JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Antibody to the gp120 V1/V2 Loops and CD4+ and CD8+ T Cell Responses in Protection from SIVmac251 Vaginal Acquisition and Persistent Viremia.
J. Immunol.
PUBLISHED: 11-16-2014
Show Abstract
Hide Abstract
The human papillomavirus pseudovirions (HPV-PsVs) approach is an effective gene-delivery system that can prime or boost an immune response in the vaginal tract of nonhuman primates and mice. Intravaginal vaccination with HPV-PsVs expressing SIV genes, combined with an i.m. gp120 protein injection, induced humoral and cellular SIV-specific responses in macaques. Priming systemic immune responses with i.m. immunization with ALVAC-SIV vaccines, followed by intravaginal HPV-PsV-SIV/gp120 boosting, expanded and/or recruited T cells in the female genital tract. Using a stringent repeated low-dose intravaginal challenge with the highly pathogenic SIVmac251, we show that although these regimens did not demonstrate significant protection from virus acquisition, they provided control of viremia in a number of animals. High-avidity Ab responses to the envelope gp120 V1/V2 region correlated with delayed SIVmac251 acquisition, whereas virus levels in mucosal tissues were inversely correlated with antienvelope CD4(+) T cell responses. CD8(+) T cell depletion in animals with controlled viremia caused an increase in tissue virus load in some animals, suggesting a role for CD8(+) T cells in virus control. This study highlights the importance of CD8(+) cells and antienvelope CD4(+) T cells in curtailing virus replication and antienvelope V1/V2 Abs in preventing SIVmac251 acquisition.
Related JoVE Video
Potent Immune Responses in Rhesus Macaques Induced by Nonviral Delivery of a Self-amplifying RNA Vaccine Expressing HIV Type 1 Envelope With a Cationic Nanoemulsion.
J. Infect. Dis.
PUBLISHED: 09-18-2014
Show Abstract
Hide Abstract
Self-amplifying messenger RNA (mRNA) of positive-strand RNA viruses are effective vectors for in situ expression of vaccine antigens and have potential as a new vaccine technology platform well suited for global health applications. The SAM vaccine platform is based on a synthetic, self-amplifying mRNA delivered by a nonviral delivery system. The safety and immunogenicity of an HIV SAM vaccine encoding a clade C envelope glycoprotein formulated with a cationic nanoemulsion (CNE) delivery system was evaluated in rhesus macaques. The HIV SAM vaccine induced potent cellular immune responses that were greater in magnitude than those induced by self-amplifying mRNA packaged in a viral replicon particle (VRP) or by a recombinant HIV envelope protein formulated with MF59 adjuvant, anti-envelope binding (including anti-V1V2), and neutralizing antibody responses that exceeded those induced by the VRP vaccine. These studies provide the first evidence in nonhuman primates that HIV vaccination with a relatively low dose (50 µg) of formulated self-amplifying mRNA is safe and immunogenic.
Related JoVE Video
Optimizing parallel induction of HIV type 1-specific antibody and T-cell responses by multicomponent subunit vaccines.
AIDS
PUBLISHED: 09-18-2014
Show Abstract
Hide Abstract
Protection against HIV type 1 (HIV-1) infection/AIDS will likely require concerted actions of protective CD8 killer T cells and protective antibodies. The challenges in inducing such effectors by active immunization are such that the T-cell and antibody vaccine components require separate development. Here, a rational attempt is taken to combine two separately optimized heterologous regimens into a single T-cell-inducing and antibody-inducing vaccination schedule with minimal induction of unprotective Env-specific T cells.
Related JoVE Video
A Fusion Intermediate gp41 Immunogen Elicits Neutralizing Antibodies to HIV-1.
J. Biol. Chem.
PUBLISHED: 08-26-2014
Show Abstract
Hide Abstract
The membrane-proximal external region (MPER) of the human immunodeficiency virus, type 1 (HIV-1) envelope glycoprotein subunit gp41 is targeted by potent broadly neutralizing antibodies 2F5, 4E10, and 10E8. These antibodies recognize linear epitopes and have been suggested to target the fusion intermediate conformation of gp41 that bridges viral and cellular membranes. Anti-MPER antibodies exert different degrees of membrane interaction, which is considered to be the limiting factor for the generation of such antibodies by immunization. Here we characterize a fusion intermediate conformation of gp41 (gp41int-Cys) and show that it folds into an elongated ?12-nm-long extended structure based on small angle x-ray scattering data. Gp41int-Cys was covalently linked to liposomes via its C-terminal cysteine and used as immunogen. The gp41int-Cys proteoliposomes were administered alone or in prime-boost regimen with trimeric envelope gp140CA018 in guinea pigs and elicited high anti-gp41 IgG titers. The sera interacted with a peptide spanning the MPER region, demonstrated competition with broadly neutralizing antibodies 2F5 and 4E10, and exerted modest lipid binding, indicating the presence of MPER-specific antibodies. Although the neutralization potency generated solely by gp140CA018 was higher than that induced by gp41int-Cys, the majority of animals immunized with gp41int-Cys proteoliposomes induced modest breadth and potency in neutralizing tier 1 pseudoviruses and replication-competent simian/human immunodeficiency viruses in the TZM-bl assay as well as responses against tier 2 HIV-1 in the A3R5 neutralization assay. Our data thus demonstrate that liposomal gp41 MPER formulation can induce neutralization activity, and the strategy serves to improve breadth and potency of such antibodies by improved vaccination protocols.
Related JoVE Video
Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques.
J. Exp. Med.
PUBLISHED: 08-25-2014
Show Abstract
Hide Abstract
It is widely appreciated that effective human vaccines directed against viral pathogens elicit neutralizing antibodies (NAbs). The passive transfer of anti-HIV-1 NAbs conferring sterilizing immunity to macaques has been used to determine the plasma neutralization titers, which must be present at the time of exposure, to prevent acquisition of SIV/HIV chimeric virus (SHIV) infections. We administered five recently isolated potent and broadly acting anti-HIV neutralizing monoclonal antibodies (mAbs) to rhesus macaques and challenged them intrarectally 24 h later with either of two different R5-tropic SHIVs. By combining the results obtained from 60 challenged animals, we determined that the protective neutralization titer in plasma preventing virus infection in 50% of the exposed monkeys was relatively modest (?1:100) and potentially achievable by vaccination.
Related JoVE Video
Impact of Clade, Geography, and Age of the Epidemic on HIV-1 Neutralization by Antibodies.
J. Virol.
PUBLISHED: 08-20-2014
Show Abstract
Hide Abstract
Neutralizing antibodies (nAbs) are a high priority for vaccines that aim to prevent the acquisition of HIV-1 infection. Vaccine effectiveness will depend on the extent to which induced antibodies neutralize the global diversity of circulating HIV-1 variants. Using large panels of genetically and geographically diverse HIV-1 Env-pseudotyped viruses and chronic infection plasma samples, we unambiguously show that cross-clade nAb responses are commonly induced in response to infection by any virus clade. Nonetheless, neutralization was significantly greater when the plasma clade matched the clade of the virus being tested. This within-clade advantage was diminished in older, more-diverse epidemics in southern Africa, the United States, and Europe compared to more recent epidemics in Asia. It was most pronounced for circulating recombinant form (CRF) 07_BC, which is common in China and is the least-divergent lineage studied; this was followed by the slightly more diverse Asian CRF01_AE. We found no evidence that transmitted/founder viruses are generally more susceptible to neutralization and are therefore easier targets for vaccination than chronic viruses. Features of the gp120 V1V2 loop, in particular, length, net charge, and number of N-linked glycans, were associated with Env susceptibility and plasma neutralization potency in a manner consistent with neutralization escape being a force that drives viral diversification and plasma neutralization breadth. The overall susceptibility of Envs and potencies of plasma samples were highly predictive of the neutralization outcome of any single virus-plasma combination. These findings highlight important considerations for the design and testing of candidate HIV-1 vaccines that aim to elicit effective nAbs.
Related JoVE Video
FCGR2C polymorphisms associate with HIV-1 vaccine protection in RV144 trial.
J. Clin. Invest.
PUBLISHED: 08-08-2014
Show Abstract
Hide Abstract
The phase III RV144 HIV-1 vaccine trial estimated vaccine efficacy (VE) to be 31.2%. This trial demonstrated that the presence of HIV-1-specific IgG-binding Abs to envelope (Env) V1V2 inversely correlated with infection risk, while the presence of Env-specific plasma IgA Abs directly correlated with risk of HIV-1 infection. Moreover, Ab-dependent cellular cytotoxicity responses inversely correlated with risk of infection in vaccine recipients with low IgA; therefore, we hypothesized that vaccine-induced Fc receptor-mediated (FcR-mediated) Ab function is indicative of vaccine protection. We sequenced exons and surrounding areas of FcR-encoding genes and found one FCGR2C tag SNP (rs114945036) that associated with VE against HIV-1 subtype CRF01_AE, with lysine at position 169 (169K) in the V2 loop (CRF01_AE 169K). Individuals carrying CC in this SNP had an estimated VE of 15%, while individuals carrying CT or TT exhibited a VE of 91%. Furthermore, the rs114945036 SNP was highly associated with 3 other FCGR2C SNPs (rs138747765, rs78603008, and rs373013207). Env-specific IgG and IgG3 Abs, IgG avidity, and neutralizing Abs inversely correlated with CRF01_AE 169K HIV-1 infection risk in the CT- or TT-carrying vaccine recipients only. These data suggest a potent role of Fc-? receptors and Fc-mediated Ab function in conferring protection from transmission risk in the RV144 VE trial.
Related JoVE Video
Envelope glycoprotein binding to the integrin ?4?7 is not a general property of most HIV-1 strains.
J. Virol.
PUBLISHED: 07-09-2014
Show Abstract
Hide Abstract
The HIV-1 surface glycoprotein gp120 has been reported to bind and signal through ?4?7 by means of a tripeptide motif in the V2 loop that mimics structures present in the natural ligands for ?4?7, suggesting that ?4?7 may facilitate HIV-1 infection of CD4(+) T cells in the gut. Furthermore, immune correlates in the RV144 vaccine efficacy trial generated the hypothesis that V1V2 antibodies to an epitope near the putative ?4?7 binding motif may play a role in protection against HIV-1 infection. In the interest of developing an assay to detect antibodies that block gp120 binding to ?4?7, we used retinoic acid (RA)-activated human peripheral blood mononuclear cells (PBMCs) and transfected HEK293T (293T) cells expressing the integrin complex to study the ?4?7 binding properties of 16 HIV-1 envelope glycoproteins. The natural ligand for ?4?7, mucosal addressin cell adhesion molecule-1 (MAdCAM-1), bound efficiently to RA-activated PBMCs and transfected 293T cells, and this binding was blocked by antibodies to ?4. gp120 from multiple HIV-1 subtypes bound to RA-activated PBMCs from three donors in a CD4-dependent manner, but little or no ?4?7 binding was detected. Similarly, little or no binding to ?4?7 on transfected 293T cells was detected with multiple gp120s and gp140s, including gp120s from transmitted/founder strains, or when gp120 was produced in CHO, 293T, and 293S/GnT1(-/-) cells. Finally, we found no evidence that infectious HIV-1 virions produced in either PBMCs or 293T cells could bind ?4?7 on transfected 293T cells. Infectious HIV-1 virions and most gp120s/gp140s appear to be poor ligands for the ?4?7 integrin complex under the conditions tested here.
Related JoVE Video
Selection of unadapted, pathogenic SHIVs encoding newly transmitted HIV-1 envelope proteins.
