JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Immunoglobulin heavy variable (IGHV) genes and alleles: new entities, new names and implications for research and prognostication in chronic lymphocytic leukaemia.
Immunogenetics
PUBLISHED: 09-07-2014
Show Abstract
Hide Abstract
?ext generation sequencing studies in Homo sapiens have identified novel immunoglobulin heavy variable (IGHV) genes and alleles necessitating changes in the international ImMunoGeneTics information system (IMGT) GENE-DB and reference directories of IMGT/V-QUEST. In chronic lymphocytic leukaemia (CLL), the somatic hypermutation (SHM) status of the clonotypic rearranged IGHV gene is strongly associated with patient outcome. Correct determination of this parameter strictly depends on the comparison of the nucleotide sequence of the clonotypic rearranged IGHV gene with that of the closest germline counterpart. Consequently, changes in the reference directories could, in principle, affect the correct interpretation of the IGHV mutational status in CLL. To this end, we analyzed 8066 productive IG heavy chain (IGH) rearrangement sequences from our consortium both before and after the latest update of the IMGT/V-QUEST reference directory. Differences were identified in 405 cases (5 % of the cohort). In 291/405 sequences (71.9 %), changes concerned only the IGHV gene or allele name, whereas a change in the percent germline identity (%GI) was noted in 114/405 (28.1 %) sequences; in 50/114 (43.8 %) sequences, changes in the %GI led to a change in the mutational set. In conclusion, recent changes in the IMGT reference directories affected the interpretation of SHM in a sizeable number of IGH rearrangement sequences from CLL patients. This indicates that both physicians and researchers should consider a re-evaluation of IG sequence data, especially for those IGH rearrangement sequences that, up to date, have a GI close to 98 %, where caution is warranted.
Related JoVE Video
Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry.
J. Proteome Res.
PUBLISHED: 08-26-2014
Show Abstract
Hide Abstract
We previously described a microLC-ESI-Q-TOF MS method for identifying monoclonal immunoglobulins in serum and then tracking them over time using their accurate molecular mass. Here we demonstrate how the same methodology can be used to identify and characterize polyclonal immunoglobulins in serum. We establish that two molecular mass distributions observed by microLC-ESI-Q-TOF MS are from polyclonal kappa and lambda light chains using a combination of theoretical molecular masses from gene sequence data and the analysis of commercially available purified polyclonal IgG kappa and IgG lambda from normal human serum. A linear regression comparison of kappa/lambda ratios for 74 serum samples (25 hypergammaglobulinemia, 24 hypogammaglobulinemia, 25 normal) determined by microflowLC-ESI-Q-TOF MS and immunonephelometry had a slope of 1.37 and a correlation coefficient of 0.639. In addition to providing kappa/lambda ratios, the same microLC-ESI-Q-TOF MS analysis can determine the molecular mass for oligoclonal light chains observed above the polyclonal background in patient samples. In 2 patients with immune disorders and hypergammaglobulinemia, we observed a skewed polyclonal molecular mass distribution which translated into biased kappa/lambda ratios. Mass spectrometry provides a rapid and simple way to combine the polyclonal kappa/lambda light chain abundance ratios with the identification of dominant monoclonal as well as oligoclonal light chain immunoglobulins. We anticipate that this approach to evaluating immunoglobulin light chains will lead to improved understanding of immune deficiencies, autoimmune diseases, and antibody responses.
Related JoVE Video
Multiple myeloma dell-derived microvesicles are enriched in CD147 expression and enhance tumor cell proliferation.
Oncotarget
PUBLISHED: 07-13-2014
Show Abstract
Hide Abstract
Multiple myeloma (MM) is characterized by the clonal expansion of malignant plasma cells within the bone marrow. There is a growing literature that tumor cells release biologically active microvesicles (MVs) that modify both local and distant microenvironments. In this study, our goals were to determine if MM cells release MVs, and if so, begin to characterize their biologic activity. Herein we present clear evidence that not only do both patient MM cells and human MM cell lines (HMCLs) release MVs, but that these MVs stimulate MM cell growth. Of interest, MM-derived MVs were enriched with the biologically active form of CD147, a transmembrane molecule previously shown by us to be crucial for MM cell proliferation. Using MVs isolated from HMCLs stably transfected with a CD147-GFP fusion construct (CD147GFP), we observed binding and internalization of MV-derived CD147 with HMCLs. Cells with greater CD147GFP internalization proliferated at a higher rate than did cells with less CD147GFP association. Lastly, MVs obtained from CD147 downregulated HMCLs were attenuated in their ability to stimulate HMCL proliferation. In summary, this study demonstrates the significance of MV shedding and MV-mediated intercellular communication on malignant plasma cell proliferation, and identifies the role of MV-enriched CD147 in this process.
Related JoVE Video
Eosinophil purification from human bone marrow.
Methods Mol. Biol.
PUBLISHED: 07-03-2014
Show Abstract
Hide Abstract
Eosinophils are innate immune cells that are best known for their involvement in host defense against parasitic infections and in asthma and allergic diseases. In vitro characterization of the function of human eosinophils has traditionally relied on the purification of these cells from the peripheral blood as reviewed in Chapter 2. Here, we describe a newly developed protocol for the purification of eosinophils from human bone marrow.
Related JoVE Video
Eosinophils regulate peripheral B cell numbers in both mice and humans.
J. Immunol.
PUBLISHED: 03-10-2014
Show Abstract
Hide Abstract
The view of eosinophils (Eos) as solely effector cells involved in host parasite defense and in the pathophysiology of allergic diseases has been challenged in recent years. In fact, there is a growing realization that these cells interact with other components of innate and adaptive immunity. For example, mouse Eos were recently demonstrated to promote plasma cell retention in the bone marrow. However, it remains unknown whether Eos influence the biology of normal B lymphocytes. In this study, we specifically assessed the effect of Eos on B cell survival, proliferation, and Ig secretion. Our data first revealed that the genetic deletion of Eos from NJ1638 IL-5 transgenic hypereosinophilic mice (previously shown to display profound B cell expansion) resulted in the near abolishment of the B cell lymphocytosis. In vitro studies using human tissues demonstrated Eos' proximity to B cell follicles and their ability to promote B cell survival, proliferation, and Ig secretion via a contact-independent mechanism. Additionally, this ability of Eos to enhance B cell responsiveness was observed in both T-independent and T-dependent B cell activation and appears to be independent of the activation state of Eos. Finally, a retrospective clinical study of hypereosinophilic patients revealed a direct correlation between peripheral blood eosinophil levels and B cell numbers. Taken together, our study identifies a novel role for Eos in the regulation of humoral immunity via their impact on B cell homeostasis and proliferation upon activation.
