase, a nanomachine involved in regulation of DNA topology, is the only type II topoisomerase present in this organism and hence is the sole target of fluoroquinolone in the treatment of tuberculosis. The C-terminal domain (CTD) of the DNA gyrase A subunit possesses a unique feature, the ability to wrap DNA in a chiral manner, that plays an essential role during the catalytic cycle. A construct of 36 kDa corresponding to this domain has been overproduced, purified and crystallized. Diffraction data were collected to 1.55 Å resolution. Cleavage of the N-terminal His tag was crucial for obtaining crystals. The crystals belonged to space group P2(1)2(1)2(1), with one molecule in the asymmetric unit and a low solvent content (33%). This is the first report of the crystallization and preliminary X-ray diffraction studies of a DNA gyrase CTD from a species that contains one unique type II topoisomerase.
Related JoVE Video
Extending the definition of the GyrB quinolone resistance-determining region in Mycobacterium tuberculosis DNA gyrase for assessing fluoroquinolone resistance in M. tuberculosis.
Antimicrob. Agents Chemother.
Show Abstract
Hide Abstract
Fluoroquinolone (FQ) resistance is emerging in Mycobacterium tuberculosis. The main mechanism of FQ resistance is amino acid substitution within the quinolone resistance-determining region (QRDR) of the GyrA subunit of DNA gyrase, the sole FQ target in M. tuberculosis. However, substitutions in GyrB whose implication in FQ resistance is unknown are increasingly being reported. The present study clarified the role of four GyrB substitutions identified in M. tuberculosis clinical strains, two located in the QRDR (D500A and N538T) and two outside the QRDR (T539P and E540V), in FQ resistance. We measured FQ MICs and also DNA gyrase inhibition by FQs in order to unequivocally clarify the role of these mutations in FQ resistance. Wild-type GyrA, wild-type GyrB, and mutant GyrB subunits produced from engineered gyrB alleles by mutagenesis were overexpressed in Escherichia coli, purified to homogeneity, and used to reconstitute highly active gyrase complexes. MICs and DNA gyrase inhibition were determined for moxifloxacin, gatifloxacin, ofloxacin, levofloxacin, and enoxacin. All these substitutions are clearly implicated in FQ resistance, underlining the presence of a hot spot region housing most of the GyrB substitutions implicated in FQ resistance (residues NTE, 538 to 540). These findings help us to refine the definition of GyrB QRDR, which is extended to positions 500 to 540.
Related JoVE Video
A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system.
J. Antimicrob. Chemother.
Show Abstract
Hide Abstract
Fluoroquinolone resistance in Mycobacterium tuberculosis has become increasingly important. A review of mutations in DNA gyrase, the fluoroquinolone target, is needed to improve the molecular detection of resistance. We performed a systematic review of studies reporting mutations in DNA gyrase genes in clinical M. tuberculosis isolates. From 42 studies that met inclusion criteria, 1220 fluoroquinolone-resistant M. tuberculosis isolates underwent sequencing of the quinolone resistance-determining region (QRDR) of gyrA; 780 (64%) had mutations. The QRDR of gyrB was sequenced in 534 resistant isolates; 17 (3%) had mutations. Mutations at gyrA codons 90, 91 or 94 were present in 654/1220 (54%) resistant isolates. Four different GyrB numbering systems were reported, resulting in mutation location discrepancies. We propose a consensus numbering system. Most fluoroquinolone-resistant M. tuberculosis isolates had mutations in DNA gyrase, but a substantial proportion did not. The proposed consensus numbering system can improve molecular detection of resistance and identification of novel mutations.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.