JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Detection of Macromolecules in Desert Cyanobacteria Mixed with a Lunar Mineral Analogue After Space Simulations.
Orig Life Evol Biosph
PUBLISHED: 01-30-2014
Show Abstract
Hide Abstract
In the context of future exposure missions in Low Earth Orbit and possibly on the Moon, two desert strains of the cyanobacterium Chroococcidiopsis, strains CCMEE 029 and 057, mixed or not with a lunar mineral analogue, were exposed to fractionated fluencies of UVC and polychromatic UV (200-400 nm) and to space vacuum. These experiments were carried out within the framework of the BIOMEX (BIOlogy and Mars EXperiment) project, which aims at broadening our knowledge of mineral-microorganism interaction and the stability/degradation of their macromolecules when exposed to space and simulated Martian conditions. The presence of mineral analogues provided a protective effect, preserving survivability and integrity of DNA and photosynthetic pigments, as revealed by testing colony-forming abilities, performing PCR-based assays and using confocal laser scanning microscopy. In particular, DNA and pigments were still detectable after 500 kJ/m(2) of polychromatic UV and space vacuum (10(-4) Pa), corresponding to conditions expected during one-year exposure in Low Earth Orbit on board the EXPOSE-R2 platform in the presence of 0.1 % Neutral Density (ND) filter. After exposure to high UV fluencies (800 MJ/m(2)) in the presence of minerals, however, altered fluorescence emission spectrum of the photosynthetic pigments were detected, whereas DNA was still amplified by PCR. The present paper considers the implications of such findings for the detection of biosignatures in extraterrestrial conditions and for putative future lunar missions.
Related JoVE Video
A novel staining protocol for multiparameter assessment of cell heterogeneity in Phormidium populations (cyanobacteria) employing fluorescent dyes.
PLoS ONE
PUBLISHED: 02-20-2013
Show Abstract
Hide Abstract
Bacterial populations display high heterogeneity in viability and physiological activity at the single-cell level, especially under stressful conditions. We demonstrate a novel staining protocol for multiparameter assessment of individual cells in physiologically heterogeneous populations of cyanobacteria. The protocol employs fluorescent probes, i.e., redox dye 5-cyano-2,3-ditolyl tetrazolium chloride, dead cell nucleic acid stain SYTOX Green, and DNA-specific fluorochrome 4,6-diamidino-2-phenylindole, combined with microscopy image analysis. Our method allows simultaneous estimates of cellular respiration activity, membrane and nucleoid integrity, and allows the detection of photosynthetic pigments fluorescence along with morphological observations. The staining protocol has been adjusted for, both, laboratory and natural populations of the genus Phormidium (Oscillatoriales), and tested on 4 field-collected samples and 12 laboratory strains of cyanobacteria. Based on the mentioned cellular functions we suggest classification of cells in cyanobacterial populations into four categories: (i) active and intact; (ii) injured but active; (iii) metabolically inactive but intact; (iv) inactive and injured, or dead.
Related JoVE Video
Biofilm and Planktonic Lifestyles Differently Support the Resistance of the Desert Cyanobacterium Chroococcidiopsis Under Space and Martian Simulations.
Orig Life Evol Biosph
PUBLISHED: 02-02-2013
Show Abstract
Hide Abstract
When Chroococcidiopsis sp. strain CCMEE 057 from the Sinai Desert and strain CCMEE 029 from the Negev Desert were exposed to space and Martian simulations in the dried status as biofilms or multilayered planktonic samples, the biofilms exhibited an enhanced rate of survival. Compared to strain CCMEE 029, biofilms of strain CCME 057 better tolerated UV polychromatic radiation (5?×?10(5) kJ/m(2) attenuated with a 0.1 % neutral density filter) combined with space vacuum or Martian atmosphere of 780 Pa. CCMEE 029, on the other hand, failed to survive UV polychromatic doses higher than 1.5?×?10(3) kJ/m(2). The induced damage to genomic DNA, plasma membranes and photosynthetic apparatus was quantified and visualized by means of PCR-based assays and CLSM imaging. Planktonic samples of both strains accumulated a higher amount of damage than did the biofilms after exposure to each simulation; CLSM imaging showed that photosynthetic pigment bleaching, DNA fragmentation and damaged plasma membranes occurred in the top 3-4 cell layers of both biofilms and of multilayered planktonic samples. Differences in the EPS composition were revealed by molecular probe staining as contributing to the enhanced endurance of biofilms compared to that of planktonic samples. Our results suggest that compared to strain CCMEE 029, biofilms of strain CCMEE 057 might better tolerate 1 years exposure in space during the next EXPOSE-R2 mission.