Related JoVE Video
Monitoring M-proteins in patients with multiple myeloma using heavy-chain variable region clonotypic peptides and LC-MS/MS.
J. Proteome Res.
PUBLISHED: 03-05-2014
Show Abstract
Hide Abstract
Multiple myeloma is a disease characterized by a clonal expansion of plasma cells that secrete a monoclonal immunoglobulin also referred to as an M-protein. In the clinical laboratory, protein electrophoresis (PEL), immunofixation electrophoresis (IFE), and free light chain nephelometry (FLC) are used to detect, monitor, and quantify an M-protein. Here, we present an alternative method based on monitoring a clonotypic (i.e., clone-specific) peptide from the M-protein heavy chain variable region using LC-MS/MS. Tryptic digests were performed on IgG purified serum from 10 patients with a known IgG M-protein. Digests were analyzed by shotgun LC-MS/MS, and the results were searched against a protein database with the patient specific, heavy chain variable region gene sequence added to the database. In all 10 cases, the protein database search matched multiple clonotypic peptides from each patient's heavy chain variable region. The clonotypic peptides were then used to quantitate the amount of M-protein in patient serum samples using selected reaction monitoring (SRM) on a triple quadrupole mass spectrometer. The response for the clonotypic peptide observed by SRM correlated with the M-protein observed by PEL. In addition, the clonotypic peptide was clearly observed by SRM in samples that were negative by IFE and FLC. Monitoring clonotypic peptides using SRM has the capacity to redefine clinical residual disease because of its superior sensitivity and specificity compared with current analytical methods.
Related JoVE Video
A structurally distinct human mycoplasma protein that generically blocks antigen-antibody union.
Science
PUBLISHED: 02-08-2014
Show Abstract
Hide Abstract
We report the discovery of a broadly reactive antibody-binding protein (Protein M) from human mycoplasma. The crystal structure of the ectodomain of transmembrane Protein M differs from other known protein structures, as does its mechanism of antibody binding. Protein M binds with high affinity to all types of human and nonhuman immunoglobulin G, predominantly through attachment to the conserved portions of the variable region of the ? and ? light chains. Protein M blocks antibody-antigen union, likely because of its large C-terminal domain extending over the antibody-combining site, blocking entry to large antigens. Similar to the other immunoglobulin-binding proteins such as Protein A, Protein M as well as its orthologs in other Mycoplasma species could become invaluable reagents in the antibody field.
Related JoVE Video
Acquired chromosomal anomalies in chronic lymphocytic leukemia patients compared with more than 50,000 quasi-normal participants.
Cancer Genet
PUBLISHED: 01-03-2014
Show Abstract
Hide Abstract
Pretherapy patients with chronic lymphocytic leukemia (CLL) from US Intergroup trial E2997 were analyzed with single nucleotide polymorphism microarrays to detect acquired chromosomal anomalies. The four CLL-typical anomalies (11q-, +12, 13q-, and 17p-) were found at expected frequencies. Acquired anomalies in other regions account for 70% of the total detected anomalies, and their number per participant has a significant effect on progression-free survival after adjusting for the effects of 17p- (and other covariates). These results were compared with those from a previous study of more than 50,000 participants from the GENEVA consortium of genome-wide association studies, which analyzed individuals with a variety of medical conditions and healthy controls. The percentage of individuals with acquired anomalies is vastly different between the two studies (GENEVA 0.8%; E2997 80%). The composition of the anomalies also differs, with GENEVA having a higher percentage of acquired uniparental disomies and a lower percentage of deletions. The four common CLL anomalies are among the most frequent in GENEVA participants, some of whom may have CLL-precursor conditions or early stages of CLL. However, the patients from E2997 (and other studies of symptomatic CLL) have recurrent acquired anomalies that were not found in GENEVA participants, thus identifying genomic changes that may be unique to symptomatic stages of CLL.
Related JoVE Video
CD147 regulates the expression of MCT1 and lactate export in multiple myeloma cells.
Cell Cycle
PUBLISHED: 09-03-2013
Show Abstract
Hide Abstract
Increased use of the glycolytic pathway, even in the presence of oxygen, has recently been recognized as a key characteristic of malignant cells. However, the glycolytic phenotype results in increased lactic acid production and, in order to prevent cellular acidosis, tumor cells must increase proton efflux via upregulation of pH regulators such as proton-pumps, sodium-proton exchangers, and/or monocarboxylate transporters (MCT) (e.g., MCT1, MCT4). Interestingly, expression of MCT1 and MCT4 has been previously shown to be dependent upon expression of the transmembrane glycoprotein CD147. Recently, we demonstrated that primary patient multiple myeloma (MM) cells and human MM cell lines (HMCLs) overexpress CD147. Therefore, the goal of the current study was to specifically determine if MCT1 and MCT4 were also overexpressed in MM cells. RT-PCR analysis demonstrated both primary patient MM cells and HMCLs overexpress MCT1 and MCT4 mRNA. Notably, primary MM cells or HMCLs were found to express variable levels of MCT1 and/or MCT4 at the protein level despite CD147 expression. In those HMCLs positive for MCT1 and/or MCT4 protein expression, MCT1 and/or MCT4 were found to be associated with CD147. Specific siRNA-mediated downregulation of MCT1 but not MCT4 resulted in decreased HMCL proliferation, decreased lactate export, and increased cellular media pH. However, western blot analysis revealed that downregulation of MCT1 also downregulated CD147 and vice versa despite no effect on mRNA levels. Taken together, these data demonstrate the association between MCT1 and CD147 proteins in MM cells and importance of their association for lactate export and proliferation in MM cells.
Related JoVE Video
Responsiveness of cytogenetically discrete human myeloma cell lines to lenalidomide: lack of correlation with cereblon and interferon regulatory factor 4 expression levels.
Eur. J. Haematol.