Cell Host Microbe
PUBLISHED: 06-19-2014
Show Abstract
Hide Abstract
Infection of macaques with chimeric viruses based on SIVMAC but expressing the HIV-1 envelope (Env) glycoproteins (SHIVs) remains the most powerful model for evaluating prevention and therapeutic strategies against AIDS. Unfortunately, only a few SHIVs are currently available. Furthermore, their generation has required extensive adaptation of the HIV-1 Env sequences in macaques so they may not accurately represent HIV-1 Env proteins circulating in humans, potentially limiting their translational utility. We developed a strategy for generating large numbers of SHIV constructs expressing Env proteins from newly transmitted HIV-1 strains. By inoculating macaques with cocktails of multiple SHIV variants, we selected SHIVs that can replicate and cause AIDS-like disease in immunologically intact rhesus macaques without requiring animal-to-animal passage. One of these SHIVs could be transmitted mucosally. We demonstrate the utility of the SHIVs generated by this method for evaluating neutralizing antibody administration as a protection against mucosal SHIV challenge.
Related JoVE Video
CD40L-adjuvanted DNA/modified vaccinia virus Ankara simian immunodeficiency virus SIV239 vaccine enhances SIV-specific humoral and cellular immunity and improves protection against a heterologous SIVE660 mucosal challenge.
J. Virol.
PUBLISHED: 06-11-2014
Show Abstract
Hide Abstract
It remains a challenge to develop a successful human immunodeficiency virus (HIV) vaccine that is capable of preventing infection. Here, we utilized the benefits of CD40L, a costimulatory molecule that can stimulate both dendritic cells (DCs) and B cells, as an adjuvant for our simian immunodeficiency virus (SIV) DNA vaccine in rhesus macaques. We coexpressed the CD40L with our DNA/SIV vaccine such that the CD40L is anchored on the membrane of SIV virus-like particle (VLP). These CD40L containing SIV VLPs showed enhanced activation of DCs in vitro. We then tested the potential of DNA/SIV-CD40L vaccine to adjuvant the DNA prime of a DNA/modified vaccinia virus Ankara (MVA) vaccine in rhesus macaques. Our results demonstrated that the CD40L adjuvant enhanced the functional quality of anti-Env antibody response and breadth of anti-SIV CD8 and CD4 T cell responses, significantly delayed the acquisition of heterologous mucosal SIV infection, and improved viral control. Notably, the CD40L adjuvant enhanced the control of viral replication in the gut at the site of challenge that was associated with lower mucosal CD8 immune activation, one of the strong predictors of disease progression. Collectively, our results highlight the benefits of CD40L adjuvant for enhancing antiviral humoral and cellular immunity, leading to enhanced protection against a pathogenic SIV. A single adjuvant that enhances both humoral and cellular immunity is rare and thus underlines the importance and practicality of CD40L as an adjuvant for vaccines against infectious diseases, including HIV-1.
Related JoVE Video
Boosting of HIV-1 neutralizing antibody responses by a distally related retroviral envelope protein.
J. Immunol.
PUBLISHED: 05-14-2014
Show Abstract
Hide Abstract
Our knowledge of the binding sites for neutralizing Abs (NAb) that recognize a broad range of HIV-1 strains (bNAb) has substantially increased in recent years. However, gaps remain in our understanding of how to focus B cell responses to vulnerable conserved sites within the HIV-1 envelope glycoprotein (Env). In this article, we report an immunization strategy composed of a trivalent HIV-1 (clade B envs) DNA prime, followed by a SIVmac239 gp140 Env protein boost that aimed to focus the immune response to structurally conserved parts of the HIV-1 and simian immunodeficiency virus (SIV) Envs. Heterologous NAb titers, primarily to tier 1 HIV-1 isolates, elicited during the trivalent HIV-1 env prime, were significantly increased by the SIVmac239 gp140 protein boost in rabbits. Epitope mapping of Ab-binding reactivity revealed preferential recognition of the C1, C2, V2, V3, and V5 regions. These results provide a proof of concept that a distally related retroviral SIV Env protein boost can increase pre-existing NAb responses against HIV-1.
Related JoVE Video
Analysis of HLA A*02 association with vaccine efficacy in the RV144 HIV-1 vaccine trial.
J. Virol.
PUBLISHED: 05-14-2014
Show Abstract
Hide Abstract
The RV144 HIV-1 vaccine trial demonstrated partial efficacy of 31% against HIV-1 infection. Studies into possible correlates of protection found that antibodies specific to the V1 and V2 (V1/V2) region of envelope correlated inversely with infection risk and that viruses isolated from trial participants contained genetic signatures of vaccine-induced pressure in the V1/V2 region. We explored the hypothesis that the genetic signatures in V1 and V2 could be partly attributed to selection by vaccine-primed T cells. We performed a T-cell-based sieve analysis of breakthrough viruses in the RV144 trial and found evidence of predicted HLA binding escape that was greater in vaccine versus placebo recipients. The predicted escape depended on class I HLA A*02- and A*11-restricted epitopes in the MN strain rgp120 vaccine immunogen. Though we hypothesized that this was indicative of postacquisition selection pressure, we also found that vaccine efficacy (VE) was greater in A*02-positive (A*02(+)) participants than in A*02(-) participants (VE = 54% versus 3%, P = 0.05). Vaccine efficacy against viruses with a lysine residue at site 169, important to antibody binding and implicated in vaccine-induced immune pressure, was also greater in A*02(+) participants (VE = 74% versus 15%, P = 0.02). Additionally, a reanalysis of vaccine-induced immune responses that focused on those that were shown to correlate with infection risk suggested that the humoral responses may have differed in A*02(+) participants. These exploratory and hypothesis-generating analyses indicate there may be an association between a class I HLA allele and vaccine efficacy, highlighting the importance of considering HLA alleles and host immune genetics in HIV vaccine trials.
Related JoVE Video
Eliciting neutralizing antibodies with gp120 outer domain constructs based on M-group consensus sequence.
Virology
PUBLISHED: 05-09-2014
Show Abstract
Hide Abstract
One strategy being evaluated for HIV-1 vaccine development is focusing immune responses towards neutralizing epitopes on the gp120 outer domain (OD) by removing the immunodominant, but non-neutralizing, inner domain. Previous OD constructs have not elicited strong neutralizing antibodies (nAbs). We constructed two immunogens, a monomeric gp120-OD and a trimeric gp120-OD×3, based on an M group consensus sequence (MCON6). Their biochemical and immunological properties were compared with intact gp120. Results indicated better preservation of critical neutralizing epitopes on gp120-OD×3. In contrast to previous studies, our immunogens induced potent, cross-reactive nAbs in rabbits. Although nAbs primarily targeted Tier 1 viruses, they exhibited significant breadth. Epitope mapping analyses indicated that nAbs primarily targeted conserved V3 loop elements. Although the potency and breadth of nAbs were similar for all three immunogens, nAb induction kinetics indicated that gp120-OD×3 was superior to gp120-OD, suggesting that gp120-OD×3 is a promising prototype for further gp120 OD-based immunogen development.
Related JoVE Video
HIV-1 vaccine-induced C1 and V2 Env-specific antibodies synergize for increased antiviral activities.
J. Virol.
PUBLISHED: 05-07-2014
Show Abstract
Hide Abstract
The RV144 ALVAC/AIDSVax HIV-1 vaccine clinical trial showed an estimated vaccine efficacy of 31.2%. Viral genetic analysis identified a vaccine-induced site of immune pressure in the HIV-1 envelope (Env) variable region 2 (V2) focused on residue 169, which is included in the epitope recognized by vaccinee-derived V2 monoclonal antibodies. The ALVAC/AIDSVax vaccine induced antibody-dependent cellular cytotoxicity (ADCC) against the Env V2 and constant 1 (C1) regions. In the presence of low IgA Env antibody levels, plasma levels of ADCC activity correlated with lower risk of infection. In this study, we demonstrate that C1 and V2 monoclonal antibodies isolated from RV144 vaccinees synergized for neutralization, infectious virus capture, and ADCC. Importantly, synergy increased the HIV-1 ADCC activity of V2 monoclonal antibody CH58 at concentrations similar to that observed in plasma of RV144 vaccinees. These findings raise the hypothesis that synergy among vaccine-induced antibodies with different epitope specificities contributes to HIV-1 antiviral antibody responses and is important to induce for reduction in the risk of HIV-1 transmission. Importance: The Thai RV144 ALVAC/AIDSVax prime-boost vaccine efficacy trial represents the only example of HIV-1 vaccine efficacy in humans to date. Studies aimed at identifying immune correlates involved in the modest vaccine-mediated protection identified HIV-1 envelope (Env) variable region 2-binding antibodies as inversely correlated with infection risk, and genetic analysis identified a site of immune pressure within the region recognized by these antibodies. Despite this evidence, the antiviral mechanisms by which variable region 2-specific antibodies may have contributed to lower rates of infection remain unclear. In this study, we demonstrate that vaccine-induced HIV-1 envelope variable region 2 and constant region 1 antibodies synergize for recognition of virus-infected cells, infectious virion capture, virus neutralization, and antibody-dependent cellular cytotoxicity. This is a major step in understanding how these types of antibodies may have cooperatively contributed to reducing infection risk and should be considered in the context of prospective vaccine design.
Related JoVE Video
Importance of neutralization sieve analyses when seeking correlates of HIV-1 vaccine efficacy.
Hum Vaccin Immunother
PUBLISHED: 05-03-2014
Show Abstract
Hide Abstract
This commentary describes a rationale for the use of breakthrough viruses from clinical trial participants to assess neutralizing antibodies as a correlate of HIV-1 vaccine efficacy. The rationale is based on principles of a genetic sieve analysis, where the 2 analyses may be cooperative for delineating neutralizing antibodies as a mechanistic correlate of protection.
Related JoVE Video
Cooperation of B cell lineages in induction of HIV-1-broadly neutralizing antibodies.
Cell
PUBLISHED: 04-08-2014
Show Abstract
Hide Abstract
Development of strategies for induction of HIV-1 broadly neutralizing antibodies (bnAbs) by vaccines is a priority. Determining the steps of bnAb induction in HIV-1-infected individuals who make bnAbs is a key strategy for immunogen design. Here, we study the B cell response in a bnAb-producing individual and report cooperation between two B cell lineages to drive bnAb development. We isolated a virus-neutralizing antibody lineage that targeted an envelope region (loop D) and selected virus escape mutants that resulted in both enhanced bnAb lineage envelope binding and escape mutant neutralization-traits associated with increased B cell antigen drive. Thus, in this individual, two B cell lineages cooperated to induce the development of bnAbs. Design of vaccine immunogens that simultaneously drive both helper and broadly neutralizing B cell lineages may be important for vaccine-induced recapitulation of events that transpire during the maturation of neutralizing antibodies in HIV-1-infected individuals.
Related JoVE Video
Related JoVE Video
Vaccine-induced Env V1-V2 IgG3 correlates with lower HIV-1 infection risk and declines soon after vaccination.
Sci Transl Med
PUBLISHED: 03-21-2014
Show Abstract
Hide Abstract
HIV-1-specific immunoglobulin G (IgG) subclass antibodies bind to distinct cellular Fc receptors. Antibodies of the same epitope specificity but of a different subclass therefore can have different antibody effector functions. The study of IgG subclass profiles between different vaccine regimens used in clinical trials with divergent efficacy outcomes can provide information on the quality of the vaccine-induced B cell response. We show that HIV-1-specific IgG3 distinguished two HIV-1 vaccine efficacy studies (RV144 and VAX003 clinical trials) and correlated with decreased risk of HIV-1 infection in a blinded follow-up case-control study with the RV144 vaccine. HIV-1-specific IgG3 responses were not long-lived, which was consistent with the waning efficacy of the RV144 vaccine. These data suggest that specific vaccine-induced HIV-1 IgG3 should be tested in future studies of immune correlates in HIV-1 vaccine efficacy trials.
Related JoVE Video
Aggregate complexes of HIV-1 induced by multimeric antibodies.
