JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Mutations in or near the transmembrane domain alter PMEL amyloid formation from functional to pathogenic.
PLoS Genet.
PUBLISHED: 04-25-2011
Show Abstract
Hide Abstract
PMEL is a pigment cell-specific protein that forms physiological amyloid fibrils upon which melanins ultimately deposit in the lumen of the pigment organelle, the melanosome. Whereas hypomorphic PMEL mutations in several species result in a mild pigment dilution that is inherited in a recessive manner, PMEL alleles found in the Dominant white (DW) chicken and Silver horse (HoSi)--which bear mutations that alter the PMEL transmembrane domain (TMD) and that are thus outside the amyloid core--are associated with a striking loss of pigmentation that is inherited in a dominant fashion. Here we show that the DW and HoSi mutations alter PMEL TMD oligomerization and/or association with membranes, with consequent formation of aberrantly packed fibrils. The aberrant fibrils are associated with a loss of pigmentation in cultured melanocytes, suggesting that they inhibit melanin production and/or melanosome integrity. A secondary mutation in the Smoky chicken, which reverts the dominant DW phenotype, prevents the accumulation of PMEL in fibrillogenic compartments and thus averts DW-associated pigment loss; a secondary mutation found in the Dun chicken likely dampens a HoSi-like dominant mutation in a similar manner. We propose that the DW and HoSi mutations alter the normally benign amyloid to a pathogenic form that antagonizes melanosome function, and that the secondary mutations found in the Smoky and Dun chickens revert or dampen pathogenicity by functioning as null alleles, thus preventing the formation of aberrant fibrils. We speculate that PMEL mutations can model the conversion between physiological and pathological amyloid.
Related JoVE Video
Myosin 1b promotes the formation of post-Golgi carriers by regulating actin assembly and membrane remodelling at the trans-Golgi network.
Nat. Cell Biol.
PUBLISHED: 04-18-2011
Show Abstract
Hide Abstract
The function of organelles is intimately associated with rapid changes in membrane shape. By exerting force on membranes, the cytoskeleton and its associated motors have an important role in membrane remodelling. Actin and myosin 1 have been implicated in the invagination of the plasma membrane during endocytosis. However, whether myosin 1 and actin contribute to the membrane deformation that gives rise to the formation of post-Golgi carriers is unknown. Here we report that myosin 1b regulates the actin-dependent post-Golgi traffic of cargo, generates force that controls the assembly of F-actin foci and, together with the actin cytoskeleton, promotes the formation of tubules at the TGN. Our results provide evidence that actin and myosin 1 regulate organelle shape and uncover an important function for myosin 1b in the initiation of post-Golgi carrier formation by regulating actin assembly and remodelling TGN membranes.
Related JoVE Video
Inactivation of Pmel alters melanosome shape but has only a subtle effect on visible pigmentation.
PLoS Genet.
PUBLISHED: 02-08-2011
Show Abstract
Hide Abstract
PMEL is an amyloidogenic protein that appears to be exclusively expressed in pigment cells and forms intralumenal fibrils within early stage melanosomes upon which eumelanins deposit in later stages. PMEL is well conserved among vertebrates, and allelic variants in several species are associated with reduced levels of eumelanin in epidermal tissues. However, in most of these cases it is not clear whether the allelic variants reflect gain-of-function or loss-of-function, and no complete PMEL loss-of-function has been reported in a mammal. Here, we have created a mouse line in which the Pmel gene has been inactivated (Pmel?/?). These mice are fully viable, fertile, and display no obvious developmental defects. Melanosomes within Pmel?/? melanocytes are spherical in contrast to the oblong shape present in wild-type animals. This feature was documented in primary cultures of skin-derived melanocytes as well as in retinal pigment epithelium cells and in uveal melanocytes. Inactivation of Pmel has only a mild effect on the coat color phenotype in four different genetic backgrounds, with the clearest effect in mice also carrying the brown/Tyrp1 mutation. This phenotype, which is similar to that observed with the spontaneous silver mutation in mice, strongly suggests that other previously described alleles in vertebrates with more striking effects on pigmentation are dominant-negative mutations. Despite a mild effect on visible pigmentation, inactivation of Pmel led to a substantial reduction in eumelanin content in hair, which demonstrates that PMEL has a critical role for maintaining efficient epidermal pigmentation.
Related JoVE Video
Inhibition of retrograde transport protects mice from lethal ricin challenge.
Cell
PUBLISHED: 01-25-2010
Show Abstract
Hide Abstract
Bacterial Shiga-like toxins are virulence factors that constitute a significant public health threat worldwide, and the plant toxin ricin is a potential bioterror weapon. To gain access to their cytosolic target, ribosomal RNA, these toxins follow the retrograde transport route from the plasma membrane to the endoplasmic reticulum, via endosomes and the Golgi apparatus. Here, we used high-throughput screening to identify small molecule inhibitors that protect cells from ricin and Shiga-like toxins. We identified two compounds that selectively block retrograde toxin trafficking at the early endosome-TGN interface, without affecting compartment morphology, endogenous retrograde cargos, or other trafficking steps, demonstrating an unexpected degree of selectivity and lack of toxicity. In mice, one compound clearly protects from lethal nasal exposure to ricin. Our work discovers the first small molecule that shows efficacy against ricin in animal experiments and identifies the retrograde route as a potential therapeutic target.
Related JoVE Video
AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis.