PUBLISHED: 08-15-2013
Show Abstract
Hide Abstract
The introduction of novel immunomodulatory drugs (IMiDs) has dramatically improved the survival of patients with multiple myeloma (MM). While it has been shown that patients with specific cytogenetic subtypes, namely t(4;14), have the best outcomes when treated with bortezomib-based regimens, the relationship between cytogenetic subtypes and response to IMiDs remains unclear. Using DNA synthesis assays, we investigated the relationship between cytogenetic subtype and lenalidomide response in a representative panel of human myeloma cell lines (HMCLs). We examined HMCL protein expression levels of the lenalidomide target cereblon (CRBN) and its downstream target interferon regulatory factor-4 (IRF4), which have previously been shown to be predictive of lenalidomide response in HMCLs. Our results reveal that lenalidomide response did not correlate with specific cytogenetic translocations. There were distinct groups of lenalidomide-responsive and non-responsive HMCLs, as defined by inhibition of cellular proliferation; notably, all of the hyperdiploid HMCLs fell into the latter category. Repeated dosing of lenalidomide significantly lowered the IC50 of the responsive HMCL ALMC-1 (IC50 = 2.6 ?m vs. 0.005 ?m, P < 0.0001), but did not have an effect on the IC50 of the non-responsive DP-6 HMCL (P > 0.05). Moreover, no association was found between lenalidomide responsiveness and CRBN and IRF4 expression. Our data indicate that lenalidomide sensitivity is independent of cytogenetic subtype in HMCLs. While CRBN and IRF4 have been shown to be associated with response to lenalidomide in patients, these findings do not translate back to HMCLs, which could be attributable to factors present in the bone marrow microenvironment.
Related JoVE Video
Chronic lymphocytic leukemia in young (less than 55 years) patients: a comprehensive analysis of prognostic factors and outcomes.
Haematologica
PUBLISHED: 08-02-2013
Show Abstract
Hide Abstract
The clinical characteristics and outcomes of younger (?55 years) patients with chronic lymphocytic leukemia in the era of modern prognostic biomarkers and chemoimmunotherapy are not well understood. Baseline characteristics and outcomes of patients with chronic lymphocytic leukemia ?55 years who were seen at Mayo Clinic between 1/1995 and 4/2012 were compared with those >55 years. Overall survival of patients ?55 was compared to age- and sex-matched normal population. The characteristics of 844 newly diagnosed chronic lymphocytic leukemia patients ?55 years (median, 50 years) were compared to 2324 patients >55 years (median, 67 years). Younger patients were more likely to be Rai stage I or II (p<0.0001), IGHV unmutated (p=0.002) and ZAP-70 positive (p=0.009). These differences became more pronounced when ?55 age group was sub-stratified into age ?45, 46-50 and 51-55 years. After a median follow-up of 5.5 years, 426 (51%) patients ?55 received treatment, and 192 (23%) had died. Patients ?55 had a shorter time to first treatment (4.0 years vs. 5.2 years; p=0.001) but longer survival (12.5 years vs. 9.5 years; p<0.0001) compared to patients >55 yrs. However, patients ?55 had significantly shorter survival than age- and sex-matched normal population (12.5 years vs. not reached; p<0.0001). Our study is the first comprehensive analysis of younger chronic lymphocytic leukemia patients in the modern era. Adverse prognostic markers appear more common among young patients. Although the survival of young chronic lymphocytic leukemia patients is longer than those >55, their survival relative to the age- and sex-matched normal population is profoundly shortened.
Related JoVE Video
Ofatumumab-based chemoimmunotherapy is effective and well tolerated in patients with previously untreated chronic lymphocytic leukemia (CLL).
Cancer
PUBLISHED: 05-06-2013
Show Abstract
Hide Abstract
Although rituximab-based chemoimmunotherapy (CIT) has substantially improved clinical outcomes in chronic lymphocytic leukemia (CLL), only 40% to 50% of patients achieve a complete remission (CR). There remains interest in identifying new approaches to improve the effectiveness of CIT. Ofatumumab is a fully human anti-CD20 monoclonal antibody with greater apparent single-agent activity than rituximab in CLL patients.
Related JoVE Video
Immunogenetics shows that not all MBL are equal: the larger the clone, the more similar to CLL.
Blood
PUBLISHED: 04-17-2013
Show Abstract
Hide Abstract
Chronic lymphocytic leukemia (CLL) -like monoclonal B-cell lymphocytosis (MBL) shares common immunophenotype and cytogenetic abnormalities with CLL, from which it is discriminated by a cutoff value of 5 × 10(9)/L circulating clonal B cells. However, the clonal size in MBL is extremely variable and allows discrimination of two distinct entities (high-count [HC] and low-count [LC]-MBL) based on a cutoff value of 0.5 × 10(9)/L clonal B cells. HC-MBL is associated with lymphocytosis and progresses to CLL requiring treatment at a rate of 1.1% per year, whereas LC-MBL is found in the general population only through high-sensitivity techniques and carries limited, if any, risk of progression. We performed an immunogenetic profiling of 333 cases with CLL-like MBL supplemented by detailed comparisons with CLL, focusing especially on CLL Rai stage 0 (CLL-0). LC- and HC-MBL had similar somatic hypermutation status, yet different IGHV gene repertoires and frequencies of B-cell receptor (BcR) stereotypy. In particular, stereotyped BcRs were infrequent in LC-MBL and were often not CLL specific. In contrast, HC-MBL exhibited clear immunogenetic similarities to CLL-0. These findings indicate that LC-MBL may not represent a true preleukemic condition, thus differing from HC-MBL/CLL-0 in which the identification of factors endowing malignant potential is strongly warranted.
Related JoVE Video
Long-term repair of T-cell synapse activity in a phase II trial of chemoimmunotherapy followed by lenalidomide consolidation in previously untreated chronic lymphocytic leukemia (CLL).
Blood
PUBLISHED: 03-14-2013
Show Abstract
Hide Abstract
Immunotherapy that facilitates endogenous T-cell activity has the potential to target therapy-resistant tumor clones. In vitro studies have demonstrated that lenalidomide repairs the T-cell immunologic synapse defect in chronic lymphocytic leukemia (CLL). Pentostatin, cyclophosphamide, and rituximab (PCR) in CLL is clinically active with modest toxicity, indicating suitability of this chemoimmunotherapy (CIT) platform for combination with immunotherapy. Here we report on a trial of PCR followed by lenalidomide consolidation. Of 34 patients who received lenalidomide, 24% improved their quality of response and 4 patients converted to minimal residual disease negative status. Retrospective comparison to a historical PCR trial indicated that lenalidomide consolidation extends time to progression requiring salvage therapy. Longitudinal analysis showed that antitumor T-cell immune synapse activity improved post-PCR and was further enhanced after lenalidomide consolidation. These novel data showing repair of T-cell defects provide proof-of-principle that lenalidomide-based consolidation after CIT could have a beneficial clinical and immunologic role in CLL.
Related JoVE Video
Uncovering the biology of multiple myeloma among African Americans: a comprehensive genomics approach.