Retrovirology
PUBLISHED: 03-04-2014
Show Abstract
Hide Abstract
BackgroundAntibody mediated viral aggregation may impede viral transfer across mucosal surfaces by hindering viral movement in mucus, preventing transcytosis, or reducing inter-cellular penetration of epithelia thereby limiting access to susceptible mucosal CD4 T cells and dendritic cells. These functions may work together to provide effective immune exclusion of virus from mucosal tissue; however little is known about the antibody characteristics required to induce HIV aggregation. Such knowledge may be critical to the design of successful immunization strategies to facilitate viral immune exclusion at the mucosal portals of entry.ResultsThe potential of neutralizing and non-neutralizing IgG and IgA monoclonals (mAbs) to induce HIV-1 aggregation was assessed by Dynamic light scattering (DLS). Although neutralizing and non-neutralizing IgG mAbs and polyclonal HIV-Ig efficiently aggregated soluble Env trimers, they were not capable of forming viral aggregates. In contrast, dimeric (but not monomeric) IgA mAbs induced stable viral aggregate populations that could be separated from uncomplexed virions. Epitope specificity influenced both the degree of aggregation and formation of higher order complexes by dIgA. IgA purified from serum of uninfected RV144 vaccine trial responders were able to efficiently opsonize viral particles in the absence of significant aggregation, reflective of monomeric IgA.ConclusionsThese results collectively demonstrate that dIgA is capable of forming stable viral aggregates providing a plausible basis for testing the effectiveness of aggregation as a potential protection mechanism at the mucosal portals of viral entry.
Related JoVE Video
HIV-specific humoral responses benefit from stronger prime in phase Ib clinical trial.
J. Clin. Invest.
PUBLISHED: 03-03-2014
Show Abstract
Hide Abstract
BACKGROUND. Vector prime-boost immunization strategies induce strong cellular and humoral immune responses. We examined the priming dose and administration order of heterologous vectors in HIV Vaccine Trials Network 078 (HVTN 078), a randomized, double-blind phase Ib clinical trial to evaluate the safety and immunogenicity of heterologous prime-boost regimens, with a New York vaccinia HIV clade B (NYVAC-B) vaccine and a recombinant adenovirus 5-vectored (rAd5-vectored) vaccine. METHODS. NYVAC-B included HIV-1 clade B Gag-Pol-Nef and gp120, while rAd5 included HIV-1 clade B Gag-Pol and clades A, B, and C gp140. Eighty Ad5-seronegative subjects were randomized to receive 2 × NYVAC-B followed by 1 × 1010 PFU rAd5 (NYVAC/Ad5hi); 1 × 108 PFU rAd5 followed by 2 × NYVAC-B (Ad5lo/NYVAC); 1 × 109 PFU rAd5 followed by 2 × NYVAC-B (Ad5med/NYVAC); 1 × 1010 PFU rAd5 followed by 2 × NYVAC-B (Ad5hi/NYVAC); or placebo. Immune responses were assessed 2 weeks after the final vaccination. Intracellular cytokine staining measured T cells producing IFN-? and/or IL-2; cross-clade and epitope-specific binding antibodies were determined; and neutralizing antibodies (nAbs) were assessed with 6 tier 1 viruses. RESULTS. CD4+ T cell response rates ranged from 42.9% to 93.3%. NYVAC/Ad5hi response rates (P ? 0.01) and magnitudes (P ? 0.03) were significantly lower than those of other groups. CD8+ T cell response rates ranged from 65.5% to 85.7%. NYVAC/Ad5hi magnitudes were significantly lower than those of other groups (P ? 0.04). IgG response rates to the group M consensus gp140 were 89.7% for NYVAC/Ad5hi and 21.4%, 84.6%, and 100% for Ad5lo/NYVAC, Ad5med/NYVAC, and Ad5hi/NYVAC, respectively, and were similar for other vaccine proteins. Overall nAb responses were low, but aggregate responses appeared stronger for Ad5med/NYVAC and Ad5hi/NYVAC than for NYVAC/Ad5hi. CONCLUSIONS. rAd5 prime followed by NYVAC boost is superior to the reverse regimen for both vaccine-induced cellular and humoral immune responses. Higher Ad5 priming doses significantly increased binding and nAbs. These data provide a basis for optimizing the design of future clinical trials testing vector-based heterologous prime-boost strategies. TRIAL REGISTRATION. ClinicalTrials.gov NCT00961883. FUNDING. NIAID, NIH UM1AI068618, AI068635, AI068614, and AI069443.
Related JoVE Video
Humoral immunity induced by mucosal and/or systemic SIV-specific vaccine platforms suggests novel combinatorial approaches for enhancing responses.
Clin. Immunol.
PUBLISHED: 02-18-2014
Show Abstract
Hide Abstract
Combinatorial HIV/SIV vaccine approaches targeting multiple arms of the immune system might improve protective efficacy. We compared SIV-specific humoral immunity induced in rhesus macaques by five vaccine regimens. Systemic regimens included ALVAC-SIVenv priming and Env boosting (ALVAC/Env); DNA immunization; and DNA plus Env co-immunization (DNA&Env). RepAd/Env combined mucosal replication-competent Ad-env priming with systemic Env boosting. A Peptide/Env regimen, given solely intrarectally, included HIV/SIV peptides followed by MVA-env and Env boosts. Serum antibodies mediating neutralizing, phagocytic and ADCC activities were induced by ALVAC/Env, RepAd/Env and DNA&Env vaccines. Memory B cells and plasma cells were maintained in the bone marrow. RepAd/Env vaccination induced early SIV-specific IgA in rectal secretions before Env boosting, although mucosal IgA and IgG responses were readily detected at necropsy in ALVAC/Env, RepAd/Env, DNA&Env and DNA vaccinated animals. Our results suggest that combined RepAd priming with ALVAC/Env or DNA&Env regimen boosting might induce potent, functional, long-lasting systemic and mucosal SIV-specific antibodies.
Related JoVE Video
Modulation of nonneutralizing HIV-1 gp41 responses by an MHC-restricted TH epitope overlapping those of membrane proximal external region broadly neutralizing antibodies.
J. Immunol.
PUBLISHED: 01-24-2014
Show Abstract
Hide Abstract
A goal of HIV-1 vaccine development is to elicit broadly neutralizing Abs (BnAbs), but current immunization strategies fail to induce BnAbs, and for unknown reasons, often induce nonneutralizing Abs instead. To explore potential host genetic contributions controlling Ab responses to the HIV-1 Envelope, we have used congenic strains to identify a critical role for MHC class II restriction in modulating Ab responses to the membrane proximal external region (MPER) of gp41, a key vaccine target. Immunized H-2(d)-congenic strains had more rapid, sustained, and elevated MPER(+) Ab titers than those bearing other haplotypes, regardless of immunogen, adjuvant, or prime or boost regimen used, including formulations designed to provide T cell help. H-2(d)-restricted MPER(+) serum Ab responses depended on CD4 TH interactions with class II (as revealed in immunized intra-H-2(d/b) congenic or CD154(-/-) H-2(d) strains, and by selective abrogation of MPER restimulated, H-2(d)-restricted primed splenocytes by class II-blocking Abs), and failed to neutralize HIV-1 in the TZM-b/l neutralization assay, coinciding with lack of specificity for an aspartate residue in the neutralization core of BnAb 2F5. Unexpectedly, H-2(d)-restricted MPER(+) responses functionally mapped to a core TH epitope partially overlapping the 2F5/z13/4E10 BnAb epitopes as well as nonneutralizing B cell-Ab binding residues. We propose that class II restriction contributes to the general heterogeneity of nonneutralizing gp41 responses induced by Envelope. Moreover, the proximity of TH and B cell epitopes in this restriction may have to be considered in redesigning minimal MPER immunogens aimed at exclusively binding BnAb epitopes and triggering MPER(+) BnAbs.
Related JoVE Video
Optimization and validation of a neutralizing antibody assay for HIV-1 in A3R5 cells.
J. Immunol. Methods
PUBLISHED: 01-22-2014
Show Abstract
Hide Abstract
A3R5 is a human CD4(+) lymphoblastoid cell line that was engineered to express CCR5 and is useful for the detection of weak neutralizing antibody responses against tier 2 strains of HIV-1. Here we describe the optimization and validation of the HIV-1 neutralizing antibody assay that utilizes A3R5 cells, performed in compliance with Good Clinical Laboratory Practice (GCLP) guidelines. The assay utilizes Renilla luciferase-expressing replication competent infectious molecular clones (IMC) encoding heterologous env genes from different HIV-1 clades. Key assay validation parameters tested included specificity, accuracy, precision, limit of detection and quantitation, specificity, linearity and range, and robustness. Plasma samples demonstrated higher non-specific activity than serum samples in the A3R5 assay. This assay can tolerate a wide range of virus input but is more sensitive to cell concentration. The higher sensitivity of the A3R5 assay in neutralization responses to tier 2 strains of HIV-1 makes it complementary to, but not a substitute for the TZM-bl assay. The validated A3R5 assay is employed as an endpoint immunogenicity test for vaccine-elicited neutralizing antibodies against tier 2 strains of HIV-1, and to identify correlates of protection in HIV-1 vaccine trials conducted globally.
Related JoVE Video
An autoreactive antibody from an SLE/HIV-1 individual broadly neutralizes HIV-1.
J. Clin. Invest.
PUBLISHED: 01-09-2014
Show Abstract
Hide Abstract
Broadly HIV-1-neutralizing antibodies (BnAbs) display one or more unusual traits, including a long heavy chain complementarity-determining region 3 (HCDR3), polyreactivity, and high levels of somatic mutations. These shared characteristics suggest that BnAb development might be limited by immune tolerance controls. It has been postulated that HIV-1-infected individuals with autoimmune disease and defective immune tolerance mechanisms may produce BnAbs more readily than those without autoimmune diseases. In this study, we identified an HIV-1-infected individual with SLE who exhibited controlled viral load (<5,000 copies/ml) in the absence of controlling HLA phenotypes and developed plasma HIV-1 neutralization breadth. We collected memory B cells from this individual and isolated a BnAb, CH98, that targets the CD4 binding site (CD4bs) of HIV-1 envelope glycoprotein 120 (gp120). CH98 bound to human antigens including dsDNA, which is specifically associated with SLE. Anti-dsDNA reactivity was also present in the patient's plasma. CH98 had a mutation frequency of 25% and 15% nt somatic mutations in the heavy and light chain variable domains, respectively, a long HCDR3, and a deletion in the light chain CDR1. The occurrence of anti-dsDNA reactivity by a HIV-1 CD4bs BnAb in an individual with SLE raises the possibility that some BnAbs and SLE-associated autoantibodies arise from similar pools of B cells.
Related JoVE Video
Passive immunization of macaques with polyclonal anti-SHIV IgG against a heterologous tier 2 SHIV: outcome depends on IgG dose.
Retrovirology
PUBLISHED: 01-09-2014
Show Abstract
Hide Abstract
A key goal for HIV-1 envelope immunogen design is the induction of cross-reactive neutralizing antibodies (nAbs). As AIDS vaccine recipients will not be exposed to strains exactly matching any immunogens due to multiple HIV-1 quasispecies circulating in the human population worldwide, heterologous SHIV challenges are essential for realistic vaccine efficacy testing in primates. We assessed whether polyclonal IgG, isolated from rhesus monkeys (RMs) with high-titer nAbs (termed SHIVIG), could protect RMs against the R5-tropic tier-2 SHIV-2873Nip, which was heterologous to the viruses or HIV-1 envelopes that had elicited SHIVIG.
Related JoVE Video
Specificity and 6-month durability of immune responses induced by DNA and recombinant modified vaccinia Ankara vaccines expressing HIV-1 virus-like particles.