Related JoVE Video
Damage escape and repair in dried Chroococcidiopsis spp. from hot and cold deserts exposed to simulated space and martian conditions.
Astrobiology
PUBLISHED: 02-06-2011
Show Abstract
Hide Abstract
The cyanobacterium Chroococcidiopsis, overlain by 3?mm of Antarctic sandstone, was exposed as dried multilayers to simulated space and martian conditions. Ground-based experiments were conducted in the context of Lichens and Fungi Experiments (EXPOSE-E mission, European Space Agency), which were performed to evaluate, after 1.5 years on the International Space Station, the survival of cyanobacteria (Chroococcidiopsis), lichens, and fungi colonized on Antarctic rock. The survival potential and the role played by protection and repair mechanisms in the response of dried Chroococcidiopsis cells to ground-based experiments were both investigated. Different methods were employed, including evaluation of the colony-forming ability, single-cell analysis of subcellular integrities based on membrane integrity molecular and redox probes, evaluation of the photosynthetic pigment autofluorescence, and assessment of the genomic DNA integrity with a PCR-based assay. Desiccation survivors of strain CCMEE 123 (coastal desert, Chile) were better suited than CCMEE 134 (Beacon Valley, Antarctica) to withstand cellular damage imposed by simulated space and martian conditions. Exposed dried cells of strain CCMEE 123 formed colonies, maintained subcellular integrities, and, depending on the exposure conditions, also escaped DNA damage or repaired the induced damage upon rewetting.
Related JoVE Video
Subcellular integrities in Chroococcidiopsis sp. CCMEE 029 survivors after prolonged desiccation revealed by molecular probes and genome stability assays.
Extremophiles
PUBLISHED: 03-11-2009
Show Abstract
Hide Abstract
Desiccation-tolerant cells must either protect their cellular components from desiccation-induced damage and/or repair it upon rewetting. Subcellular damage to the anhydrobiotic cyanobacterium Chroococcidiopsis sp. CCMEE 029 stored in the desiccated state for 4 years was evaluated at the single-cell level using fluorescent DNA strand breakage labelling, membrane integrity and potential related molecular probes, oxidant-sensing fluorochrome and redox dye. Covalent modifications of dried genomes were assessed by testing their suitability as PCR template. Results suggest that desiccation survivors avoid/and or limit genome fragmentation and genome covalent modifications, preserve intact plasma membranes and phycobiliprotein autofluorescence, exhibit spatially-reduced ROS accumulation and dehydrogenase activity upon rewetting. Damaged cells undergo genome fragmentation, loss of plasma membrane potential and integrity, phycobiliprotein bleaching, whole-cell ROS accumulation and lack respiratory activity upon rewetting. The co-occurrence of live and dead cells within dried aggregates of Chroococcidiopsis confirms that desiccation resistance is not a simple process and that subtle modifications to the cellular milieu are required to dry without dying. It rises also intriguing questions about the triggers of dead cells in response to drying. The capability of desiccation survivors to avoid and/or reduce subcellular damage, shows that protection mechanisms are relevant in the desiccation tolerance of this cyanobacterium.
Related JoVE Video
Cytomorphological and genetic characterization of troglobitic Leptolyngbya strains isolated from Roman hypogea.
Appl. Environ. Microbiol.
