JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Insecticide resistance in Anopheles arabiensis in Sudan: temporal trends and underlying mechanisms.
Parasit Vectors
PUBLISHED: 04-08-2014
Show Abstract
Hide Abstract
Malaria vector control in Sudan relies mainly on indoor residual spraying (IRS) and the use of long lasting insecticide treated bed nets (LLINs). Monitoring insecticide resistance in the main Sudanese malaria vector, Anopheles arabiensis, is essential for planning and implementing an effective vector control program in this country.
Related JoVE Video
Contemporary gene flow between wild An. gambiae s.s. and An. arabiensis.
Parasit Vectors
PUBLISHED: 03-31-2014
Show Abstract
Hide Abstract
In areas where the morphologically indistinguishable malaria mosquitoes Anopheles gambiae Giles and An. arabiensis Patton are sympatric, hybrids are detected occasionally via species-diagnostic molecular assays. An. gambiae and An. arabiensis exhibit both pre- and post-reproductive mating barriers, with swarms largely species-specific and male F1 (first-generation) hybrids sterile. Consequently advanced-stage hybrids (back-crosses to parental species), which would represent a route for potentially-adaptive introgression, are expected to be very rare in natural populations. Yet the use of one or two physically linked single-locus diagnostic assays renders them indistinguishable from F1 hybrids and levels of interspecific gene flow are unknown.
Related JoVE Video
Metabolic and target-site mechanisms combine to confer strong DDT resistance in Anopheles gambiae.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The development of resistance to insecticides has become a classic exemplar of evolution occurring within human time scales. In this study we demonstrate how resistance to DDT in the major African malaria vector Anopheles gambiae is a result of both target-site resistance mechanisms that have introgressed between incipient species (the M- and S-molecular forms) and allelic variants in a DDT-detoxifying enzyme. Sequencing of the detoxification enzyme, Gste2, from DDT resistant and susceptible strains of An. gambiae, revealed a non-synonymous polymorphism (I114T), proximal to the DDT binding domain, which segregated with strain phenotype. Recombinant protein expression and DDT metabolism analysis revealed that the proteins from the susceptible strain lost activity at higher DDT concentrations, characteristic of substrate inhibition. The effect of I114T on GSTE2 protein structure was explored through X-ray crystallography. The amino acid exchange in the DDT-resistant strain introduced a hydroxyl group nearby the hydrophobic DDT-binding region. The exchange does not result in structural alterations but is predicted to facilitate local dynamics and enzyme activity. Expression of both wild-type and 114T alleles the allele in Drosophila conferred an increase in DDT tolerance. The 114T mutation was significantly associated with DDT resistance in wild caught M-form populations and acts in concert with target-site mutations in the voltage gated sodium channel (Vgsc-1575Y and Vgsc-1014F) to confer extreme levels of DDT resistance in wild caught An. gambiae.
Related JoVE Video
Gene amplification and microsatellite polymorphism underlie a recent insect host shift.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 11-11-2013
Show Abstract
Hide Abstract
Host plant shifts of herbivorous insects may be a first step toward sympatric speciation and can create new pests of agriculturally important crops; however, the molecular mechanisms that mediate this process are poorly understood. Certain races of the polyphagous aphid Myzus persicae have recently adapted to feed on tobacco (Myzus persicae nicotianae) and show a reduced sensitivity to the plant alkaloid nicotine and cross-resistance to neonicotinoids a class of synthetic insecticides widely used for control. Here we show constitutive overexpression of a cytochrome P450 (CYP6CY3) allows tobacco-adapted races of M. persicae to efficiently detoxify nicotine and has preadapted them to resist neonicotinoid insecticides. CYP6CY3, is highly overexpressed in M. persicae nicotianae clones from three continents compared with M. persicae s.s. and expression level is significantly correlated with tolerance to nicotine. CYP6CY3 is highly efficient (compared with the primary human nicotine-metabolizing P450) at metabolizing nicotine and neonicotinoids to less toxic metabolites in vitro and generation of transgenic Drosophila expressing CYP6CY3 demonstrate that it confers resistance to both compounds in vivo. Overexpression of CYP6CY3 results from the expansion of a dinucleotide microsatellite in the promoter region and a recent gene amplification, with some aphid clones carrying up to 100 copies. We conclude that the mutations leading to overexpression of CYP6CY3 were a prerequisite for the host shift of M. persicae to tobacco and that gene amplification and microsatellite polymorphism are evolutionary drivers in insect host adaptation.