Blood
PUBLISHED: 02-19-2013
Show Abstract
Hide Abstract
Epidemiological data have suggested that African American (AA) persons are twice as likely to be diagnosed with multiple myeloma (MM) compared with European American (EA) persons. Here, we have analyzed a set of cytogenetic and genomic data derived from AA and EA MM patients. We have compared the frequency of IgH translocations in a series of data from 115 AA patients from 3 studies and 353 EA patients from the Eastern Cooperative Oncology Group (ECOG) studies E4A03 and E9487. We have also interrogated tumors from 45 AA and 196 EA MM patients for somatic copy number abnormalities associated with poor outcome. In addition, 35 AA and 178 EA patients were investigated for a transcriptional profile associated with high-risk disease. Overall, based on this cohort, genetic profiles were similar except for a significantly lower frequency of IgH translocations (40% vs 52%; P = .032) in AA patients. Frequency differences of somatic copy number aberrations were not significant after correction for multiple testing. There was also no significant difference in the frequency of high-risk disease based on gene expression profiling. Our study represents the first comprehensive comparisons of the frequency and distribution of molecular alterations in MM tumors between AA and EA patients. ECOG E4A03 is registered with ClinicalTrials.gov, number NCT00098475. ECOG E9487 is a companion validation set to the ECOG study E9486 and is registered with the National Institutes of Health, National Cancer Institute, Clinical Trials (PDQ), number EST-9486.
Related JoVE Video
Induction of malignant plasma cell proliferation by eosinophils.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The biology of the malignant plasma cells (PCs) in multiple myeloma (MM) is highly influenced by the bone marrow (BM) microenvironment in which they reside. More specifically, BM stromal cells (SCs) are known to interact with MM cells to promote MM cell survival and proliferation. By contrast, it is unclear if innate immune cells within this same space also actively participate in the pathology of MM. Our study shows for the first time that eosinophils (Eos) can contribute to the biology of MM by enhancing the proliferation of some malignant PCs. We first demonstrate that PCs and Eos can be found in close proximity in the BM. In culture, Eos were found to augment MM cell proliferation that is predominantly mediated through a soluble factor(s). Fractionation of cell-free supernatants and neutralization studies demonstrated that this activity is independent of Eos-derived microparticles and a proliferation-inducing ligand (APRIL), respectively. Using a multicellular in vitro system designed to resemble the native MM niche, SCs and Eos were shown to have non-redundant roles in their support of MM cell growth. Whereas SCs induce MM cell proliferation predominantly through the secretion of IL-6, Eos stimulate growth of these malignant cells via an IL-6-independent mechanism. Taken together, our study demonstrates for the first time a role for Eos in the pathology of MM and suggests that therapeutic strategies targeting these cells may be beneficial.
Related JoVE Video
Species D adenoviruses as oncolytics against B-cell cancers.
Clin. Cancer Res.
PUBLISHED: 09-02-2011
Show Abstract
Hide Abstract
Oncolytic viruses are self-amplifying anticancer agents that make use of the natural ability of viruses to kill cells. Adenovirus serotype 5 (Ad5) has been extensively tested against solid cancers, but less so against B-cell cancers because these cells do not generally express the coxsackie and adenoviral receptor (CAR). To determine whether other adenoviruses might have better potency, we "mined" the adenovirus virome of 55 serotypes for viruses that could kill B-cell cancers.
Related JoVE Video
Differentiation of chronic lymphocytic leukemia B cells into immunoglobulin secreting cells decreases LEF-1 expression.
PLoS ONE
PUBLISHED: 08-13-2011
Show Abstract
Hide Abstract
Lymphocyte enhancer binding factor 1 (LEF-1) plays a crucial role in B lineage development and is only expressed in B cell precursors as B cell differentiation into mature B and plasma cells silences its expression. Chronic lymphocytic leukemia (CLL) cells aberrantly express LEF-1 and its expression is required for cellular survival. We hypothesized that modification of the differentiation status of CLL cells would result in loss of LEF-1 expression and eliminate the survival advantage provided by its aberrant expression. In this study, we first established a methodology that induces CLL cells to differentiate into immunoglobulin (Ig) secreting cells (ISC) using the TLR9 agonist, CpG, together with cytokines (CpG/c). CpG/c stimulation resulted in dramatic CLL cell phenotypic and morphologic changes, expression of cytoplasmic Ig, and secretion of light chain restricted Ig. CpG/c stimulation also resulted in decreased CLL cell LEF-1 expression and increased Blimp-1 expression, which is crucial for plasma cell differentiation. Further, Wnt pathway activation and cellular survival were impaired in differentiated CLL cells compared to undifferentiated CLL cells. These data support the notion that CLL can differentiate into ISC and that this triggers decreased leukemic cell survival secondary to the down regulation of LEF-1 and decreased Wnt pathway activation.
Related JoVE Video
Bone marrow stromal cells protect lymphoma B-cells from rituximab-induced apoptosis and targeting integrin ?-4-?-1 (VLA-4) with natalizumab can overcome this resistance.
Br. J. Haematol.
PUBLISHED: 07-12-2011
Show Abstract
Hide Abstract
Rituximab improves the outcome of patients with non-Hodgkin lymphoma, but does not completely eradicate residual B-cell populations in the microenvironment of the bone marrow and lymph nodes. Adhesion to stromal cells can protect B-cells from apoptosis induced by chemotherapy drugs [(cell adhesion-mediated drug resistance (CAM-DR)]. A similar mechanism of resistance to rituximab has not, to our knowledge, been described. We tested the hypothesis that the microenvironment protects malignant B-cells from rituximab-induced apoptosis, and that blocking these interactions with natalizumab, an antibody targeting VLA-4 (integrin alfa-4-beta-1/CD49d), can overcome this protection. VLA-4 is an adhesion molecule constitutively expressed on malignant B-cells and is important for pro-survival signalling in the bone marrow and lymph node microenvironment. The human bone marrow stromal cell line HS-5 was shown to strongly protect B-cell lymphoma cells from rituximab cytotoxicity, suggesting the existence of a stromal cell adhesion-mediated antibody resistance (CAM-AR) mechanism analogous to CAM-DR. Natalizumab decreased B-lymphocyte adherence to fibronectin by 75-95% and partially overcame stromal protection against rituximab and cytotoxic drugs. These pre-clinical findings suggest that the addition of stromal adhesion-disruptive drugs to rituximab-containing therapy could improve treatment efficacy.
Related JoVE Video
Transcriptional and post-transcriptional mechanisms of BAFF-receptor dysregulation in human B lineage malignancies.
