JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Morphology engineering of high performance binary oxide electrodes.
Phys Chem Chem Phys
PUBLISHED: 11-20-2014
Show Abstract
Hide Abstract
Advances in materials have preceded almost every major technological leap since the beginning of civilization. On the nanoscale and microscale, mastery over the morphology, size, and structure of a material enables control of its properties and enhancement of its usefulness for a given application, such as energy storage. In this review paper, our aim is to present a review of morphology engineering of high performance oxide electrode materials for electrochemical energy storage. We begin with the chemical bonding theory of single crystal growth to direct the growth of morphology-controllable materials. We then focus on the growth of various morphologies of binary oxides and their electrochemical performances for lithium ion batteries and supercapacitors. The morphology-performance relationships are elaborated by selecting examples in which there is already reasonable understanding for this relationship. Based on these comprehensive analyses, we proposed colloidal supercapacitor systems beyond morphology control on the basis of system- and ion-level design. We conclude this article with personal perspectives on the directions toward which future research in this field might take.
Related JoVE Video
detectIR: A Novel Program for Detecting Perfect and Imperfect Inverted Repeats Using Complex Numbers and Vector Calculation.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Inverted repeats are present in abundance in both prokaryotic and eukaryotic genomes and can form DNA secondary structures - hairpins and cruciforms that are involved in many important biological processes. Bioinformatics tools for efficient and accurate detection of inverted repeats are desirable, because existing tools are often less accurate and time consuming, sometimes incapable of dealing with genome-scale input data. Here, we present a MATLAB-based program called detectIR for the perfect and imperfect inverted repeat detection that utilizes complex numbers and vector calculation and allows genome-scale data inputs. A novel algorithm is adopted in detectIR to convert the conventional sequence string comparison in inverted repeat detection into vector calculation of complex numbers, allowing non-complementary pairs (mismatches) in the pairing stem and a non-palindromic spacer (loop or gaps) in the middle of inverted repeats. Compared with existing popular tools, our program performs with significantly higher accuracy and efficiency. Using genome sequence data from HIV-1, Arabidopsis thaliana, Homo sapiens and Zea mays for comparison, detectIR can find lots of inverted repeats missed by existing tools whose outputs often contain many invalid cases. detectIR is open source and its source code is freely available at: https://sourceforge.net/projects/detectir.
Related JoVE Video
Size-dependent oxygen storage ability of nano-sized ceria.
Phys Chem Chem Phys
PUBLISHED: 07-25-2013
Show Abstract
Hide Abstract
We thermodynamically studied the size-dependent oxygen storage ability of nano-sized ceria by tracing the surface Ce/O ratio of octahedral particles with different diameters, from the viewpoint of lattice Ce and O in a CeO2 crystallographic structure. The high surface Ce/O ratio with small scale particle size has more excess surface Ce(4+) ions, which allows ceria to have an increasing oxygen storage ability in a crystalline lattice. For the perfect octahedron growth shape of ceria, the nonstoichiometric surfaces can produce excess Ce(4+) ions, Ce(4+) ions can be stabilized by bonding with lattice oxygen, leading to an enhanced oxygen storage ability of ceria. With the increasing particle size, the surface Ce/O ratio approaches to 0.5 owing to the decreased contributions of atoms located at the edges and corners. When the octahedron diameter D = 0.55 nm, the surface Ce/O ratio can reach 0.75. When D = 7.58 nm, the surface Ce/O ratio decreases down to 0.51. If D? 14.61 nm, the surface Ce/O ratios are equal to 0.5. The present study deepens the insight of the size-dependent oxygen storage ability of nano-sized ceria, focusing on the size-dependent excess Ce(4+) on nonstoichiometric surfaces of ceria in thermodynamics.
Related JoVE Video
Recombinatorial biases and convergent recombination determine interindividual TCR? sharing in murine thymocytes.
J. Immunol.
Show Abstract
Hide Abstract
Overlap of TCR repertoires among individuals provides the molecular basis for public T cell responses. By deep-sequencing the TCR? repertoires of CD4+CD8+ thymocytes from three individual mice, we observed that a substantial degree of TCR? overlap, comprising ?10-15% of all unique amino acid sequences and ?5-10% of all unique nucleotide sequences across any two individuals, is already present at this early stage of T cell development. The majority of TCR? sharing between individual thymocyte repertoires could be attributed to the process of convergent recombination, with additional contributions likely arising from recombinatorial biases; the role of selection during intrathymic development was negligible. These results indicate that the process of TCR gene recombination is the major determinant of clonotype sharing between individuals.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.