JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Closing the ring: a fourth extracellular loop in chemokine receptors.
Sci Signal
PUBLISHED: 09-02-2014
Show Abstract
Hide Abstract
Chemokine receptors are heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCR) that play fundamental roles in many physiological and pathological processes. Typically, these receptors form a seven-transmembrane helix bundle, which is stabilized by a disulfide bond bridging the top of the third transmembrane segment (TM3) and the second extracellular loop (ECL2). Resolution of the three-dimensional structures of the chemokine receptors CXCR1, CXCR4, and CCR5 revealed the existence of a second disulfide bridge that links the N terminus of the receptor to the top of the seventh transmembrane segment (TM7), thereby closing the receptor into a ring. An important consequence of this second disulfide bond is the formation of an additional extracellular loop, which shapes the entrance of the ligand-binding pocket and adds rigidity to the overall surface of the receptor. Here, we discuss the features of these "pseudo-loops," the structural requirements for their formation, and the effects they may have on receptor function.
Related JoVE Video
COMET: adaptive context-based modeling for ultrafast HIV-1 subtype identification.
Nucleic Acids Res.
PUBLISHED: 08-12-2014
Show Abstract
Hide Abstract
Viral sequence classification has wide applications in clinical, epidemiological, structural and functional categorization studies. Most existing approaches rely on an initial alignment step followed by classification based on phylogenetic or statistical algorithms. Here we present an ultrafast alignment-free subtyping tool for human immunodeficiency virus type one (HIV-1) adapted from Prediction by Partial Matching compression. This tool, named COMET, was compared to the widely used phylogeny-based REGA and SCUEAL tools using synthetic and clinical HIV data sets (1 090 698 and 10 625 sequences, respectively). COMET's sensitivity and specificity were comparable to or higher than the two other subtyping tools on both data sets for known subtypes. COMET also excelled in detecting and identifying new recombinant forms, a frequent feature of the HIV epidemic. Runtime comparisons showed that COMET was almost as fast as USEARCH. This study demonstrates the advantages of alignment-free classification of viral sequences, which feature high rates of variation, recombination and insertions/deletions. COMET is free to use via an online interface.
Related JoVE Video
The frantic play of the concealed HIV envelope cytoplasmic tail.
Retrovirology
PUBLISHED: 05-01-2013
Show Abstract
Hide Abstract
Lentiviruses have unusually long envelope (Env) cytoplasmic tails, longer than those of other retroviruses. Whereas the Env ectodomain has received much attention, the gp41 cytoplasmic tail (gp41-CT) is one of the least studied parts of the virus. It displays relatively high conservation compared to the rest of Env. It has been long established that the gp41-CT interacts with the Gag precursor protein to ensure Env incorporation into the virion. The gp41-CT contains distinct motifs and domains that mediate both intensive Env intracellular trafficking and interactions with numerous cellular and viral proteins, optimizing viral infectivity. Although they are not fully understood, a multiplicity of interactions between the gp41-CT and cellular factors have been described over the last decade; these interactions illustrate how Env expression and incorporation into virions is a finely tuned process that has evolved to best exploit the host system with minimized genetic information. This review addresses the structure and topology of the gp41-CT of lentiviruses (mainly HIV and SIV), their domains and believed functions. It also considers the cellular and viral proteins that have been described to interact with the gp41-CT, with a particular focus on subtype-related polymorphisms.
Related JoVE Video
HIV-1 tropism determination using a phenotypic Env recombinant viral assay highlights overestimation of CXCR4-usage by genotypic prediction algorithms for CRRF01_AE and CRF02_AG.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Human Immunodeficiency virus type-1 (HIV) entry into target cells involves binding of the viral envelope (Env) to CD4 and a coreceptor, mainly CCR5 or CXCR4. The only currently licensed HIV entry inhibitor, maraviroc, targets CCR5, and the presence of CXCX4-using strains must be excluded prior to treatment. Co-receptor usage can be assessed by phenotypic assays or through genotypic prediction. Here we compared the performance of a phenotypic Env-Recombinant Viral Assay (RVA) to the two most widely used genotypic prediction algorithms, Geno2Pheno[coreceptor] and webPSSM.
Related JoVE Video
Rescue of HIV-1 long-time archived X4 strains to escape maraviroc.
Antiviral Res.
PUBLISHED: 07-14-2011
Show Abstract
Hide Abstract
Entry of Human Immunodeficiency Virus type 1 (HIV-1) into target cells is mediated by the CD4 receptor and a coreceptor, CCR5 or CXCR4. Maraviroc interferes with HIV entry by binding the CCR5 coreceptor. Virological failure to maraviroc-containing regimens can occur through the emergence of resistance, or through tropism evolution and broadened coreceptor usage. In the latter case, the physiological relevance of minority strains is a major concern. Here we report a retrospective analysis of coreceptor-usage and evolution based on 454-ultra-deep-sequencing of plasma and Peripheral Blood Mononuclear Cell (PBMC)-derived envelope V3-loops, accounting for coreceptor usage, from a patient who failed a maraviroc-containing regimen through the emergence of X4 strains. The X4 maraviroc-escape variant resulted from recombination between a long time archived proviral sequence from 2003 (5-portion, including the V3-loop) and the dominant R5 strains circulating in plasma at the time of maraviroc-treatment initiation (3-portion). Phylogenetic analyses and BEAST modeling highlighted that an early diverse viral quasispecies underwent a severe bottleneck following reinitiation of HAART and repeated IL-2 cycles between 1999 and 2001, leading to the transient outgrowth and archiving of one highly homogeneous X4 population from plasma, and to the expansion in plasma of one PBMC-derived R5 strain. Under maraviroc selective pressure, the early, no longer detectable X4 strains archived in PBMC were partially rescued to provide X4-determinants to the main circulating strain.