Cell Cycle
PUBLISHED: 12-15-2010
Show Abstract
Hide Abstract
Together, circulating BAFF and dominant receptor BAFF-R homeostatically regulate the humoral immune system. Consistently aberrant BAFF-R expression in leukemic cells reveals an intimate connection of these cells malignant physiology to the BAFF/BAFF-R axis and also provides an additional survival mechanism to the expressing cells. In this study, we used primary cells and cell lines to interrogate the mechanisms underlying aberrant BAFF-R expression in precursor B acute lymphoblastic leukemia (precursor B-ALL) and mature B chronic lymphocytic leukemia (CLL). Here we demonstrate the aberrant expression of BAFF-R in precursor B-ALL cell lines and reveal that these cells acquire BAFF-R expression through premature transcriptional activation of the BAFF-R promoter in coordination with regulatory transcription factor c-Rel. Investigations using primary CLL cells provide a crucial counterpoint through their paucity of BAFF-R relative to their benign mature B cell counterparts, which we establish as functionally significant in its depletion of the CLL cells BAFF-binding capacity. Furthermore, BAFF-R downregulation in CLL patients is revealed here to be restricted to the malignant compartment and mediated post-transcriptionally in order to compensate for the consistently unchanged levels of transcription factor c-Rel and BAFF-R mRNA. Finally, we present evidence that CLL cells retain endogenous mechanisms of BAFF-R regulatory control despite active receptor dysregulation.
Related JoVE Video
Phase II trials of single-agent anti-VEGF therapy for patients with chronic lymphocytic leukemia.
Leuk. Lymphoma
PUBLISHED: 11-05-2010
Show Abstract
Hide Abstract
Between 2005 and 2008, we conducted separate phase II clinical testing of three distinct anti-VEGF therapies for patients with relapsed/refractory CLL. Collectively, 46 patients were accrued to trials of single-agent anti-VEGF antibody (bevacizumab, n?=?13) or one of two receptor tyrosine kinase inhibitors (AZD2171, n?=?15; sunitinib malate, n?=?18). All patients have completed treatment. Patients received a median of two cycles of bevacizumab, AZD2171, or sunitinib malate. All three trials were closed early due to lack of efficacy. No complete or partial remissions were observed. Individually and collectively, these studies indicate that single-agent anti-VEGF therapy has minimal clinical activity for patients with relapsed/refractory CLL.
Related JoVE Video
Selective induction of DNA repair pathways in human B cells activated by CD4+ T cells.
PLoS ONE
PUBLISHED: 09-29-2010
Show Abstract
Hide Abstract
Greater than 75% of all hematologic malignancies derive from germinal center (GC) or post-GC B cells, suggesting that the GC reaction predisposes B cells to tumorigenesis. Because GC B cells acquire expression of the highly mutagenic enzyme activation-induced cytidine deaminase (AID), GC B cells may require additional DNA repair capacity. The goal of this study was to investigate whether normal human B cells acquire enhanced expression of DNA repair factors upon AID induction. We first demonstrated that several DNA mismatch repair, homologous recombination, base excision repair, and ATR signaling genes were overexpressed in GC B cells relative to naïve and memory B cells, reflecting activation of a process we have termed somatic hyperrepair (SHR). Using an in vitro system, we next characterized activation signals required to induce AID expression and SHR. Although AID expression was induced by a variety of polyclonal activators, SHR induction strictly required signals provided by contact with activated CD4+ T cells, and B cells activated in this manner displayed reduced levels of DNA damage-induced apoptosis. We further show the induction of SHR is independent of AID expression, as GC B cells from AID-/-mice retained heightened expression of SHR proteins. In consideration of the critical role that CD4+ T cells play in inducing the SHR process, our data suggest a novel role for CD4+ T cells in the tumor suppression of GC/post-GC B cells.
Related JoVE Video
Evolutionary dynamics of two related malignant plasma cell lines.
Cell Cycle
PUBLISHED: 09-15-2010
Show Abstract
Hide Abstract
Cancer is the consequence of sequential acquisition of mutations within somatic cells. Mutations alter the relative reproductive fitness of cells, enabling the population to evolve in time as a consequence of selection. Cancer therapy itself can select for or against specific subclones. Given the large population of tumor cells, subclones inevitably emerge and their fate will depend on the evolutionary dynamics that define the interactions between such clones. Using a combination of in vitro studies and mathematical modeling, we describe the dynamic behavior of two cell lines isolated from the same patient at different time points of disease progression and show how the two clones relate to one another. We provide evidence that the two clones coexisted at the time of initial presentation. The dominant clone presented with biopsy proven cardiac AL amyloidosis. Initial therapy selected for the second clone that expanded leading to a change in the diagnosis to multiple myeloma. The evolutionary dynamics relating the two cell lines are discussed and a hypothesis is generated in regard to the mechanism of one of the phenotypic characteristics that is shared by these two cell lines.
Related JoVE Video
Progressive but previously untreated CLL patients with greater array CGH complexity exhibit a less durable response to chemoimmunotherapy.
Cancer Genet. Cytogenet.
PUBLISHED: 07-30-2010
Show Abstract
Hide Abstract
To better understand the implications of genomic instability and outcome in B-cell chronic lymphocytic leukemia (CLL), we sought to address genomic complexity as a predictor of chemosensitivity and ultimately clinical outcome in this disease. We used array-based comparative genomic hybridization (aCGH) with a one-million probe array and identified gains and losses of genetic material in 48 patients treated on a chemoimmunotherapy clinical trial. We identified chromosomal gain or loss in ?6% of the patients on chromosomes 3, 8, 9, 10, 11, 12, 13, 14, and 17. Higher genomic complexity, as a mechanism favoring clonal selection, was associated with shorter progression-free survival, and predicted a poor response to treatment. Of interest, CLL cases with loss of p53 surveillance showed more complex genomic features and were found both in patients with a 17p13.1 deletion and in the more favorable genetic subtype characterized by the presence of 13q14.1 deletion. This aCGH study adds information on the association between poor trial response and increasing genetic complexity as CLL progresses.
Related JoVE Video
Platelet-derived growth factor (PDGF)-PDGF receptor interaction activates bone marrow-derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: implications for an angiogenic switch.
Blood
PUBLISHED: 07-06-2010
Show Abstract
Hide Abstract
Malignant cells are capable of influencing the microenvironment in a manner that facilitates tumor cell survival. Bidirectional crosstalk between chronic lymphocytic leukemic (CLL) cells and marrow-derived mesenchymal stromal cells (MSCs) activates both cell types. In this study, we observed that the conditioned medium (CM) obtained from CLL cells was able to induce Akt activation in MSC. Subsequent studies investigated the mechanism of MSC activation mediated by CLL-CM. Platelet-derived growth factor receptors (PDGFRs) were selectively activated in MSCs by CLL-CM and found to be critical receptors for CLL-CM-driven MSC proliferation and MSC Akt activation. The known ligands of PDGFR, platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF), were detected in CLL-CM, but PDGF was the predominant ligand involved in the CM-mediated PDGFR activation. Both PDGF and VEGF were found to be elevated in the plasma of CLL patients with a positive association for high-risk factors and more advanced stage. Finally, we demonstrated that PDGF induced MSC VEGF production through a phosphatidylinositol 3-kinase (PI3K)-dependent mechanism. These results show that PDGF-PDGFR signaling influences at least the MSC in the microenvironment of CLL and may play a role in the induction of an angiogenic switch known to be permissive for disease progression.