J. Infect. Dis.
PUBLISHED: 01-07-2014
Show Abstract
Hide Abstract
Clade B DNA and recombinant modified vaccinia Ankara (MVA) vaccines producing virus-like particles displaying trimeric membrane-bound envelope glycoprotein (Env) were tested in a phase 2a trial in human immunodeficiency virus (HIV)-uninfected adults for safety, immunogenicity, and 6-month durability of immune responses.
Related JoVE Video
Toll-like receptor 7/8 (TLR7/8) and TLR9 agonists cooperate to enhance HIV-1 envelope antibody responses in rhesus macaques.
J. Virol.
PUBLISHED: 01-03-2014
Show Abstract
Hide Abstract
The development of a vaccine that can induce high titers of functional antibodies against HIV-1 remains a high priority. We have developed an adjuvant based on an oil-in-water emulsion that incorporates Toll-like receptor (TLR) ligands to test whether triggering multiple pathogen-associated molecular pattern receptors could enhance immunogenicity. Compared to single TLR agonists or other pairwise combinations, TLR7/8 and TLR9 agonists combined were able to elicit the highest titers of binding, neutralizing, and antibody-dependent cellular cytotoxicity-mediating antibodies against the protein immunogen, transmitted/founder HIV-1 envelope gp140 (B.63521). We further found that the combination of TLR7/8 and TLR9 agonists was associated with the release of CXCL10 (IP-10), suggesting that this adjuvant formulation may have optimally stimulated innate and adaptive immunity to elicit high titers of antibodies.
Related JoVE Video
Transmitted/Founder simian immunodeficiency virus envelope sequences in vesicular stomatitis and semliki forest virus vector immunized rhesus macaques.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Identification of transmitted/founder simian immunodeficiency virus (SIV) envelope sequences responsible for infection may prove critical for understanding HIV/SIV mucosal transmission. We used single genome amplification and phylogenetic analyses to characterize transmitted/founder SIVs both in the inoculum and in immunized-infected rhesus monkeys. Single genome amplification of the SIVsmE660 inoculum revealed a maximum diversity of 1.4%. We also noted that the consensus sequence of the challenge stock differed from the vaccine construct in 10 amino acids including 3 changes in the V4 loop. Viral env was prepared from rhesus plasma in 3 groups of 6 immunized with vesicular stomatitis virus (VSV) vectors and boosted with Semliki forest virus (SFV) replicons expressing (a) SIVsmE660 gag-env (b) SIVsmE660 gag-env plus rhesus GM-CSF and (c) control influenza hemagglutinin protein. Macaques were immunized twice with VSV-vectors and once with SFV vector and challenged intrarectally with 4000 TCID50. Single genome amplification characterized the infections of 2 unprotected animals in the gag-env immunized group, both of which had reduced acute plasma viral loads that ended as transient infections indicating partial immune control. Four of 6 rhesus were infected in the gag-env + GM-CSF group which demonstrated that GM-CSF abrogated protection. All 6 animals from the control group were infected having high plasma viral loads. We obtained 246 full-length envelope sequences from SIVsmE660 infected macaques at the peak of infection and determined the number of transmitted/founder variants per animal. Our analysis found that 2 of 2 gag-env vaccinated but infected macaques exhibited single but distinct virus envelope lineages whereas rhesus vaccinated with gag-env-GM-CSF or HA control exhibited both single and multiple env lineages. Because there were only 2 infected animals in the gag-env vaccinated rhesus compared to 10 infected rhesus in the other 2 groups, the significance of finding single env variants in the gag-env vaccinated group could not be established.
Related JoVE Video
Immunization of rabbits with highly purified, soluble, trimeric human immunodeficiency virus type 1 envelope glycoprotein induces a vigorous B cell response and broadly cross-reactive neutralization.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Previously we described induction of cross-reactive HIV-1 neutralizing antibody responses in rabbits using a soluble HIV-1 gp140 envelope glycoprotein (Env) in an adjuvant containing monophosphoryl lipid A (MPL) and QS21 (AS02A). Here, we compared different forms of the same HIV-1 strain R2 Env for antigenic and biophysical characteristics, and in rabbits characterized the extent of B cell induction for specific antibody expression and secretion and neutralizing responses. The forms of this Env that were produced in and purified from stably transformed 293T cells included a primarily dimeric gp140, a trimeric gp140 appended to a GCN4 trimerization domain (gp140-GCN4), gp140-GCN4 with a 15 amino acid flexible linker between the gp120 and gp41 ectodomain (gp140-GCN4-L), also trimeric, and a gp140 with the flexible linker purified from cell culture supernatants as either dimer (gp140-L(D)) or monomer (gp140-L(M)). Multimeric states of the Env proteins were assessed by native gel electrophoresis and analytical ultracentrifugation. The different forms of gp140 bound broadly cross-reactive neutralizing (BCN) human monoclonal antibodies (mAbs) similarly in ELISA and immunoprecipitation assays. All Envs bound CD4i mAbs in the presence and absence of sCD4, as reported for the R2 Env. Weak neutralization of some strains of HIV-1 was seen after two additional doses in AS02A. Rabbits that were given a seventh dose of gp140-GCN4-L developed BCN responses that were weak to moderate, similar to our previous report. The specificity of these responses did not appear similar to that of any of the known BCN human mAbs. Induction of spleen B cell and plasma cells producing immunoglobulins that bound trimeric gp140-GCN4-L was vigorous, based on ELISpot and flow cytometry analyses. The results demonstrate that highly purified gp140-GCN4-L trimer in adjuvant elicits BCN responses in rabbits accompanied by vigorous B cell induction.
Related JoVE Video
DNA and protein co-immunization improves the magnitude and longevity of humoral immune responses in macaques.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
We tested the concept of combining DNA with protein to improve anti-HIV Env systemic and mucosal humoral immune responses. Rhesus macaques were vaccinated with DNA, DNA&protein co-immunization or DNA prime followed by protein boost, and the magnitude and mucosal dissemination of the antibody responses were monitored in both plasma and mucosal secretions. We achieved induction of robust humoral responses by optimized DNA vaccination delivered by in vivo electroporation. These responses were greatly increased upon administration of a protein boost. Importantly, a co-immunization regimen of DNA&protein injected in the same muscle at the same time induced the highest systemic binding and neutralizing antibodies to homologous or heterologous Env as well as the highest Env-specific IgG in saliva. Inclusion of protein in the vaccine resulted in more immunized animals with Env-specific IgG in rectal fluids. Inclusion of DNA in the vaccine significantly increased the longevity of systemic humoral immune responses, whereas protein immunization, either as the only vaccine component or as boost after DNA prime, was followed by a great decline of humoral immune responses overtime. We conclude that DNA&protein co-delivery in a simple vaccine regimen combines the strength of each vaccine component, resulting in improved magnitude, extended longevity and increased mucosal dissemination of the induced antibodies in immunized rhesus macaques.
Related JoVE Video
Vaccine-induced IgG antibodies to V1V2 regions of multiple HIV-1 subtypes correlate with decreased risk of HIV-1 infection.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
In the RV144 HIV-1 vaccine efficacy trial, IgG antibody (Ab) binding levels to variable regions 1 and 2 (V1V2) of the HIV-1 envelope glycoprotein gp120 were an inverse correlate of risk of HIV-1 infection. To determine if V1V2-specific Abs cross-react with V1V2 from different HIV-1 subtypes, if the nature of the V1V2 antigen used to asses cross-reactivity influenced infection risk, and to identify immune assays for upcoming HIV-1 vaccine efficacy trials, new V1V2-scaffold antigens were designed and tested. Protein scaffold antigens carrying the V1V2 regions from HIV-1 subtypes A, B, C, D or CRF01_AE were assayed in pilot studies, and six were selected to assess cross-reactive Abs in the plasma from the original RV144 case-control cohort (41 infected vaccinees, 205 frequency-matched uninfected vaccinees, and 40 placebo recipients) using ELISA and a binding Ab multiplex assay. IgG levels to these antigens were assessed as correlates of risk in vaccine recipients using weighted logistic regression models. Levels of Abs reactive with subtype A, B, C and CRF01_AE V1V2-scaffold antigens were all significant inverse correlates of risk (p-values of 0.0008-0.05; estimated odds ratios of 0.53-0.68 per 1 standard deviation increase). Thus, levels of vaccine-induced IgG Abs recognizing V1V2 regions from multiple HIV-1 subtypes, and presented on different scaffolds, constitute inverse correlates of risk for HIV-1 infection in the RV144 vaccine trial. The V1V2 antigens provide a link between RV144 and upcoming HIV-1 vaccine trials, and identify reagents and methods for evaluating V1V2 Abs as possible correlates of protection against HIV-1 infection.
Related JoVE Video
Global Panel of HIV-1 Env Reference Strains for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies.
J. Virol.
PUBLISHED: 12-18-2013
Show Abstract
Hide Abstract
Standardized assessments of HIV-1 vaccine-elicited neutralizing antibody responses are complicated by the genetic and antigenic variability of the viral envelope glycoproteins (Env). To address these issues, suitable reference strains are needed that are representative of the global epidemic. Several panels have been recommended previously but no clear answers have been available on how many and which strains are best suited for this purpose. We used a statistical model-selection method to identify a global panel of reference Env clones from among 219 Env-pseudotyped viruses assayed in TZM-bl cells with sera from 205 HIV-1-infected individuals. The Envs and sera were sampled globally from diverse geographic locations and represented all major genetic subtypes and circulating recombinant forms of the virus. Assays with a panel size of only nine viruses adequately represented the spectrum of HIV-1 serum neutralizing activity seen with the larger panel of 219 viruses. An optimal panel of nine viruses was selected and augmented with three additional viruses for greater genetic and antigenic coverage. The spectrum of HIV-1 serum neutralizing activity seen with the final twelve-virus panel closely approximated the activity seen with subtype-matched viruses. Moreover, the final panel was highly sensitive for detecting many of the known broadly neutralizing antibodies. For broader assay applications, all twelve Env clones were converted to infectious molecular clones using a proviral backbone encoding a Renilla luciferase reporter gene (Env.IMC.LucR viruses). This global panel should facilitate highly standardized assessments of vaccine-elicited neutralizing antibodies across multiple HIV-1 vaccine platforms in different parts of the world.
Related JoVE Video
A Vaccine against CCR5 Protects a Subset of Macaques upon Intravaginal Challenge with SIVmac251.
J. Virol.
PUBLISHED: 12-04-2013
Show Abstract
Hide Abstract
As an alternative to targeting HIV, we have developed vaccines targeting CCR5, a self-protein critically involved in HIV replication and pathogenesis. By displaying peptides derived from CCR5 at high density on the surface of virus-like particles, we can efficiently induce high-titer IgG antibodies against this self-molecule. Here, we investigated if prophylactic immunization of rhesus macaques with a particle-based vaccine targeting two regions of macaque CCR5 could prevent or suppress vaginal infection with highly virulent SIVmac251. Twelve macaques were vaccinated with a bacteriophage Qß-based vaccine targeting macaque CCR5 (Qß.CCR5). Six control animals were immunized with the Qß platform alone. All animals immunized with Qß.CCR5 developed high-titer anti-CCR5 antibody responses. Macaques were vaginally challenged with a high dose of SIVmac251. The mean peak viral RNA levels in the vaccinated groups were 30-fold lower than in the control group (10(6.8) versus 10(8.3) copies/ml plasma). Three of the 12 vaccinated macaques dramatically suppressed SIV replication: peak viral loads were low (10(3)-10(4) RNA copies/ml), and SIV RNA became undetectable from six weeks onward. No viral RNA or DNA could be detected in colon and lymph node biopsies collected 13 months after challenge. In vivo depletion of CD8+ cells failed to induce a viral rebound. However, once anti-CCR5 antibody responses had waned, the 3 animals became infected after intravaginal and/or intravenous rechallenge. In conclusion, vaccination against CCR5 was associated with dramatic suppression of virus replication in a subset (25%) of macaques. These data support further research of vaccination against CCR5 to combat HIV infection.