Related JoVE Video
Gene flow-dependent genomic divergence between Anopheles gambiae M and S forms.
Mol. Biol. Evol.
PUBLISHED: 08-11-2011
Show Abstract
Hide Abstract
Anopheles gambiae sensu stricto exists as two often-sympatric races termed the M and S molecular forms, characterized by fixed differences at an X-linked marker. Extreme divergence between M and S forms at pericentromeric "genomic islands" suggested that selection on variants therein could be driving interform divergence in the presence of ongoing gene flow, but recent work has detected much more widespread genomic differentiation. Whether such genomic islands are important in reproductive isolation or represent ancestral differentiation preserved by low recombination is currently unclear. A critical test of these competing hypotheses could be provided by comparing genomic divergence when rates of recent introgression vary. We genotyped 871 single nucleotide polymorphisms (SNPs) in A. gambiae sensu stricto from locations of M and S sympatry and allopatry, encompassing the full range of observed hybridization rates (0-25%). M and S forms were readily partitioned based on genomewide SNP variation in spite of evidence for ongoing introgression that qualitatively reflects hybridization rates. Yet both the level and the heterogeneity of genomic divergence varied markedly in line with levels of introgression. A few genomic regions of differentiation between M and S were common to each sampling location, the most pronounced being two centromere-proximal speciation islands identified previously but with at least one additional region outside of areas expected to exhibit reduced recombination. Our results demonstrate that extreme divergence at genomic islands does not simply represent segregating ancestral polymorphism in regions of low recombination and can be resilient to substantial gene flow. This highlights the potential for islands comprising a relatively small fraction of the genome to play an important role in early-stage speciation when reproductive isolation is limited.
Related JoVE Video
The emergence of insecticide resistance in central Mozambique and potential threat to the successful indoor residual spraying malaria control programme.
Malar. J.
PUBLISHED: 05-02-2011
Show Abstract
Hide Abstract
Malaria vector control by indoor residual spraying was reinitiated in 2006 with DDT in Zambézia province, Mozambique. In 2007, these efforts were strengthened by the Presidents Malaria Initiative. This manuscript reports on the monitoring and evaluation of this programme as carried out by the Malaria Decision Support Project.
Related JoVE Video
Comparative genomics of the anopheline glutathione S-transferase epsilon cluster.
PLoS ONE
PUBLISHED: 04-06-2011
Show Abstract
Hide Abstract
Enzymes of the glutathione S-transferase (GST) family play critical roles in detoxification of xenobiotics across many taxa. While GSTs are ubiquitous both in animals and plants, the GST epsilon class (GSTE) is insect-specific and has been associated with resistance to chemical insecticides. While both Aedes aegypti and Anopheles gambiae GSTE clusters consist of eight members, only four putative orthologs are identifiable between the species, suggesting independent expansions of the class in each lineage. We used a primer walking approach, sequencing almost the entire cluster from three Anopheles species (An. stephensi, An. funestus (both Cellia subgenus) and An. plumbeus (Anopheles subgenus)) and compared the sequences to putative orthologs in An. gambiae (Cellia) in an attempt to trace the evolution of the cluster within the subfamily Anophelinae. Furthermore, we measured transcript levels from the identified GSTE loci by real time reverse transcription PCR to determine if all genes were similarly transcribed at different life stages. Among the species investigated, gene order and orientation were similar with three exceptions: (i) GSTE1 was absent in An. plumbeus; (ii) GSTE2 is duplicated in An. plumbeus and (iii) an additional transcriptionally active pseudogene (?AsGSTE2) was found in An. stephensi. Further statistical analysis and protein modelling gave evidence for positive selection on codons of the catalytic site in GSTE5 albeit its origin seems to predate the introduction of chemical insecticides. Gene expression profiles revealed differences in expression pattern among genes at different life stages. With the exception of GSTE1, ?AsGSTE2 and GSTE2b, all Anopheles species studied share orthologs and hence we assume that GSTE expansion generally predates radiation into subgenera, though the presence of GSTE1 may also suggest a recent duplication event in the Old World Cellia subgenus, instead of a secondary loss. The modifications of the catalytic site within GSTE5 may represent adaptations to new habitats.