Related JoVE Video
LEF-1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B-cell lymphocytosis.
Blood
PUBLISHED: 07-01-2010
Show Abstract
Hide Abstract
The canonical Wnt signaling pathway is pathogenic in a variety of cancers. We previously identified aberrant expression of the Wnt pathway transcription factor and target gene lymphoid enhancer binding factor-1 (LEF1) in chronic lymphocytic leukemia (CLL). This suggested that the Wnt signaling pathway has a role in the biology of CLL. In this study, we performed a Wnt pathway analysis using gene expression profiling and identified aberrant regulation of Wnt pathway target genes, ligands, and signaling members in CLL cells. Furthermore, we identified aberrant protein expression of LEF-1 specifically in CLL but not in normal mature B-cell subsets or after B-cell activation. Using the T cell-specific transcription factor/LEF (TCF/LEF) dual luciferase reporter assay, we demonstrated constitutive Wnt pathway activation in CLL, although the pathway was inactive in normal peripheral B cells. Importantly, LEF-1 knockdown decreased CLL B-cell survival. We also identified LEF-1 expression in CD19(+)/CD5(+) cells obtained from patients with monoclonal B-cell lymphocytosis, suggesting a role for LEF-1 early in CLL leukemogenesis. This study has identified the constitutive activation and prosurvival function of LEF-1 and the Wnt pathway in CLL and uncovered a possible role for these factors in the preleukemic state of monoclonal B-cell lymphocytosis.
Related JoVE Video
Age at diagnosis and the utility of prognostic testing in patients with chronic lymphocytic leukemia.
Cancer
PUBLISHED: 06-26-2010
Show Abstract
Hide Abstract
A study was undertaken to analyze the survival of chronic lymphocytic leukemia (CLL) patients relative to age-matched individuals in the general population and determine the age-stratified utility of prognostic testing.
Related JoVE Video
The structure of the TNFRSF13C promoter enables differential expression of BAFF-R during B cell ontogeny and terminal differentiation.
J. Immunol.
PUBLISHED: 06-16-2010
Show Abstract
Hide Abstract
The B cell-activating factor of the TNF family receptor (BAFF-R), encoded by the TNFRSF13C gene, is critically important for transitional B cell survival to maturity. Thus, ligation of BAFF-R by BAFF delivers a potent survival signal. Reports implicating the BAFF/BAFF-R signaling axis in the pathogenesis of autoimmune human diseases and B lineage malignancies have largely prompted studies focusing on BAFF expression; however, there is an equally critical need to better understand BAFF-R expression. Initial BAFF-R expression, although characterized in murine B cells, has not yet been reported in human B lymphopoiesis. In this study, we first demonstrate that BAFF-R expression is absent from early precursors and is acquired by bone marrow B cells newly expressing the BCR. We next focused on identifying the specific genomic region that controls BAFF-R expression in mature B cells (i.e., the TNFRSF13C promoter). To accomplish this, we used in silico tools examining interspecies genomic conservation in conjunction with reporter constructs transfected into malignant B and plasma cell lines. DNase protection assays using nuclear extracts from BAFF-R-expressing cells suggested potential regulatory sites, which allowed the generation of EMSA probes that bound NFs specific to BAFF-R-expressing cells. With a more stringent analysis of interspecies homology, these assays identified a site at which a single nucleotide substitution could distinctly impact promoter activity. Finally, chromatin immunoprecipitation assays revealed the in vivo binding of the specific transcription factor c-Rel to the most proximal genomic region, and c-Rel small interfering RNA transfections in BAFF-R-expressing lines demonstrated a coincident knockdown of both c-Rel and BAFF-R mRNA.
Related JoVE Video
Pentostatin and rituximab therapy for previously untreated patients with B-cell chronic lymphocytic leukemia.
Cancer
PUBLISHED: 02-27-2010
Show Abstract
Hide Abstract
The combination of pentostatin (P), cyclophosphamide (C), and rituximab (R) achieved an overall response (OR) rate >90%, with >40% complete responses (CRs) in patients with untreated chronic lymphocytic leukemia (CLL).
Related JoVE Video
A promising approach for treatment of tumor-induced bone diseases: utilizing bisphosphonate derivatives of nucleoside antimetabolites.
Bone
PUBLISHED: 01-29-2010
Show Abstract
Hide Abstract
Despite palliative treatments, tumor-induced bone disease (TIBD) remains highly debilitating for many cancer patients and progression typically results in death within two years. Therefore, more effective therapies with enhanced anti-resorptive and cytotoxic characteristics are needed. We developed bisphosphonate-chemotherapeutic conjugates designed to bind bone and hydrolyze, releasing both compounds, thereby targeting both osteoclasts and tumor cells. This study examined the effects of our lead compound, MBC-11 (the anhydride formed between arabinocytidine (AraC)-5-phosphate and etidronate), on bone tumor burden, bone volume, femur bone mineral density (BMD), and overall survival using two distinct mouse models of TIBD, the 4T1/luc breast cancer and the KAS-6/1-MIP1alpha multiple myeloma models. In mice orthotopically inoculated with 4T1/luc mouse mammary cells, MBC-11 (0.04 microg/day; s.c.) reduced the incidence of bone metastases to 40% (4/10), compared to 90% (9/10; p=0.057) and 100% (5/5; p=0.04) of PBS- or similarly-dosed, zoledronate-treated mice, respectively. MBC-11 also significantly decreased bone tumor burden compared to PBS- or zoledronate-treated mice (p=0.021, p=0.017, respectively). MBC-11 and zoledronate (0.04 microg/day) significantly increased bone volume by two- and four-fold, respectively, compared to PBS-treated mice (p=0.005, p<0.001, respectively). In mice systemically injected with human multiple myeloma KAS-6/1-MIP1alpha cells, 0.04 and 4.0 microg/day MBC-11 improved femur BMD by 13% and 16%, respectively, compared to PBS (p=0.025, p=0.017, respectively) at 10 weeks post-tumor cell injection and increased mean survival to 95 days compared to 77 days in mice treated with PBS (p=0.047). Similar doses of zoledronate also improved femur BMD (p< or =0.01 vs PBS) and increased mean survival to 86 days, but this was not significantly different than in PBS-treated mice (p=0.53). These results demonstrate that MBC-11 decreases bone tumor burden, maintains bone structure, and may increase overall survival, warranting further investigation as a treatment for TIBD.