Related JoVE Video
Resistance to Infection, Early and Persistent Suppression of Simian Immunodeficiency Virus SIVmac251 Viremia, and Significant Reduction of Tissue Viral Burden after Mucosal Vaccination in Female Rhesus Macaques.
J. Virol.
PUBLISHED: 10-23-2013
Show Abstract
Hide Abstract
The efficacy of oral, intestinal, nasal, and vaginal vaccinations with DNA simian immunodeficiency virus (SIV)/interleukin-2 (IL-2)/IL-15, SIV Gag/Pol/Env recombinant modified vaccinia virus Ankara (rMVA), and AT-2 SIVmac239 inactivated particles was compared in rhesus macaques after low-dose vaginal challenge with SIVmac251. Intestinal immunization provided better protection from infection, as a significantly greater median number of challenges was necessary in this group than in the others. Oral and nasal vaccinations provided the most significant control of disease progression. Fifty percent of the orally and nasally vaccinated animals suppressed viremia to undetectable levels, while this occurred to a significantly lower degree in intestinally and vaginally vaccinated animals and in controls. Viremia remained undetectable after CD8(+) T-cell depletion in seven vaccinated animals that had suppressed viremia after infection, and tissue analysis for SIV DNA and RNA was negative, a result consistent with a significant reduction of viral activity. Regardless of the route of vaccination, mucosal vaccinations prevented loss of CD4(+) central memory and CD4(+)/?4?7(+) T-cell populations and reduced immune activation to different degrees. None of the orally vaccinated animals and only one of the nasally vaccinated animals developed AIDS after 72 to 84 weeks of infection, when the trial was closed. The levels of anti-SIV gamma interferon-positive, CD4(+), and CD8(+) T cells at the time of first challenge inversely correlated with viremia and directly correlated with protection from infection and longer survival.
Related JoVE Video
Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin griffithsin in two laboratory rodent models.
Antimicrob. Agents Chemother.
PUBLISHED: 10-21-2013
Show Abstract
Hide Abstract
Griffithsin (GRFT) is a red-alga-derived lectin that binds the terminal mannose residues of N-linked glycans found on the surface of human immunodeficiency virus type 1 (HIV-1), HIV-2, and other enveloped viruses, including hepatitis C virus (HCV), severe acute respiratory syndrome coronavirus (SARS-CoV), and Ebola virus. GRFT displays no human T-cell mitogenic activity and does not induce production of proinflammatory cytokines in treated human cell lines. However, despite the growing evidence showing the broad-spectrum nanomolar or better antiviral activity of GRFT, no study has reported a comprehensive assessment of GRFT safety as a potential systemic antiviral treatment. The results presented in this work show that minimal toxicity was induced by a range of single and repeated daily subcutaneous doses of GRFT in two rodent species, although we noted treatment-associated increases in spleen and liver mass suggestive of an antidrug immune response. The drug is systemically distributed, accumulating to high levels in the serum and plasma after subcutaneous delivery. Further, we showed that serum from GRFT-treated animals retained antiviral activity against HIV-1-enveloped pseudoviruses in a cell-based neutralization assay. Overall, our data presented here show that GRFT accumulates to relevant therapeutic concentrations which are tolerated with minimal toxicity. These studies support further development of GRFT as a systemic antiviral therapeutic agent against enveloped viruses, although deimmunizing the molecule may be necessary if it is to be used in long-term treatment of chronic viral infections.
Related JoVE Video
Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine.
N. Engl. J. Med.
PUBLISHED: 10-07-2013
Show Abstract
Hide Abstract
A safe and effective vaccine for the prevention of human immunodeficiency virus type 1 (HIV-1) infection is a global priority. We tested the efficacy of a DNA prime-recombinant adenovirus type 5 boost (DNA/rAd5) vaccine regimen in persons at increased risk for HIV-1 infection in the United States.
Related JoVE Video
Robust Neutralizing Antibodies Elicited by HIV-1 JRFL Envelope Glycoprotein Trimers in Nonhuman Primates.
J. Virol.
PUBLISHED: 09-25-2013
Show Abstract
Hide Abstract
Host cell-mediated proteolytic cleavage of the human immunodeficiency virus type 1 (HIV-1) gp160 precursor glycoprotein into gp120 and gp41 subunits is required to generate fusion-competent envelope glycoprotein (Env) spikes. The gp120-directed broadly neutralizing monoclonal antibodies (bNabs) isolated from HIV-infected individuals efficiently recognize fully cleaved JRFL Env spikes; however, nonneutralizing gp120-directed monoclonal antibodies isolated from infected or vaccinated subjects recognize only uncleaved JRFL spikes. Therefore, as an immunogen, cleaved spikes that selectively present desired neutralizing epitopes to B cells may elicit cross-reactive neutralizing antibodies. Accordingly, we inoculated nonhuman primates (NHPs) with plasmid DNA encoding transmembrane-anchored, cleaved JRFL Env or by electroporation (EP). Priming with DNA expressing soluble, uncleaved gp140 trimers was included as a comparative experimental group of NHPs. DNA inoculation was followed by boosts with soluble JRFL gp140 trimers, and control NHPs were inoculated with soluble JRFL protein trimers without DNA priming. In the TZM-bl assay, elicitation of neutralizing antibodies against HIV-1 tier 1 isolates was robust following the protein boost. Neutralization of tier 2 isolates was detected, but only in animals primed with plasmid DNA and boosted with trimeric protein. Using the more sensitive A3R5 assay, consistent neutralization of both clade B and C tier 2 isolates was detected from all regimens assessed in the current study, exceeding levels achieved by our previous vaccine regimens in primates. Together, these data suggest a potential advantage of B cell priming followed by a rest interval and protein boosting to present JRFL Env spikes to the immune system to better generate HIV-1 cross-clade neutralizing antibodies.
Related JoVE Video
Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV.
Nature
PUBLISHED: 09-06-2013
Show Abstract
Hide Abstract
A major challenge for the development of a highly effective AIDS vaccine is the identification of mechanisms of protective immunity. To address this question, we used a nonhuman primate challenge model with simian immunodeficiency virus (SIV). We show that antibodies to the SIV envelope are necessary and sufficient to prevent infection. Moreover, sequencing of viruses from breakthrough infections revealed selective pressure against neutralization-sensitive viruses; we identified a two-amino-acid signature that alters antigenicity and confers neutralization resistance. A similar signature confers resistance of human immunodeficiency virus (HIV)-1 to neutralization by monoclonal antibodies against variable regions 1 and 2 (V1V2), suggesting that SIV and HIV share a fundamental mechanism of immune escape from vaccine-elicited or naturally elicited antibodies. These analyses provide insight into the limited efficacy seen in HIV vaccine trials.
Related JoVE Video
Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1.
J. Immunol. Methods
PUBLISHED: 08-30-2013
Show Abstract
Hide Abstract
The TZM-bl assay measures antibody-mediated neutralization of HIV-1 as a function of reductions in HIV-1 Tat-regulated firefly luciferase (Luc) reporter gene expression after a single round of infection with Env-pseudotyped viruses. This assay has become the main endpoint neutralization assay used for the assessment of pre-clinical and clinical trial samples by a growing number of laboratories worldwide. Here we present the results of the formal optimization and validation of the TZM-bl assay, performed in compliance with Good Clinical Laboratory Practice (GCLP) guidelines. The assay was evaluated for specificity, accuracy, precision, limits of detection and quantitation, linearity, range and robustness. The validated manual TZM-bl assay was also adapted, optimized and qualified to an automated 384-well format.
Related JoVE Video
Effects of cellular activation on anti-HIV-1 restriction factor expression profile in primary cells.
J. Virol.
PUBLISHED: 08-21-2013
Show Abstract
Hide Abstract
Expression of cell-intrinsic antiviral factors suppresses HIV-1 replication. We hypothesized that cellular activation modulates host restriction and susceptibility to HIV-1 infection. We measured the gene expression of 34 antiviral factors in healthy peripheral blood mononuclear cells (PBMC). Cellular activation induced expression of interferon-stimulated gene 15 (ISG15), tripartite motif 5? (TRIM5?), bone marrow stromal cell antigen 2 (BST-2)/tetherin, and certain apolipoprotein B mRNA editing enzyme 3 (APOBEC3) family members. Expression of RTF1, RNA polymerase II-associated factor 1 (PAF1), TRIM11, TRIM26, and BST-2/tetherin correlated with decreased HIV-1 infectivity. This report demonstrates synchronous effects of activation-induced antiviral genes on HIV-1 infectivity, providing candidates for pharmacological manipulation.
Related JoVE Video
Lack of B cell dysfunction is associated with functional, gp120-dominant antibody responses in breast milk of simian immunodeficiency virus-infected African green monkeys.
J. Virol.
PUBLISHED: 08-07-2013
Show Abstract
Hide Abstract
The design of an effective vaccine to reduce the incidence of mother-to-child transmission (MTCT) of human immunodeficiency virus (HIV) via breastfeeding will require identification of protective immune responses that block postnatal virus acquisition. Natural hosts of simian immunodeficiency virus (SIV) sustain nonpathogenic infection and rarely transmit the virus to their infants despite high milk virus RNA loads. This is in contrast to HIV-infected women and SIV-infected rhesus macaques (RhMs), nonnatural hosts which exhibit higher rates of postnatal virus transmission. In this study, we compared the systemic and mucosal B cell responses of lactating, SIV-infected African green monkeys (AGMs), a natural host species, to that of SIV-infected RhMs and HIV-infected women. AGMs did not demonstrate hypergammaglobulinemia or accumulate circulating memory B cells during chronic SIV infection. Moreover, the milk of SIV-infected AGMs contained higher proportions of naive B cells than RhMs. Interestingly, AGMs exhibited robust milk and plasma Env binding antibody responses that were one to two logs higher than those in RhMs and humans and demonstrated autologous neutralizing responses in milk at 1 year postinfection. Furthermore, the plasma and milk Env gp120-binding antibody responses were equivalent to or predominant over Env gp140-binding antibody responses in AGMs, in contrast to that in RhMs and humans. The strong gp120-specific, functional antibody responses in the milk of SIV-infected AGMs may contribute to the rarity of postnatal transmission observed in natural SIV hosts.
Related JoVE Video
Induction of HIV-1 broad neutralizing antibodies in 2F5 knock-in mice: selection against membrane proximal external region-associated autoreactivity limits T-dependent responses.
J. Immunol.
PUBLISHED: 08-05-2013
Show Abstract
Hide Abstract
A goal of HIV-1 vaccine development is to elicit broadly neutralizing Abs (BnAbs). Using a knock-in (KI) model of 2F5, a human HIV-1 gp41 membrane proximal external region (MPER)-specific BnAb, we previously demonstrated that a key obstacle to BnAb induction is clonal deletion of BnAb-expressing B cells. In this study of this model, we provide a proof-of-principle that robust serum neutralizing IgG responses can be induced from pre-existing, residual, self-reactive BnAb-expressing B cells in vivo using a structurally compatible gp41 MPER immunogen. Furthermore, in CD40L-deficient 2F5 KI mice, we demonstrate that these BnAb responses are elicited via a type II T-independent pathway, coinciding with expansion and activation of transitional splenic B cells specific for 2F5s nominal gp41 MPER-binding epitope (containing the 2F5 neutralization domain ELDKWA). In contrast, constitutive production of nonneutralizing serum IgGs in 2F5 KI mice is T dependent and originates from a subset of splenic mature B2 cells that have lost their ability to bind 2F5s gp41 MPER epitope. These results suggest that residual, mature B cells expressing autoreactive BnAbs, like 2F5 as BCR, may be limited in their ability to participate in T-dependent responses by purifying selection that selectively eliminates reactivity for neutralization epitope-containing/mimicked host Ags.