Related JoVE Video
Insecticide resistance in Aedes aegypti populations from Ceará, Brazil.
Parasit Vectors
PUBLISHED: 01-12-2011
Show Abstract
Hide Abstract
Organophosphates and pyrethroids are used widely in Brazil to control Aedes aegypti, the main vector of dengue viruses, under the auspices of the National Programme for Dengue Control. Resistance to these insecticides is widespread throughout Brazil. In Ceará the vector is present in 98% of districts and resistance to temephos has been reported previously. Here we measure resistance to temephos and the pyrethroid cypermethrin in three populations from Ceará and use biochemical and molecular assays to characterise resistance mechanisms.
Related JoVE Video
Association mapping of insecticide resistance in wild Anopheles gambiae populations: major variants identified in a low-linkage disequilbrium genome.
PLoS ONE
PUBLISHED: 07-15-2010
Show Abstract
Hide Abstract
Association studies are a promising way to uncover the genetic basis of complex traits in wild populations. Data on population stratification, linkage disequilibrium and distribution of variant effect-sizes for different trait-types are required to predict study success but are lacking for most taxa. We quantified and investigated the impacts of these key variables in a large-scale association study of a strongly selected trait of medical importance: pyrethroid resistance in the African malaria vector Anopheles gambiae.
Related JoVE Video
High, clustered, nucleotide diversity in the genome of Anopheles gambiae revealed through pooled-template sequencing: implications for high-throughput genotyping protocols.
BMC Genomics
PUBLISHED: 07-16-2009
Show Abstract
Hide Abstract
Association mapping approaches are dependent upon discovery and validation of single nucleotide polymorphisms (SNPs). To further association studies in Anopheles gambiae we conducted a major resequencing programme, primarily targeting regions within or close to candidate genes for insecticide resistance.
Related JoVE Video
Does kdr genotype predict insecticide-resistance phenotype in mosquitoes?
Trends Parasitol.
PUBLISHED: 02-06-2009
Show Abstract
Hide Abstract
Several groups are developing and applying DNA-based technologies to monitor insecticide-based disease control programmes. However, several recent papers have concluded that the knockdown resistance (kdr) genotype-phenotype correlation that is observed in a wide variety of taxa might not hold in all mosquitoes. In this article, we review the evidence to support this putative breakdown and argue that the conclusion follows from unreliable data or the unparsimonious interpretation of data. We assert that the link between kdr genotype and DDT- and pyrethroid-susceptibility phenotype is clear. However, we emphasize that kdr genotype might explain only a portion of heritable variation in resistance and that diagnostic assays to test the importance of other resistance mechanisms in field populations are required.
Related JoVE Video
A cis-regulatory sequence driving metabolic insecticide resistance in mosquitoes: functional characterisation and signatures of selection.
Insect Biochem. Mol. Biol.