PUBLISHED: 02-17-2009
Show Abstract
Hide Abstract
Six Leptolyngbya strains, isolated from the archaeological surfaces of hypogean sites, were phenotypically and genetically characterized by light and electron microscopy and 16S rRNA gene and 16S-23S internally transcribed spacer (ITS) sequencing. Three phycoerythrin-rich (red) and three phycocyanin-rich (green) isolates were assigned to different operational taxonomic units (OTUs). Among the green isolates, one strain showed an OTU intraspecific variation due to differences in the ITS sequences and genomic polymorphism. Within the ITS sequence, variable regions, conserved domains and tRNA(Ile) and tRNA(Ala) genes showed high sequence identity among the phylotypes. Together, these data indicated a relatedness of the six strains to other Leptolyngbya from subaerophytic and geothermal environments and allowed the definition of novel Leptolyngbya OTUs.
Related JoVE Video
Endurance of the endolithic desert cyanobacterium Chroococcidiopsis under UVC radiation.
Extremophiles
Show Abstract
Hide Abstract
Desert cyanobacteria of the genus Chroococcidiopsis are extremely resistant to desiccation and ionizing radiation. When an endolithic strain was exposed to UVC radiation cell lysis, genome damage, photosynthetic pigment bleaching and reduced photochemical performance occurred. Nevertheless, survivors were scored after UVC doses as high as 13 kJ/m(2) and their endurance ascribed to multicellular aggregates enveloped in thick envelopes, so that attenuated UVC radiation reached the inner cells. In addition, the accumulation of carotenoids contributed to UVC resistance by providing protection against oxidative stress. Finally, in survivors repair mechanisms were responsible for the recovery of the induced damage to genome and photosynthetic apparatus.
Related JoVE Video
Microbial colonization of the salt deposits in the driest place of the Atacama Desert (Chile).
Orig Life Evol Biosph
Show Abstract
Hide Abstract
The Atacama Desert (Chile), one of the most arid places on Earth, shows hostile conditions for the development of epilithic microbial communities. In this study, we report the association of cyanobacteria (Chroococcidiopsis sp.) and bacteria belonging to Actinobacteria and Beta-Gammaproteobacteria and Firmicutes phyla inhabiting the near surface of salt (halite) deposits of the Salar Grande Basin, Atacama Desert (Chile). The halite deposits were investigated by using optical, confocal and field emission scanning electron microscopes, whereas culture-independent molecular techniques, 16S rDNA clone library, alongside RFLP analysis and 16S rRNA gene sequencing were applied to investigate the bacterial diversity. These microbial communities are an example of life that has adapted to extreme environmental conditions caused by dryness, high irradiation, and metal concentrations. Their adaptation is, therefore, important in the investigation of the environmental conditions that might be expected for life outside of Earth.
Related JoVE Video
Plasmid stability in dried cells of the desert cyanobacterium Chroococcidiopsis and its potential for GFP imaging of survivors on Earth and in space.
Orig Life Evol Biosph
Show Abstract
Hide Abstract
Two GFP-based plasmids, namely pTTQ18-GFP-pDU1(mini) and pDUCA7-GFP, of about 7 kbp and 15 kbp respectively, able to replicate in Chroococcidiopsis sp. CCMEE 029 and CCMEE 123, were developed. Both plasmids were maintained in Chroococcidiopsis cells after 18 months of dry storage as demonstrated by colony PCR, plasmid restriction analysis, GFP imaging and colony-forming ability under selection of dried transformants; thus suggesting that strategies employed by this cyanobacterium to stabilize dried chromosomal DNA, must have protected plasmid DNA. The suitability of pDU1(mini)-plasmid for GFP tagging in Chroococcidiopsis was investigated by using the RecA homolog of Synechocystis sp. PCC 6803. After 2 months of dry storage, the presence of dried cells with a GFP-RecA(Syn) distribution resembling that of hydrated cells, supported its capability of preventing desiccation-induced genome damage, whereas the rewetted cells with filamentous GFP-RecA(Syn) structures revealed sub-lethal DNA damage. The long-term stability of plasmid DNA in dried Chroococcidiopsis has implication for space research, for example when investigating the recovery of dried cells after Martian and space simulations or when developing life support systems based on phototrophs with genetically enhanced stress tolerance and stored in the dry state for prolonged periods.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.