Related JoVE Video
A novel rabbit monoclonal antibody platform to dissect the diverse repertoire of antibody epitopes for HIV-1 Env immunogen design.
J. Virol.
PUBLISHED: 07-17-2013
Show Abstract
Hide Abstract
The majority of available monoclonal antibodies (MAbs) in the current HIV vaccine field are generated from HIV-1-infected people. In contrast, preclinical immunogenicity studies have mainly focused on polyclonal antibody responses in experimental animals. Although rabbits have been widely used for antibody studies, there has been no report of using rabbit MAbs to dissect the specificity of antibody responses for AIDS vaccine development. Here we report on the production of a panel of 12 MAbs from a New Zealand White (NZW) rabbit that was immunized with an HIV-1 JR-FL gp120 DNA prime and protein boost vaccination regimen. These rabbit MAbs recognized a diverse repertoire of envelope (Env) epitopes ranging from the highly immunogenic V3 region to several previously underappreciated epitopes in the C1, C4, and C5 regions. Nine MAbs showed cross-reactivity to gp120s of clades other than clade B. Increased somatic mutation and extended CDR3 were observed with Ig genes of several molecularly cloned rabbit MAbs. Phylogenic tree analysis showed that the heavy chains of MAbs recognizing the same region on gp120 tend to segregate into an independent subtree. At least three rabbit MAbs showed neutralizing activities with various degrees of breadth and potency. The establishment of this rabbit MAb platform will significantly enhance our ability to test optimal designs of Env immunogens to gain a better understanding of the structural specificity and evolution process of Env-specific antibody responses elicited by candidate AIDS vaccines.
Related JoVE Video
Mitigation of variation observed in a peripheral blood mononuclear cell (PBMC) based HIV-1 neutralization assay by donor cell pooling.
Virology
PUBLISHED: 07-03-2013
Show Abstract
Hide Abstract
Cultured primary peripheral blood mononuclear cells (PBMC) represent a potentially physiologic in vitro model of HIV-1 infection, but assessment of antibody-mediated HIV-1 neutralization using PBMC has been hindered by donor variability and lack of a sustainable individual PBMC source. To advance this model for HIV vaccine evaluation, intra- and inter-assay variability were assessed using monoclonal and polyclonal antibodies and PBMC targets from multiple HIV-seronegative donors. Inter-assay variability was introduced by using different PBMC for virus propagation, and more substantially, for assay targets. Neutralization titers varied by as much as 4 logs when using different individual donor PBMC as targets; variability was antibody-specific, with the greatest variation observed using an individual polyclonal plasma. Pooling of multiple PBMC donors significantly reduced median inter-assay variation to the level of intra-assay variation, suggesting a pathway forward for establishing a uniform, sustainable and standardized approach to the assessment of antibody function using a PBMC model.
Related JoVE Video
Vaccination with Vaxfectin(®) adjuvanted SIV DNA induces long-lasting humoral immune responses able to reduce SIVmac251 Viremia.
Hum Vaccin Immunother
PUBLISHED: 07-02-2013
Show Abstract
Hide Abstract
We evaluated the immunogenicity and efficacy of Vaxfectin(®) adjuvanted SIV DNA vaccines in mice and macaques. Vaccination of mice with Vaxfectin(®) adjuvanted SIV gag DNA induced higher humoral immune responses than administration of unadjuvanted DNA, whereas similar levels of cellular immunity were elicited. Vaxfectin(®) adjuvanted SIVmac251 gag and env DNA immunization of rhesus macaques was used to examine magnitude, durability, and efficacy of humoral immunity. Vaccinated macaques elicited potent neutralizing antibodies able to cross-neutralize the heterologous SIVsmE660 Env. We found remarkable durability of Gag and Env humoral responses, sustained during ~2 y of follow-up. The Env-specific antibody responses induced by Vaxfectin(®) adjuvanted env DNA vaccination disseminated into mucosal tissues, as demonstrated by their presence in saliva, including responses to the V1-V2 region, and rectal fluids. The efficacy of the immune responses was evaluated upon intrarectal challenge with low repeated dose SIVmac251. Although 2 of the 3 vaccinees became infected, these animals showed significantly lower peak virus loads and lower chronic viremia than non-immunized infected controls. Thus, Vaxfectin(®) adjuvanted DNA is a promising vaccine approach for inducing potent immune responses able to control the highly pathogenic SIVmac251.
Related JoVE Video
Comparison of intradermal and intramuscular delivery followed by in vivo electroporation of SIV Env DNA in macaques.
Hum Vaccin Immunother
PUBLISHED: 06-28-2013
Show Abstract
Hide Abstract
A panel of SIVmac251 transmitted Env sequences were tested for expression, function and immunogenicity in mice and macaques. The immunogenicity of a DNA vaccine cocktail expressing SIVmac239 and three transmitted SIVmac251 Env sequences was evaluated upon intradermal or intramuscular injection followed by in vivo electroporation in macaques using sequential vaccination of gp160, gp120 and gp140 expressing DNAs. Both intradermal and intramuscular vaccination regimens using the gp160 expression plasmids induced robust humoral immune responses, which further improved using the gp120 expressing DNAs. The responses showed durability of binding and neutralizing antibody titers and high avidity for>1 y. The intradermal DNA delivery regimen induced higher cross-reactive responses able to neutralize the heterologous tier 1B-like SIVsmE660_CG7V. Analysis of cellular immune responses showed induction of Env-specific memory responses and cytotoxic granzyme B(+) T cells in both vaccine groups, although the magnitude of the responses were ~10x higher in the intramuscular/electroporation group. The cellular responses induced by both regimens were long lasting and could be detected ~1 y after the last vaccination. These data show that both DNA delivery methods are able to induce robust and durable immune responses in macaques.
Related JoVE Video
Investigational treatment suspension and enhanced cell-mediated immunity at rebound followed by drug-free remission of simian AIDS.
Retrovirology
PUBLISHED: 05-16-2013
Show Abstract
Hide Abstract
HIV infection persists despite antiretroviral treatment (ART) and is reignited as soon as therapies are suspended. This vicious cycle is fueled by the persistence of viral reservoirs that are invulnerable to standard ART protocols, and thus therapeutic agents able to target these reservoirs are needed. One such agent, auranofin, has recently been shown to decrease the memory T-cell reservoir in chronically SIVmac251-infected macaques. Moreover, auranofin could synergize with a fully suppressive ART protocol and induce a drug-free post-therapy containment of viremia.
Related JoVE Video
Vaccine-induced plasma IgA specific for the C1 region of the HIV-1 envelope blocks binding and effector function of IgG.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 05-09-2013
Show Abstract
Hide Abstract
Analysis of correlates of risk of infection in the RV144 HIV-1 vaccine efficacy trial demonstrated that plasma IgG against the HIV-1 envelope (Env) variable region 1 and 2 inversely correlated with risk, whereas HIV-1 Env-specific plasma IgA responses directly correlated with risk. In the secondary analysis, antibody-dependent cellular cytotoxicity (ADCC) was another inverse correlate of risk, but only in the presence of low plasma IgA Env-specific antibodies. Thus, we investigated the hypothesis that IgA could attenuate the protective effect of IgG responses through competition for the same Env binding sites. We report that Env-specific plasma IgA/IgG ratios are higher in infected than in uninfected vaccine recipients in RV144. Moreover, Env-specific IgA antibodies from RV144 vaccinees blocked the binding of ADCC-mediating mAb to HIV-1 Env glycoprotein 120 (gp120). An Env-specific monomeric IgA mAb isolated from an RV144 vaccinee also inhibited the ability of natural killer cells to kill HIV-1-infected CD4(+) T cells coated with RV144-induced IgG antibodies. We show that monomeric Env-specific IgA, as part of postvaccination polyclonal antibody response, may modulate vaccine-induced immunity by diminishing ADCC effector function.
Related JoVE Video
Infectious virion capture by HIV-1 gp120-specific IgG from RV144 vaccinees.
J. Virol.
PUBLISHED: 05-08-2013
Show Abstract
Hide Abstract
The detailed examination of the antibody repertoire from RV144 provides a unique template for understanding potentially protective antibody functions. Some potential immune correlates of protection were untested in the correlates analyses due to inherent assay limitations, as well as the need to keep the correlates analysis focused on a limited number of endpoints to achieve statistical power. In an RV144 pilot study, we determined that RV144 vaccination elicited antibodies that could bind infectious virions (including the vaccine strains HIV-1 CM244 and HIV-1 MN and an HIV-1 strain expressing transmitted/founder Env, B.WITO.c). Among vaccinees with the highest IgG binding antibody profile, the majority (78%) captured the infectious vaccine strain virus (CM244), while a smaller proportion of vaccinees (26%) captured HIV-1 transmitted/founder Env virus. We demonstrated that vaccine-elicited HIV-1 gp120 antibodies of multiple specificities (V3, V2, conformational C1, and gp120 conformational) mediated capture of infectious virions. Although capture of infectious HIV-1 correlated with other humoral immune responses, the extent of variation between these humoral responses and virion capture indicates that virion capture antibodies occupy unique immunological space.
Related JoVE Video
Comparison of viral Env proteins from acute and chronic infections with subtype C human immunodeficiency virus type 1 identifies differences in glycosylation and CCR5 utilization and suggests a new strategy for immunogen design.
J. Virol.
PUBLISHED: 04-24-2013
Show Abstract
Hide Abstract
Understanding human immunodeficiency virus type 1 (HIV-1) transmission is central to developing effective prevention strategies, including a vaccine. We compared phenotypic and genetic variation in HIV-1 env genes from subjects in acute/early infection and subjects with chronic infections in the context of subtype C heterosexual transmission. We found that the transmitted viruses all used CCR5 and required high levels of CD4 to infect target cells, suggesting selection for replication in T cells and not macrophages after transmission. In addition, the transmitted viruses were more likely to use a maraviroc-sensitive conformation of CCR5, perhaps identifying a feature of the target T cell. We confirmed an earlier observation that the transmitted viruses were, on average, modestly underglycosylated relative to the viruses from chronically infected subjects. This difference was most pronounced in comparing the viruses in acutely infected men to those in chronically infected women. These features of the transmitted virus point to selective pressures during the transmission event. We did not observe a consistent difference either in heterologous neutralization sensitivity or in sensitivity to soluble CD4 between the two groups, suggesting similar conformations between viruses from acute and chronic infection. However, the presence or absence of glycosylation sites had differential effects on neutralization sensitivity for different antibodies. We suggest that the occasional absence of glycosylation sites encoded in the conserved regions of env, further reduced in transmitted viruses, could expose specific surface structures on the protein as antibody targets.
Related JoVE Video
Mucosal immunization of lactating female rhesus monkeys with a transmitted/founder HIV-1 envelope induces strong Env-specific IgA antibody responses in breast milk.
