JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Structural basis and SAR for G007-LK, a lead stage 1,2,4-triazole based specific tankyrase 1/2 inhibitor.
J. Med. Chem.
PUBLISHED: 03-29-2013
Show Abstract
Hide Abstract
Tankyrases 1 and 2 (TNKS1/2) are promising pharmacological biotargets with possible applications for the development of novel anticancer therapeutics. A focused structure-activity relationship study was conducted based on the tankyrase inhibitor JW74 (1). Chemical analoging of 1 improved the 1,2,4-triazole based core and led to 4-{5-[(E)-2-{4-(2-chlorophenyl)-5-[5-(methylsulfonyl)pyridin-2-yl]-4H-1,2,4-triazol-3-yl}ethenyl]-1,3,4-oxadiazol-2-yl}benzonitrile (G007-LK), a potent, "rule of 5" compliant and a metabolically stable TNKS1/2 inhibitor. G007-LK (66) displayed high selectivity toward tankyrases 1 and 2 with biochemical IC50 values of 46 nM and 25 nM, respectively, and a cellular IC50 value of 50 nM combined with an excellent pharmacokinetic profile in mice. The PARP domain of TNKS2 was cocrystallized with 66, and the X-ray structure was determined at 2.8 Å resolution in the space group P3221. The structure revealed that 66 binds to unique structural features in the extended adenosine binding pocket which forms the structural basis for the compounds high target selectivity and specificity. Our study provides a significantly optimized compound for targeting TNKS1/2 in vitro and in vivo.
Related JoVE Video
A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth.
Cancer Res.
PUBLISHED: 03-28-2013
Show Abstract
Hide Abstract
Most colorectal cancers (CRC) are initiated by mutations of APC, leading to increased ?-catenin-mediated signaling. However, continued requirement of Wnt/?-catenin signaling for tumor progression in the context of acquired KRAS and other mutations is less well-established. To attenuate Wnt/?-catenin signaling in tumors, we have developed potent and specific small-molecule tankyrase inhibitors, G007-LK and G244-LM, that reduce Wnt/?-catenin signaling by preventing poly(ADP-ribosyl)ation-dependent AXIN degradation, thereby promoting ?-catenin destabilization. We show that novel tankyrase inhibitors completely block ligand-driven Wnt/?-catenin signaling in cell culture and display approximately 50% inhibition of APC mutation-driven signaling in most CRC cell lines. It was previously unknown whether the level of AXIN protein stabilization by tankyrase inhibition is sufficient to impact tumor growth in the absence of normal APC activity. Compound G007-LK displays favorable pharmacokinetic properties and inhibits in vivo tumor growth in a subset of APC-mutant CRC xenograft models. In the xenograft model most sensitive to tankyrase inhibitor, COLO-320DM, G007-LK inhibits cell-cycle progression, reduces colony formation, and induces differentiation, suggesting that ?-catenin-dependent maintenance of an undifferentiated state may be blocked by tankyrase inhibition. The full potential of the antitumor activity of G007-LK may be limited by intestinal toxicity associated with inhibition of Wnt/?-catenin signaling and cell proliferation in intestinal crypts. These results establish proof-of-concept antitumor efficacy for tankyrase inhibitors in APC-mutant CRC models and uncover potential diagnostic and safety concerns to be overcome as tankyrase inhibitors are advanced into the clinic.
Related JoVE Video
A novel synthetic smoothened antagonist transiently inhibits pancreatic adenocarcinoma xenografts in a mouse model.
PLoS ONE
PUBLISHED: 04-20-2011
Show Abstract
Hide Abstract
Hedgehog (Hh) signaling is over-activated in several solid tumors where it plays a central role in cell growth, stroma recruitment and tumor progression. In the Hh signaling pathway, the Smoothened (SMO) receptor comprises a primary drug target with experimental small molecule SMO antagonists currently being evaluated in clinical trials.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.