Related JoVE Video
Autoimmune cytopenia in chronic lymphocytic leukemia/small lymphocytic lymphoma: changes in clinical presentation and prognosis.
Leuk. Lymphoma
PUBLISHED: 10-09-2009
Show Abstract
Hide Abstract
Improved medical care could have altered the clinical presentation and survival of patients with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) complicated by autoimmune disease cytopenia (AID cytopenia). We reviewed the clinical characteristics, treatment, and outcome of AID cytopenia that was diagnosed in 75 (4.3%) of 1750 patients with CLL seen at a single institution over 10 years. When compared with the historical reported data, our study shows a lower rate of autoimmune hemolytic anemia (2.3%), and similar rates of immune thrombocytopenia (2.0%), and pure red blood cell aplasia (0.5%). AID cytopenia occurred at all stages of CLL, responded well to treatment, did not alter overall survival, and contributed to death in only 6 (12%) patients. We propose that more sensitive and accurate diagnostic methods for CLL have decreased the perceived prevalence of AID cytopenia and that improvements in management could have increased the survival of these patients.
Related JoVE Video
Brief report: natural history of individuals with clinically recognized monoclonal B-cell lymphocytosis compared with patients with Rai 0 chronic lymphocytic leukemia.
J. Clin. Oncol.
PUBLISHED: 07-20-2009
Show Abstract
Hide Abstract
The diagnosis of monoclonal B-cell lymphocytosis (MBL) is used to characterize patients with a circulating population of clonal B cells, a total B-cell count of less than 5 x 10(9)/L, and no other features of a B-cell lymphoproliferative disorder including lymphadenopathy/organomegaly. The natural history of clinically identified MBL is unclear. The goal of this study was to explore the outcome of patients with MBL relative to that of individuals with Rai stage 0 chronic lymphocytic leukemia (CLL).
Related JoVE Video
B-cell count and survival: differentiating chronic lymphocytic leukemia from monoclonal B-cell lymphocytosis based on clinical outcome.
Blood
PUBLISHED: 06-03-2009
Show Abstract
Hide Abstract
The diagnosis of chronic lymphocytic leukemia (CLL) in asymptomatic patients has historically been based on documenting a characteristic lymphocyte clone and the presence of lymphocytosis. There are minimal data regarding which lymphocyte parameter (absolute lymphocyte count [ALC] or B-cell count) and what threshold should be used for diagnosis. We analyzed the relationship of ALC and B-cell count with clinical outcome in 459 patients with a clonal population of CLL phenotype to determine (1) whether the CLL diagnosis should be based on ALC or B-cell count, (2) what lymphocyte threshold should be used for diagnosis, and (3) whether any lymphocyte count has independent prognostic value after accounting for biologic/molecular prognostic markers. B-cell count and ALC had similar value for predicting treatment-free survival (TFS) and overall survival as continuous variables, but as binary factors, a B-cell threshold of 11 x 10(9)/L best predicted survival. B-cell count remained an independent predictor of TFS after controlling for ZAP-70, IGHV, CD38, or fluorescence in situ hybridization (FISH) results (all P < .001). These analyses support basing the diagnosis of CLL on B-cell count and retaining the size of the B-cell count in the diagnostic criteria. Using clinically relevant criteria to distinguish between monoclonal B-cell lymphocytosis (MBL) and CLL could minimize patient distress caused by labeling asymptomatic people at low risk for adverse clinical consequences as having CLL.
Related JoVE Video
Phase I trial of daily oral Polyphenon E in patients with asymptomatic Rai stage 0 to II chronic lymphocytic leukemia.
J. Clin. Oncol.
PUBLISHED: 05-26-2009
Show Abstract
Hide Abstract
To define the optimal dose of Polyphenon E for chronic daily administration and tolerability in patients with chronic lymphocytic leukemia (CLL).
Related JoVE Video
Validation of a new prognostic index for patients with chronic lymphocytic leukemia.
Cancer
PUBLISHED: 03-19-2009
Show Abstract
Hide Abstract
The clinical course of chronic lymphocytic leukemia (CLL) is highly variable. A prognostic index based on widely available clinical and laboratory features was recently developed to predict survival among patients with previously untreated CLL. This index requires validation in an independent series of patients before widespread use can be recommended.
Related JoVE Video
Increased signaling through p62 in the marrow microenvironment increases myeloma cell growth and osteoclast formation.
Blood
PUBLISHED: 03-12-2009
Show Abstract
Hide Abstract
Adhesive interactions between multiple myeloma (MM) cells and marrow stromal cells activate multiple signaling pathways including nuclear factor kappaB (NF-kappaB), p38 mitogen-activated protein kinase (MAPK), and Jun N-terminal kinase (JNK) in stromal cells, which promote tumor growth and bone destruction. Sequestosome-1 (p62), an adapter protein that has no intrinsic enzymatic activity, serves as a platform to facilitate formation of signaling complexes for these pathways. Therefore, we determined if targeting only p62 would inhibit multiple signaling pathways activated in the MM microenvironment and thereby decrease MM cell growth and osteoclast formation. Signaling through NF-kappaB and p38 MAPK was increased in primary stromal cells from MM patients. Increased interleukin-6 (IL-6) production by MM stromal cells was p38 MAPK-dependent while increased vascular cell adhesion molecule-1 (VCAM-1) expression was NF-kappaB-dependent. Knocking-down p62 in patient-derived stromal cells significantly decreased protein kinase Czeta (PKCzeta), VCAM-1, and IL-6 levels as well as decreased stromal cell support of MM cell growth. Similarly, marrow stromal cells from p62(-/-) mice produced much lower levels of IL-6, tumor necrosis factor-alpha (TNF-alpha), and receptor activator of NF-kappaB ligand (RANKL) and supported MM cell growth and osteoclast formation to a much lower extent than normal cells. Thus, p62 is an attractive therapeutic target for MM.
Related JoVE Video
Percentage of smudge cells on routine blood smear predicts survival in chronic lymphocytic leukemia.
J. Clin. Oncol.
PUBLISHED: 03-02-2009
Show Abstract
Hide Abstract
Smudge cells are ruptured chronic lymphocytic leukemia (CLL) cells appearing on the blood smears of CLL patients. Our recent findings suggest that the number of smudge cells may have important biologic correlations rather than being only an artifact of slide preparation. In this study, we evaluated whether the smudge cell percentage on a blood smear predicted survival of CLL patients.
Related JoVE Video
Mcl-1 expression predicts progression-free survival in chronic lymphocytic leukemia patients treated with pentostatin, cyclophosphamide, and rituximab.