Show Abstract
Hide Abstract
Although cytochrome P450 (CYP450) enzymes are frequently up-regulated in mosquitoes resistant to insecticides, no regulatory motifs driving these expression differences with relevance to wild populations have been identified. Transposable elements (TEs) are often enriched upstream of those CYP450s involved in insecticide resistance, leading to the assumption that they contribute regulatory motifs that directly underlie the resistance phenotype. A partial CuRE1 (Culex Repetitive Element 1) transposable element is found directly upstream of CYP9M10, a cytochrome P450 implicated previously in larval resistance to permethrin in the ISOP450 strain of Culex quinquefasciatus, but is absent from the equivalent genomic region of a susceptible strain. Via expression of CYP9M10 in Escherichia coli we have now demonstrated time- and NADPH-dependant permethrin metabolism, prerequisites for confirmation of a role in metabolic resistance, and through qPCR shown that CYP9M10 is >20-fold over-expressed in ISOP450 compared to a susceptible strain. In a fluorescent reporter assay the region upstream of CYP9M10 from ISOP450 drove 10× expression compared to the equivalent region (lacking CuRE1) from the susceptible strain. Close correspondence with the gene expression fold-change implicates the upstream region including CuRE1 as a cis-regulatory element involved in resistance. Only a single CuRE1 bearing allele, identical to the CuRE1 bearing allele in the resistant strain, is found throughout Sub-Saharan Africa, in contrast to the diversity encountered in non-CuRE1 alleles. This suggests a single origin and subsequent spread due to selective advantage. CuRE1 is detectable using a simple diagnostic. When applied to C. quinquefasciatus larvae from Ghana we have demonstrated a significant association with permethrin resistance in multiple field sites (mean Odds Ratio = 3.86) suggesting this marker has relevance to natural populations of vector mosquitoes. However, when CuRE1 was excised from the allele used in the reporter assay through fusion PCR, expression was unaffected, indicating that the TE has no direct role in resistance and hence that CuRE1 is acting only as a marker of an as yet unidentified regulatory motif in the association analysis. This suggests that a re-evaluation of the assumption that TEs contribute regulatory motifs involved in gene expression may be necessary.
Related JoVE Video
Footprints of positive selection associated with a mutation (N1575Y) in the voltage-gated sodium channel of Anopheles gambiae.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
Insecticide resistance is an ideal model to study the emergence and spread of adaptative variants. In the African malaria mosquito, Anopheles gambiae, this is complemented by a strong public health rationale. In this insect, resistance to pyrethroid and DDT insecticides is strongly associated with the mutations L1014F and L1014S within the para voltage-gated sodium channel (VGSC). Across much of West Africa, 1014F frequency approaches fixation. Here, we document the emergence of a mutation, N1575Y, within the linker between domains III-IV of the VGSC. In data extending over 40 kbp of the VGSC 1575Y occurs on only a single long-range haplotype, also bearing 1014F. The 1014F-1575Y haplotype was found in both M and S molecular forms of An. gambiae in West/Central African sample sites separated by up to 2,000 km. In Burkina Faso M form, 1575Y allele frequency rose significantly from 0.053 to 0.172 between 2008 and 2010. Extended haplotype homozygosity analysis of the wild-type 1575N allele showed rapid decay of linkage disequilibrium (LD), in sharp contrast to the extended LD exhibited by 1575Y. A haplotype with long-range LD and high/increasing frequency is a classical sign of strong positive selection acting on a recent mutant. 1575Y occurs ubiquitously on a 1014F haplotypic background, suggesting that the N1575Y mutation compensates for deleterious fitness effects of 1014F and/or confers additional resistance to insecticides. Haplotypic tests of association suggest the latter: The 1014F-1575Y haplotype confers a significant additive benefit above 1014F-1575N for survival to DDT (M form P = 0.03) and permethrin (S form P = 0.003).
Related JoVE Video
Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
In the last decade there have been marked reductions in malaria incidence in sub-Saharan Africa. Sustaining these reductions will rely upon insecticides to control the mosquito malaria vectors. We report that in the primary African malaria vector, Anopheles gambiae sensu stricto, a single enzyme, CYP6M2, confers resistance to two classes of insecticide. This is unique evidence in a disease vector of cross-resistance associated with a single metabolic gene that simultaneously reduces the efficacy of two of the four classes of insecticide routinely used for malaria control. The gene-expression profile of a highly DDT-resistant population of A. gambiae s.s. from Ghana was characterized using a unique whole-genome microarray. A number of genes were significantly overexpressed compared with two susceptible West African colonies, including genes from metabolic families previously linked to insecticide resistance. One of the most significantly overexpressed probe groups (false-discovery rate-adjusted P < 0.0001) belonged to the cytochrome P450 gene CYP6M2. This gene is associated with pyrethroid resistance in wild A. gambiae s.s. populations) and can metabolize both type I and type II pyrethroids in recombinant protein assays. Using in vitro assays we show that recombinant CYP6M2 is also capable of metabolizing the organochlorine insecticide DDT in the presence of solubilizing factor sodium cholate.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.