Related JoVE Video
Modulation of TRIM5alpha activity in human cells by alternatively spliced TRIM5 isoforms.
J. Virol.
PUBLISHED: 06-01-2011
Show Abstract
Hide Abstract
TRIM5? is a restriction factor that can block an early step in the retroviral life cycle by recognizing and causing the disassembly of incoming viral capsids, thereby preventing the completion of reverse transcription. Numerous other isoforms of human TRIM5 exist, and isoforms lacking a C-terminal SPRY domain can inhibit the activity of TRIM5?. Thus, TRIM5? activity in a given cell type could be dependent on the relative proportions of TRIM5 isoforms expressed, but little information concerning the relative expression of TRIM5 isoforms in human cells is available. In this study, we demonstrate that mRNAs coding for TRIM5? represent only 50% of total TRIM5 transcripts in human cell lines, CD4(+) T cells, and macrophages. Transcripts coding for, in order of abundance, TRIM5? (TRIM5-iota), a previously uncharacterized isoform, TRIM5?, TRIM5?, and TRIM5? are also present. Like TRIM5? and TRIM5?, TRIM5? and TRIM5? do not inhibit HIV-1 replication, but both have dominant-negative activity against TRIM5?. Specific knockdown of TRIM5? increases TRIM5? activity in human U373-X4 cells, indicating that physiological levels of expression of truncated TRIM5 isoforms in human cells can reduce the activity of TRIM5?.
Related JoVE Video
Impact of the HIV-1 env genetic context outside HR1-HR2 on resistance to the fusion inhibitor enfuvirtide and viral infectivity in clinical isolates.
PLoS ONE
PUBLISHED: 03-15-2011
Show Abstract
Hide Abstract
Resistance mutations to the HIV-1 fusion inhibitor enfuvirtide emerge mainly within the drugs target region, HR1, and compensatory mutations have been described within HR2. The surrounding envelope (env) genetic context might also contribute to resistance, although to what extent and through which determinants remains elusive. To quantify the direct role of the env context in resistance to enfuvirtide and in viral infectivity, we compared enfuvirtide susceptibility and infectivity of recombinant viral pairs harboring the HR1-HR2 region or the full Env ectodomain of longitudinal env clones from 5 heavily treated patients failing enfuvirtide therapy. Prior to enfuvirtide treatment onset, no env carried known resistance mutations and full Env viruses were on average less susceptible than HR1-HR2 recombinants. All escape clones carried at least one of G36D, V38A, N42D and/or N43D/S in HR1, and accordingly, resistance increased 11- to 2800-fold relative to baseline. Resistance of full Env recombinant viruses was similar to resistance of their HR1-HR2 counterpart, indicating that HR1 and HR2 are the main contributors to resistance. Strictly X4 viruses were more resistant than strictly R5 viruses, while dual-tropic Envs featured similar resistance levels irrespective of the coreceptor expressed by the cell line used. Full Env recombinants from all patients gained infectivity under prolonged drug pressure; for HR1-HR2 viruses, infectivity remained steady for 3/5 patients, while for 2/5 patients, gains in infectivity paralleled those of the corresponding full Env recombinants, indicating that the env genetic context accounts mainly for infectivity adjustments. Phylogenetic analyses revealed that quasispecies selection is a step-wise process where selection of enfuvirtide resistance is a dominant factor early during therapy, while increased infectivity is the prominent driver under prolonged therapy.
Related JoVE Video
Polymorphisms of HIV-2 integrase and selection of resistance to raltegravir.
Retrovirology
PUBLISHED: 09-03-2010
Show Abstract
Hide Abstract
Human Immunodeficiency Virus type 2 is naturally resistant to some antiretroviral drugs, restricting therapeutic options for patients infected with HIV-2. Regimens including integrase inhibitors (INI) seem to be effective, but little data on HIV-2 integrase (IN) polymorphisms and resistance pathways are available.
Related JoVE Video
Selective-advantage profile of human immunodeficiency virus type 1 integrase mutants explains in vivo evolution of raltegravir resistance genotypes.
J. Virol.
PUBLISHED: 07-15-2009
Show Abstract
Hide Abstract
The emergence of human immunodeficiency virus type 1 resistance to raltegravir, an integrase strand transfer inhibitor, follows distinct and independent genetic pathways, among which the N155H and Q148HKR pathways are the most frequently encountered in treated patients. After prolonged viral escape, mutants of the N155H pathway are replaced by mutants of the Q148HKR pathway. We have examined the mechanisms driving this evolutionary pattern using an approach that assesses the selective advantage of site-directed mutant viruses as a function of drug concentration. These selective-advantage curves revealed that among single mutants, N155H had the highest and the widest (1 to 500 nM) selective-advantage profile. Despite the higher 50% inhibitory concentration, Q148H displayed a lower and narrower (10 to 100 nM) selective-advantage profile. Among double mutants, the highest and widest selective-advantage profile was seen with G140S+Q148H. This finding likely explains why N155H can be selected early in the course of RAL resistance evolution in vivo but is later replaced by genotypes that include Q148HKR.
Related JoVE Video
Automated sequence analysis and editing software for HIV drug resistance testing.
J. Clin. Virol.
Show Abstract
Hide Abstract
Access to antiretroviral treatment in resource-limited-settings is inevitably paralleled by the emergence of HIV drug resistance. Monitoring treatment efficacy and HIV drugs resistance testing are therefore of increasing importance in resource-limited settings. Yet low-cost technologies and procedures suited to the particular context and constraints of such settings are still lacking. The ART-A (Affordable Resistance Testing for Africa) consortium brought together public and private partners to address this issue.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.