J. Virol.
PUBLISHED: 04-17-2013
Show Abstract
Hide Abstract
We previously demonstrated that vaccination of lactating rhesus monkeys with a DNA prime/vector boost strategy induces strong T-cell responses but limited envelope (Env)-specific humoral responses in breast milk. To improve vaccine-elicited antibody responses in milk, hormone-induced lactating rhesus monkeys were vaccinated with a transmitted/founder (T/F) HIV Env immunogen in a prime-boost strategy modeled after the moderately protective RV144 HIV vaccine. Lactating rhesus monkeys were intramuscularly primed with either recombinant DNA (n = 4) or modified vaccinia virus Ankara (MVA) poxvirus vector (n = 4) expressing the T/F HIV Env C.1086 and then boosted twice intramuscularly with C.1086 gp120 and the adjuvant MF59. The vaccines induced Env-binding IgG and IgA as well as neutralizing and antibody-dependent cellular cytotoxicity (ADCC) responses in plasma and milk of most vaccinated animals. Importantly, plasma neutralization titers against clade C HIV variants MW965 (P = 0.03) and CAP45 (P = 0.04) were significantly higher in MVA-primed than in DNA-primed animals. The superior systemic prime-boost regimen was then compared to a mucosal-boost regimen, in which animals were boosted twice intranasally with C.1086 gp120 and the TLR 7/8 agonist R848 following the same systemic prime. While the systemic and mucosal vaccine regimens elicited comparable levels of Env-binding IgG antibodies, mucosal immunization induced significantly stronger Env-binding IgA responses in milk (P = 0.03). However, the mucosal regimen was not as potent at inducing functional IgG responses. This study shows that systemic MVA prime followed by either intranasal or systemic protein boosts can elicit strong humoral responses in breast milk and may be a useful strategy to interrupt postnatal HIV-1 transmission.
Related JoVE Video
Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus.
Nature
PUBLISHED: 03-07-2013
Show Abstract
Hide Abstract
Current human immunodeficiency virus-1 (HIV-1) vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in approximately 20% of HIV-1-infected individuals, and details of their generation could provide a blueprint for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from the time of infection. The mature antibody, CH103, neutralized approximately 55% of HIV-1 isolates, and its co-crystal structure with the HIV-1 envelope protein gp120 revealed a new loop-based mechanism of CD4-binding-site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the unmutated common ancestor of the CH103 lineage avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data determine the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies, and provide insights into strategies to elicit similar antibodies by vaccination.
Related JoVE Video
Identification of an HIV-1 clade A envelope that exhibits broad antigenicity and neutralization sensitivity and elicits antibodies targeting three distinct epitopes.
J. Virol.
PUBLISHED: 03-06-2013
Show Abstract
Hide Abstract
Broadly neutralizing antibodies (bNAbs) PG9 and PG16 were isolated from an International AIDS Vaccine Initiative (IAVI) Protocol G subject infected with human immunodeficiency virus type 1 (HIV-1) clade A. Both antibodies are highly potent and neutralize greater than 70% of viruses tested. We sought to begin immunogen design based on viral sequences from this patient; however, pseudoviruses prepared with 19 envelope sequences from this subject were resistant to neutralization by PG9 and PG16. Therefore, we used a bioinformatics approach to identify closely related viruses that were potentially sensitive to PG9 and PG16. A most-recent common ancestor (MRCA) sequence for the viral envelope (Env) was determined and aligned with 99 subtype A gp160 sequences from the Los Alamos HIV database. Virus BG505.W6M.ENV.C2 (BG505) was found to have the highest degree of homology (73%) to the MRCA sequence. Pseudoviruses prepared with this Env were sensitive to neutralization with a broad panel of bNAbs, including PG9 and PG16. When expressed by 293T cells as soluble gp120, the BG505 monomer bound well to both PG9 and PG16. We further showed that a point mutation (L111A) enabled more efficient production of a stable gp120 monomer that preserves the major neutralization epitopes. Finally, we showed that an adjuvanted formulation of this gp120 protein elicited neutralizing antibodies in rabbits (following a gp120 DNA vaccine prime) and that the antisera competed with bNAbs from 3 classes of nonoverlapping epitopes. Thus, the BG505 Env protein warrants further investigation as an HIV vaccine candidate, as a stand-alone protein, or as a component of a vaccine vector.
Related JoVE Video
Impact of antibody quality and anamnestic response on viremia control post-challenge in a combined Tat/Env vaccine regimen in rhesus macaques.
Virology
PUBLISHED: 02-27-2013
Show Abstract
Hide Abstract
Previously, priming rhesus macaques with Adenovirus type 5 host range mutant-recombinants encoding Tat and Env and boosting with Tat and Env protein in MPL-SE controlled chronic viremia by 4 logs following homologous intravenous SHIV89.6P challenge. Here we evaluated Tat, Env, and Tat/Env regimens for immunogenicity and protective efficacy using clade C Env, alum adjuvant, and a heterologous intrarectal SHIV1157ipd3N4 challenge. Despite induction of strong cellular and humoral immunity, Tat/Env group T and B-cell memory responses were not significantly enhanced over Tat- or Env-only groups. Lack of viremia control post-challenge was attributed to lower avidity Env antibodies and no anamnestic ADCC response or SHIV1157ipd3N4 neutralizing antibody development post-challenge. Poor biologic activity of the Tat immunogen may have impaired Tat immunity. In the absence of sterilizing immunity, strong anamnestic responses to heterologous virus can help control viremia. Both antibody breadth and optimal adjuvanticity are needed to elicit high-quality antibody for protective efficacy.
Related JoVE Video
Design of an Escherichia coli expressed HIV-1 gp120 fragment immunogen that binds to b12 and induces broad and potent neutralizing antibodies.
J. Biol. Chem.
PUBLISHED: 02-21-2013
Show Abstract
Hide Abstract
b12, one of the few broadly neutralizing antibodies against HIV-1, binds to the CD4 binding site (CD4bs) on the gp120 subunit of HIV-1 Env. Two small fragments of HIV-1 gp120, b121a and b122a, which display about 70% of the b12 epitope and include solubility-enhancing mutations, were designed. Bacterially expressed b121a/b122a were partially folded and could bind b12 but not the CD4bs-directed non-neutralizing antibody b6. Sera from rabbits primed with b121a or b122a protein fragments and boosted with full-length gp120 showed broad neutralizing activity in a TZM-bl assay against a 16-virus panel that included nine Tier 2 and 3 viruses as well as in a five-virus panel previously designed to screen for broad neutralization. Using a mean IC50 cut-off of 50, sera from control rabbits immunized with gp120 alone neutralized only one virus of the 14 non-Tier 1 viruses tested (7%), whereas sera from b121a- and b122a-immunized rabbits neutralized seven (50%) and twelve (86%) viruses, respectively. Serum depletion studies confirmed that neutralization was gp120-directed and that sera from animals immunized with gp120 contained lower amounts of CD4bs-directed antibodies than corresponding sera from animals immunized with b121a/b122a. Competition binding assays with b12 also showed that b121a/2a sera contained significantly higher amounts of antibodies directed toward the CD4 binding site than the gp120 sera. The data demonstrate that it is possible to elicit broadly neutralizing sera against HIV-1 in small animals.
Related JoVE Video
Rapid high-level production of functional HIV broadly neutralizing monoclonal antibodies in transient plant expression systems.
PLoS ONE
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
Passive immunotherapy using anti-HIV broadly neutralizing monoclonal antibodies (mAbs) has shown promise as an HIV treatment, reducing mother-to-child-transmission (MTCT) of simian/human immunodeficiency virus (SHIV) in non-human primates and decreasing viral rebound in patients who ceased receiving anti-viral drugs. In addition, a cocktail of potent mAbs may be useful as mucosal microbicides and provide an effective therapy for post-exposure prophylaxis. However, even highly neutralizing HIV mAbs used today may lose their effectiveness if resistance occurs, requiring the rapid production of new or engineered mAbs on an ongoing basis in order to counteract the viral resistance or the spread of a certain HIV-1 clade in a particular region or patient. Plant-based expression systems are fast, inexpensive and scalable and are becoming increasingly popular for the production of proteins and monoclonal antibodies. In the present study, Agrobacterium-mediated transient transfection of plants, utilizing two species of Nicotiana, have been tested to rapidly produce high levels of an HIV 89.6P?140env and several well-studied anti-HIV neutralizing monoclonal antibodies (b12, 2G12, 2F5, 4E10, m43, VRC01) or a single chain antibody construct (m9), for evaluation in cell-based viral inhibition assays. The protein-A purified plant-derived antibodies were intact, efficiently bound HIV envelope, and were equivalent to, or in one case better than, their counterparts produced in mammalian CHO or HEK-293 cells in both neutralization and antibody dependent viral inhibition assays. These data indicate that transient plant-based transient expression systems are very adaptable and could rapidly generate high levels of newly identified functional recombinant HIV neutralizing antibodies when required. In addition, they warrant detailed cost-benefit analysis of prolonged incubation in plants to further increase mAb production.
Related JoVE Video
Short communication: HIV type 1 subtype C variants transmitted through the bottleneck of breastfeeding are sensitive to new generation broadly neutralizing antibodies directed against quaternary and CD4-binding site epitopes.
AIDS Res. Hum. Retroviruses
PUBLISHED: 01-18-2013
Show Abstract
Hide Abstract
Mother-to-child transmission of HIV-1 subtype C can occur in utero, intrapartum, or via breast milk exposure. While not well understood, there are putative differences in the mechanisms involved with the distinct routes of vertical HIV transmission. Here, we address the question of whether specific viral characteristics are common to variants transmitted through breastfeeding that may facilitate evasion of innate or adaptive immune responses. We amplified the envelope gene (env) from the plasma of six infants during acute infection who were infected with HIV-1 subtype C through breastfeeding, and from three available matched maternal samples. We sequenced the full-length env genes in these subjects revealing heterogeneous viral populations in the mothers and homogeneous populations in the infants. In five infants, the viral population arose from a single variant, while two variants were detected in the remaining infant. Infant env sequences had fewer N-linked glycosylation sites and shorter sequences than those of the available matched maternal samples. Though the small size of the study precluded our ability to test statistical significance, these results are consistent with selection for virus with shorter variable loops and fewer glycosylation sites during transmission of HIV-1 subtype C in other settings. Transmitted envs were resistant to neutralization by antibodies 2G12 and 2F5, but were generally sensitive to the more broadly neutralizing PG9, PG16, and VRC01, indicating that this new generation of broadly neutralizing monoclonal antibodies could be efficacious in passive immunization strategies.
Related JoVE Video
Analysis of V2 antibody responses induced in vaccinees in the ALVAC/AIDSVAX HIV-1 vaccine efficacy trial.
PLoS ONE
PUBLISHED: 01-17-2013
Show Abstract
Hide Abstract
The RV144 clinical trial of a prime/boost immunizing regimen using recombinant canary pox (ALVAC-HIV) and two gp120 proteins (AIDSVAX B and E) was previously shown to have a 31.2% efficacy rate. Plasma specimens from vaccine and placebo recipients were used in an extensive set of assays to identify correlates of HIV-1 infection risk. Of six primary variables that were studied, only one displayed a significant inverse correlation with risk of infection: the antibody (Ab) response to a fusion protein containing the V1 and V2 regions of gp120 (gp70-V1V2). This finding prompted a thorough examination of the results generated with the complete panel of 13 assays measuring various V2 Abs in the stored plasma used in the initial pilot studies and those used in the subsequent case-control study. The studies revealed that the ALVAC-HIV/AIDSVAX vaccine induced V2-specific Abs that cross-react with multiple HIV-1 subgroups and recognize both conformational and linear epitopes. The conformational epitope was present on gp70-V1V2, while the predominant linear V2 epitope mapped to residues 165-178, immediately N-terminal to the putative ?4?7 binding motif in the mid-loop region of V2. Odds ratios (ORs) were calculated to compare the risk of infection with data from 12 V2 assays, and in 11 of these, the ORs were ?1, reaching statistical significance for two of the variables: Ab responses to gp70-V1V2 and to overlapping V2 linear peptides. It remains to be determined whether anti-V2 Ab responses were directly responsible for the reduced infection rate in RV144 and whether anti-V2 Abs will prove to be important with other candidate HIV vaccines that show efficacy, however, the results support continued dissection of Ab responses to the V2 region which may illuminate mechanisms of protection from HIV-1 infection and may facilitate the development of an effective HIV-1 vaccine.
Related JoVE Video
Protection afforded by an HIV vaccine candidate in macaques depends on the dose of SIVmac251 at challenge exposure.