J. Cell Biol.
PUBLISHED: 10-21-2009
Show Abstract
Hide Abstract
Specialized cell types exploit endosomal trafficking to deliver protein cargoes to cell type-specific lysosome-related organelles (LROs), but how endosomes are specified for this function is not known. In this study, we show that the clathrin adaptor AP-1 and the kinesin motor KIF13A together create peripheral recycling endosomal subdomains in melanocytes required for cargo delivery to maturing melanosomes. In cells depleted of AP-1 or KIF13A, a subpopulation of recycling endosomes redistributes to pericentriolar clusters, resulting in sequestration of melanosomal enzymes like Tyrp1 in vacuolar endosomes and consequent inhibition of melanin synthesis and melanosome maturation. Immunocytochemistry, live cell imaging, and electron tomography reveal AP-1- and KIF13A-dependent dynamic close appositions and continuities between peripheral endosomal tubules and melanosomes. Our results reveal that LRO protein sorting is coupled to cell type-specific positioning of endosomes that facilitate endosome-LRO contacts and are required for organelle maturation.
Related JoVE Video
Analysis of articulation between clathrin and retromer in retrograde sorting on early endosomes.
Traffic
PUBLISHED: 10-05-2009
Show Abstract
Hide Abstract
Clathrin and retromer have key functions for retrograde trafficking between early endosomes and the trans-Golgi network (TGN). Previous studies on Shiga toxin suggested that these two coat complexes operate in a sequential manner. Here, we show that the curvature recognition subunit component sorting nexin 1 (SNX1) of retromer interacts with receptor-mediated endocytosis-8 (RME-8) protein, and that RME-8 and SNX1 colocalize on early endosomes together with a model cargo of the retrograde route, the receptor-binding B-subunit of Shiga toxin (STxB). RME-8 has previously been found to bind to the clathrin uncoating adenosine triphosphatase (ATPase) Hsc70, and we now report that depletion of RME-8 or Hsc70 affects retrograde trafficking at the early endosomes-TGN interface of STxB and the cation-independent mannose 6-phosphate receptor, an endogenous retrograde cargo protein. We also provide evidence that retromer interacts with the clathrin-binding protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) not only via SNX1, as previously published (Chin Raynor MC, Wei X, Chen HQ, Li L. Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. J Biol Chem 2001;276:7069-7078), but also via the core complex component Vps35. Hrs codistributes at the ultrastructural level with STxB on early endosomes, and interfering with Hrs function using antibodies or mild overexpression inhibits retrograde transport. Our combined data suggest a model according to which the functions in retrograde sorting on early endosomes of SNX1/retromer and clathrin are articulated by RME-8, and possibly also by Hrs.
Related JoVE Video
ESCRT-I function is required for Tyrp1 transport from early endosomes to the melanosome limiting membrane.
Traffic
PUBLISHED: 06-09-2009
Show Abstract
Hide Abstract
Melanosomes are lysosome-related organelles that coexist with lysosomes within melanocytes. The pathways by which melanosomal proteins are diverted from endocytic organelles toward melanosomes are incompletely defined. In melanocytes from mouse models of Hermansky-Pudlak syndrome that lack BLOC-1, melanosomal proteins such as tyrosinase-related protein 1 (Tyrp1) accumulate in early endosomes. Whether this accumulation represents an anomalous pathway or an arrested normal intermediate in melanosome protein trafficking is not clear. Here, we show that early endosomes are requisite intermediates in the trafficking of Tyrp1 from the Golgi to late stage melanosomes in normal melanocytic cells. Kinetic analyses show that very little newly synthesized Tyrp1 traverses the cell surface and that internalized Tyrp1 is inefficiently sorted to melanosomes. Nevertheless, nearly all Tyrp1 traverse early endosomes since it becomes trapped within enlarged, modified endosomes upon overexpression of Hrs. Although Tyrp1 localization is not affected by Hrs depletion, depletion of the ESCRT-I component, Tsg101, or inhibition of ESCRT function by dominant-negative approaches results in a dramatic redistribution of Tyrp1 to aberrant endosomal membranes that are largely distinct from those harboring traditional ESCRT-dependent, ubiquitylated cargoes such as MART-1. The lysosomal protein content of some of these membranes and the lack of Tyrp1 recycling to the plasma membrane in Tsg101-depleted cells suggests that ESCRT-I functions downstream of BLOC-1. Our data delineate a novel pathway for Tyrp1 trafficking and illustrate a requirement for ESCRT-I function in controlling protein sorting from vacuolar endosomes to the limiting membrane of a lysosome-related organelle.
Related JoVE Video
Differential recognition of a dileucine-based sorting signal by AP-1 and AP-3 reveals a requirement for both BLOC-1 and AP-3 in delivery of OCA2 to melanosomes.
Mol. Biol. Cell
Show Abstract
Hide Abstract
Cell types that generate unique lysosome-related organelles (LROs), such as melanosomes in melanocytes, populate nascent LROs with cargoes that are diverted from endosomes. Cargo sorting toward melanosomes correlates with binding via cytoplasmically exposed sorting signals to either heterotetrameric adaptor AP-1 or AP-3. Some cargoes bind both adaptors, but the relative contribution of each adaptor to cargo recognition and their functional interactions with other effectors during transport to melanosomes are not clear. Here we exploit targeted mutagenesis of the acidic dileucine-based sorting signal in the pigment cell-specific protein OCA2 to dissect the relative roles of AP-1 and AP-3 in transport to melanosomes. We show that binding to AP-1 or AP-3 depends on the primary sequence of the signal and not its position within the cytoplasmic domain. Mutants that preferentially bound either AP-1 or AP-3 each trafficked toward melanosomes and functionally complemented OCA2 deficiency, but AP-3 binding was necessary for steady-state melanosome localization. Unlike tyrosinase, which also engages AP-3 for optimal melanosomal delivery, both AP-1- and AP-3-favoring OCA2 variants required BLOC-1 for melanosomal transport. These data provide evidence for distinct roles of AP-1 and AP-3 in OCA2 transport to melanosomes and indicate that BLOC-1 can cooperate with either adaptor during cargo sorting to LROs.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.