Blood
PUBLISHED: 02-20-2009
Show Abstract
Hide Abstract
Myeloid cell leukemia-1 (Mcl-1) is an antiapoptotic member of the Bcl-2 protein family. Increased Mcl-1 expression is associated with failure to achieve remission after treatment with fludarabine and chlorambucil in patients with chronic lymphocytic leukemia (CLL). However, the influence of Mcl-1 expression has not been examined in CLL trials using chemoimmunotherapy. We investigated Mcl-1 protein expression prospectively as part of a phase 2 study evaluating the efficacy of pentostatin, cyclophosphamide, and rituximab in patients with untreated CLL. No significant difference by Mcl-1 expression was noted in pretreatment or response parameters. However, in patients with higher Mcl-1 expression, both minimal residual disease-negative status and progression-free survival was found to be significantly reduced (57% vs 19%, P = .01; 50.8 vs 18.7 months; P = .02; respectively). Mcl-1 expression may therefore be useful in predicting poor response to chemoimmunotherapy. These findings further support pursuing treatment strategies targeting this important antiapoptotic protein. (Because the trials described were conducted before the requirement to register them was implemented, they are not registered in a clinical trial database.).
Related JoVE Video
The histone methyltransferase MMSET regulates class switch recombination.
J. Immunol.
Show Abstract
Hide Abstract
Wolf-Hirschhorn syndrome (WHS) is a genetic disease with characteristic facial features and developmental disorders. Of interest, loss of the MMSET gene (also known as WHSC1) is considered to be responsible for the core phenotypes of this disease. Patients with WHS also display Ab deficiency, although the underlying cause of this deficiency is unclear. Recent studies suggest that the histone methyltransferase activity of MMSET plays an important role in the DNA damage response by facilitating the recruitment of 53BP1 to sites of DNA damage. We hypothesize that MMSET also regulates class switch recombination (CSR) through its effect on 53BP1. In this study, we show that MMSET indeed plays an important role in CSR through its histone methyltransferase activity. Knocking down MMSET expression impaired 53BP1 recruitment as well as the germline transcription of the Igh switch regions, resulting in defective CSR but no effect on cell growth and viability. These results suggest that defective CSR caused by MMSET deficiency could be a cause of Ab deficiency in WHS patients.
Related JoVE Video
Purification of functional eosinophils from human bone marrow.
J. Immunol. Methods
Show Abstract
Hide Abstract
Eosinophils are granulocytic leukocytes that are best known for their involvement in host immune defense and pathologic states. More recently, they have also been shown to play a role in regulation of murine plasma cell homeostasis in the bone marrow, which prompted our investigation of human bone marrow eosinophils. However, effective methods to isolate eosinophils from human bone marrow thereby allowing comparisons with circulating eosinophils have not yet been described. Herein we describe the development of a novel, cost effective protocol for the purification of eosinophils from human bone marrow that allows us to obtain bone marrow eosinophils of near 100% purity after an 8-day culture system. Furthermore, we demonstrate that bone marrow eosinophils have characteristics similar to blood eosinophils, including the expression of IL-5R?, the presence of eosinophil-specific granules, and similar activation kinetics upon phorbol myristate acetate and high-dose IL-5 stimulation. While migratory responses toward the chemokine CXCL12 differed between purified bone marrow and freshly isolated blood eosinophils, migratory responses were similar upon comparison of bone marrow eosinophils with blood eosinophils cultured ex vivo for 8 days prior to assay. Interestingly, a concurrent upregulation of CXCR4 expression was not observed in these cultured blood eosinophils. Taken together, we have overcome the existing challenges to the study of bone marrow eosinophils through our novel strategy for cell purification and have thus enabled future investigations of these cells and their role(s) in human health and disease.
Related JoVE Video
Phase 2 trial of daily, oral Polyphenon E in patients with asymptomatic, Rai stage 0 to II chronic lymphocytic leukemia.
Cancer
Show Abstract
Hide Abstract
The objective of the current study was to follow up the results of phase 1 testing by evaluating the clinical efficacy of the green tea extract Polyphenon E for patients with early stage chronic lymphocytic leukemia (CLL).
Related JoVE Video
Quantitative DNA methylation analysis identifies a single CpG dinucleotide important for ZAP-70 expression and predictive of prognosis in chronic lymphocytic leukemia.
J. Clin. Oncol.
Show Abstract
Hide Abstract
Increased ZAP-70 expression predicts poor prognosis in chronic lymphocytic leukemia (CLL). Current methods for accurately measuring ZAP-70 expression are problematic, preventing widespread application of these tests in clinical decision making. We therefore used comprehensive DNA methylation profiling of the ZAP-70 regulatory region to identify sites important for transcriptional control.
Related JoVE Video
Comprehensive assessment of potential multiple myeloma immunoglobulin heavy chain V-D-J intraclonal variation using massively parallel pyrosequencing.
Oncotarget
Show Abstract
Hide Abstract
Multiple myeloma (MM) is characterized by the accumulation of malignant plasma cells (PCs) in the bone marrow (BM). MM is viewed as a clonal disorder due to lack of verified intraclonal sequence diversity in the immunoglobulin heavy chain variable region gene (IGHV). However, this conclusion is based on analysis of a very limited number of IGHV subclones and the methodology employed did not permit simultaneous analysis of the IGHV repertoire of non-malignant PCs in the same samples. Here we generated genomic DNA and cDNA libraries from purified MM BMPCs and performed massively parallel pyrosequencing to determine the frequency of cells expressing identical IGHV sequences. This method provided an unprecedented opportunity to interrogate the presence of clonally related MM cells and evaluate the IGHV repertoire of non-MM PCs. Within the MM sample, 37 IGHV genes were expressed, with 98.9% of all immunoglobulin sequences using the same IGHV gene as the MM clone and 83.0% exhibiting exact nucleotide sequence identity in the IGHV and heavy chain complementarity determining region 3 (HCDR3). Of interest, we observed in both genomic DNA and cDNA libraries 48 sets of identical sequences with single point mutations in the MM clonal IGHV or HCDR3 regions. These nucleotide changes were suggestive of putative subclones and therefore were subjected to detailed analysis to interpret: 1) their legitimacy as true subclones; and 2) their significance in the context of MM. Finally, we report for the first time the IGHV repertoire of normal human BMPCs and our data demonstrate the extent of IGHV repertoire diversity as well as the frequency of clonally-related normal BMPCs. This study demonstrates the power and potential weaknesses of in-depth sequencing as a tool to thoroughly investigate the phylogeny of malignant PCs in MM and the IGHV repertoire of normal BMPCs.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.