J. Virol.
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
We used the simian immunodeficiency virus mac251 (SIV(mac251)) macaque model to study the effect of the dose of mucosal exposure on vaccine efficacy. We immunized macaques with a DNA prime followed by SIV gp120 protein immunization with ALVAC-SIV and gp120 in alum, and we challenged them with SIV(mac251) at either a single high dose or at two repeated low-dose exposures to a 10-fold-lower dose. Infection was neither prevented nor modified following a single high-dose challenge of the immunized macaques. However, two exposures to a 10-fold-lower dose resulted in protection from SIV(mac251) acquisition in 3 out of 12 macaques. The remaining animals that were infected had a modulated pathogenesis, significant downregulation of interferon responsive genes, and upregulation of genes involved in B- and T-cell responses. Thus, the choice of the experimental model greatly influences the vaccine efficacy of vaccines for human immunodeficiency virus (HIV).
Related JoVE Video
Postnatally-transmitted HIV-1 Envelope variants have similar neutralization-sensitivity and function to that of nontransmitted breast milk variants.
Retrovirology
PUBLISHED: 01-10-2013
Show Abstract
Hide Abstract
Breastfeeding is a leading cause of infant HIV-1 infection in the developing world, yet only a minority of infants exposed to HIV-1 via breastfeeding become infected. As a genetic bottleneck severely restricts the number of postnatally-transmitted variants, genetic or phenotypic properties of the virus Envelope (Env) could be important for the establishment of infant infection. We examined the efficiency of virologic functions required for initiation of infection in the gastrointestinal tract and the neutralization sensitivity of HIV-1 Env variants isolated from milk of three postnatally-transmitting mothers (n = 13 viruses), five clinically-matched nontransmitting mothers (n = 16 viruses), and seven postnatally-infected infants (n = 7 postnatally-transmitted/founder (T/F) viruses).
Related JoVE Video
A computational framework for the analysis of peptide microarray antibody binding data with application to HIV vaccine profiling.
J. Immunol. Methods
PUBLISHED: 01-03-2013
Show Abstract
Hide Abstract
We present an integrated analytical method for analyzing peptide microarray antibody binding data, from normalization through subject-specific positivity calls and data integration and visualization. Current techniques for the normalization of such data sets do not account for non-specific binding activity. A novel normalization technique based on peptide sequence information quickly and effectively reduced systematic biases. We also employed a sliding mean window technique that borrows strength from peptides sharing similar sequences, resulting in reduced signal variability. A smoothed signal aided in the detection of weak antibody binding hotspots. A new principled FDR method of setting positivity thresholds struck a balance between sensitivity and specificity. In addition, we demonstrate the utility and importance of using baseline control measurements when making subject-specific positivity calls. Data sets from two human clinical trials of candidate HIV-1 vaccines were used to validate the effectiveness of our overall computational framework.
Related JoVE Video
Pre-Clinical Development of a Recombinant, Replication-Competent Adenovirus Serotype 4 Vector Vaccine Expressing HIV-1 Envelope 1086 Clade C.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV-1 infection or limits in vivo viral replication. The objective of these studies is to develop a replication-competent, vaccine vector based on the adenovirus serotype 4 (Ad4) virus expressing HIV-1 envelope (Env) 1086 clade C glycoprotein. Ad4 recombinant vectors expressing Env gp160 (Ad4Env160), Env gp140 (Ad4Env140), and Env gp120 (Ad4Env120) were evaluated.
Related JoVE Video
Detection of HIV-1 Neutralizing Antibodies in a Human CD4(+)/CXCR4(+)/CCR5(+) T-Lymphoblastoid Cell Assay System.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Sensitive assays are needed to meaningfully assess low levels of neutralizing antibodies (NAbs) that may be important for protection against the acquisition of HIV-1 infection in vaccine recipients. The current assay of choice uses a non-lymphoid cell line (TZM-bl) that may lack sensitivity owing to over expression of CD4 and CCR5. We used transfection of a human CD4+/CXCR4+/?4?7+ T-lymphoblastoid cell line (A3.01) with a CMV IE promoter-driven CCR5neo vector to stably express CCR5. The resulting line, designated A3R5, is permissive to a wide range of CCR5-tropic circulating strains of HIV-1, including HIV-1 molecular clones containing a Tat-inducible Renilla luciferase reporter gene and expressing multiple Env subtypes. Flow cytometric analysis found CCR5 surface expression on A3R5 cells to be markedly less than TZM-bl but similar to CD3.8 stimulated PBMC. More importantly, neutralization mediated by a diverse panel of monoclonal antibodies, HIV-1 positive polyclonal sera and sCD4 was consistently greater in A3R5 compared to TZM-bl cells. The A3R5 cell line provides a novel approach to guide the development and qualification of promising new HIV-1 vaccine immunogens.
Related JoVE Video
Impact of HIV-1 Backbone on Neutralization Sensitivity: Neutralization Profiles of Heterologous Envelope Glycoproteins Expressed in Native Subtype C and CRF01_AE Backbone.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Standardized assays to assess vaccine and antiviral drug efficacy are critical for the development of protective HIV-1 vaccines and drugs. These immune assays will be advanced by the development of standardized viral stocks, such as HIV-1 infectious molecular clones (IMC), that i) express a reporter gene, ii) are representative of globally diverse subtypes and iii) are engineered to easily exchange envelope (env) genes for expression of sequences of interest. Thus far, a subtype B IMC backbone expressing Renilla luciferase (LucR), and into which the ectodomain of heterologous env coding sequences can be expressed has been successfully developed but as execution of HIV-1 vaccine efficacy trials shifts increasingly to non-subtype B epidemics (Southern African and Southeast Asia), non-subtype B HIV-1 reagents are needed to support vaccine development. Here we describe two IMCs derived from subtypes C and CRF01_AE HIV-1 primary isolates expressing LucR (IMC.LucR) that were engineered to express heterologous gp160 Envs. 18 constructs expressing various subtypes C and CRF01_AE Envs, mostly acute, in subtype-matched and -unmatched HIV backbones were tested for functionality and neutralization sensitivity. Our results suggest a possible effect of non-env HIV-1 genes on the interaction of Env and neutralizing antibodies and highlight the need to generate a library of IMCs representative of the HIV-1 subtype spectrum to be used as standardized neutralization assay reagents for assessing HIV-1 vaccine efficacy.
Related JoVE Video
Stabilizing Exposure of Conserved Epitopes by Structure Guided Insertion of Disulfide Bond in HIV-1 Envelope Glycoprotein.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Entry of HIV-1 into target cells requires binding of the viral envelope glycoprotein (Env) to cellular receptors and subsequent conformational changes that culminates in fusion of viral and target cell membranes. Recent structural information has revealed that these conformational transitions are regulated by three conserved but potentially flexible layers stacked between the receptor-binding domain (gp120) and the fusion arm (gp41) of Env. We hypothesized that artificial insertion of a covalent bond will snap Env into a conformation that is less mobile and stably expose conserved sites. Therefore, we analyzed the interface between these gp120 layers (layers 1, 2 and 3) and identified residues that may form disulfide bonds when substituted with cysteines. We subsequently probed the structures of the resultant mutant gp120 proteins by assaying their binding to a variety of ligands using Surface Plasmon Resonance (SPR) assay. We found that a single disulfide bond strategically inserted between the highly conserved layers 1 and 2 (C65-C115) is able to lock gp120 in a CD4 receptor bound conformation (in the absence of CD4), as indicated by the lower dissociation constant (Kd) for the CD4-induced (CD4i) epitope binding 17b antibody. When disulfide-stabilized monomeric (gp120) and trimeric (gp140) Envs were used to immunize rabbits, they were found to elicit a higher proportion of antibodies directed against both CD4i and CD4 binding site epitopes than the wild-type proteins. These results demonstrate that structure-guided stabilization of inter-layer interactions within HIV-1 Env can be used to expose conserved epitopes and potentially overcome the sequence diversity of these molecules.
Related JoVE Video
Comparative immunogenicity of HIV-1 gp160, gp140 and gp120 expressed by live attenuated newcastle disease virus vector.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The development of a vaccine against human immunodeficiency virus-1 (HIV-1) capable of inducing broad humoral and cellular responses at both the systemic and mucosal levels will be critical for combating the global AIDS epidemic. We previously demonstrated the ability of Newcastle disease virus (NDV) as a vaccine vector to express oligomeric Env protein gp160 and induce potent humoral and mucosal immune responses. In the present study, we used NDV vaccine strain LaSota as a vector to compare the biochemical and immunogenic properties of vector-expressed gp160, gp120, and two versions of gp140 (a derivative of gp160 made by deleting the transmembrane and cytoplasmic domains), namely: gp140L, which contained the complete membrane-proximal external region (MPER), and gp140S, which lacks the distal half of MPER. We show that, similar to gp160, NDV-expressed gp140S and gp120, but not gp140L, formed higher-order oligomers that retained recognition by conformationally sensitive monoclonal antibodies. Immunization of guinea pigs by the intranasal route with rLaSota/gp140S resulted in significantly greater systemic and mucosal antibody responses compared to the other recombinants. Immunization with rLaSota/140S, rLaSota/140L rLaSota/120 resulted in mixed Th1/Th2 immune responses as compared to Th1-biased immune responses induced by rLaSota/160. Importantly, rLaSota/gp140S induced neutralizing antibody responses to homologous HIV-1 strain BaL.26 and laboratory adapted HIV-1 strain MN.3 that were stronger than those elicited by the other NDV recombinants. Additionally, rLaSota/gp140S induced greater CD4+ and CD8+ T-cell responses in mice. These studies illustrate that rLaSota/gp140S is a promising vaccine candidate to elicit potent mucosal, humoral and cellular immune responses to the HIV-1 Env protein.
Related JoVE Video
Plasma IgG to Linear Epitopes in the V2 and V3 Regions of HIV-1 gp120 Correlate with a Reduced Risk of Infection in the RV144 Vaccine Efficacy Trial.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Neutralizing and non-neutralizing antibodies to linear epitopes on HIV-1 envelope glycoproteins have potential to mediate antiviral effector functions that could be beneficial to vaccine-induced protection. Here, plasma IgG responses were assessed in three HIV-1 gp120 vaccine efficacy trials (RV144, Vax003, Vax004) and in HIV-1-infected individuals by using arrays of overlapping peptides spanning the entire consensus gp160 of all major genetic subtypes and circulating recombinant forms (CRFs) of the virus. In RV144, where 31.2% efficacy against HIV-1 infection was seen, dominant responses targeted the C1, V2, V3 and C5 regions of gp120. An analysis of RV144 case-control samples showed that IgG to V2 CRF01_AE significantly inversely correlated with infection risk (OR= 0.54, p=0.0042), as did the response to other V2 subtypes (OR=0.60-0.63, p=0.016-0.025). The response to V3 CRF01_AE also inversely correlated with infection risk but only in vaccine recipients who had lower levels of other antibodies, especially Env-specific plasma IgA (OR=0.49, p=0.007) and neutralizing antibodies (OR=0.5, p=0.008). Responses to C1 and C5 showed no significant correlation with infection risk. In Vax003 and Vax004, where no significant protection was seen, serum IgG responses targeted the same epitopes as in RV144 with the exception of an additional C1 reactivity in Vax003 and infrequent V2 reactivity in Vax004. In HIV-1 infected subjects, dominant responses targeted the V3 and C5 regions of gp120, as well as the immunodominant domain, heptad repeat 1 (HR-1) and membrane proximal external region (MPER) of gp41. These results highlight the presence of several dominant linear B cell epitopes on the HIV-1 envelope glycoproteins. They also generate the hypothesis that IgG to linear epitopes in the V2 and V3 regions of gp120 are part of a complex interplay of immune responses that contributed to protection in RV144.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.