JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Two independent killing mechanisms of Candida albicans by human neutrophils: evidence from innate immunity defects.
Blood
PUBLISHED: 06-19-2014
Show Abstract
Hide Abstract
Invasive fungal infections, accompanied by high rates of mortality, represent an increasing problem in medicine. Neutrophils are the major effector immune cells in fungal killing. Based on studies with neutrophils from patients with defined genetic defects, we provide evidence that human neutrophils use 2 distinct and independent phagolysosomal mechanisms to kill Candida albicans. The first mechanism for the killing of unopsonized C albicans was found to be dependent on complement receptor 3 (CR3) and the signaling proteins phosphatidylinositol-3-kinase and caspase recruitment domain-containing protein 9 (CARD9), but was independent of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. The second mechanism for the killing of opsonized C albicans was strictly dependent on Fc? receptors, protein kinase C (PKC), and reactive oxygen species production by the NADPH oxidase system. Each of the 2 pathways of Candida killing required Syk tyrosine kinase activity, but dectin-1 was dispensable for both of them. These data provide an explanation for the variable clinical presentation of fungal infection in patients suffering from different immune defects, including dectin-1 deficiency, CARD9 deficiency, or chronic granulomatous disease.
Related JoVE Video
Primary immunodeficiency caused by an exonized retroposed gene copy inserted in the CYBB gene.
Hum. Mutat.
PUBLISHED: 01-10-2014
Show Abstract
Hide Abstract
Retrotransposon-mediated insertion of a long interspersed nuclear element (LINE)-1 or an Alu element into a human gene is a well-known pathogenic mechanism. We report a novel LINE-1-mediated insertion of a transcript from the TMF1 gene on chromosome 3 into the CYBB gene on the X-chromosome. In a Dutch male patient with chronic granulomatous disease, a 5.8-kb, incomplete and partly exonized TMF1 transcript was identified in intron 1 of CYBB, in opposite orientation to the host gene. The sequence of the insertion showed the hallmarks of a retrotransposition event, with an antisense poly(A) tail, target site duplication, and a consensus LINE-1 endonuclease cleavage site. This insertion induced aberrant CYBB mRNA splicing, with inclusion of an extra 117-bp exon between exons 1 and 2 of CYBB. This extra exon contained a premature stop codon. The retrotransposition took place in an early stage of fetal development in the mother of the patient, because she showed a somatic mosaicism for the mutation that was not present in the DNA of her parents. However, the mutated allele was not expressed in the patient's mother because the insertion was found only in the methylated fraction of her DNA.
Related JoVE Video
Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity.
Cell Biochem. Biophys.
PUBLISHED: 06-05-2013
Show Abstract
Hide Abstract
Apoptosis of endothelial cells related to homocysteine (Hcy) has been reported in several studies. In this study, we evaluated whether reactive oxygen species (ROS)-producing signaling pathways contribute to Hcy-induced apoptosis induction, with specific emphasis on NADPH oxidases. Human umbilical vein endothelial cells were incubated with 0.01-2.5 mM Hcy. We determined the effect of Hcy on caspase-3 activity, annexin V positivity, intracellular NOX1, NOX2, NOX4, and p47(phox) expression and localization, nuclear nitrotyrosine accumulation, and mitochondrial membrane potential (?? m). Hcy induced caspase-3 activity and apoptosis; this effect was concentration dependent and maximal after 6-h exposure to 2.5 mM Hcy. It was accompanied by a significant increase in ?? m. Cysteine was inactive on these parameters excluding a reactive thiol group effect. Hcy induced an increase in cellular NOX2, p47(phox), and NOX4, but not that of NOX1. 3D digital imaging microscopy followed by image deconvolution analysis showed nuclear accumulation of NOX2 and p47(phox) in endothelial cells exposed to Hcy, but not in control cells, which coincided with accumulation of nuclear nitrotyrosine residues. Furthermore, Hcy enhanced peri-nuclear localization of NOX4 coinciding with accumulation of peri-nuclear nitrotyrosine residues, a reflection of local ROS production. p47(phox) was also increased in the peri-nuclear region. The Hcy-induced increase in caspase-3 activity was prevented by DPI and apocynin, suggesting involvement of NOX activity. The data presented in this article reveal accumulation of nuclear NOX2 and peri-nuclear NOX4 accumulation as potential source of ROS production in Hcy-induced apoptosis in endothelial cells.
Related JoVE Video
Clinical, functional, and genetic characterization of chronic granulomatous disease in 89 Turkish patients.
J. Allergy Clin. Immunol.
PUBLISHED: 05-10-2013
Show Abstract
Hide Abstract
Chronic granulomatous disease (CGD) is a rare primary immunodeficiency disorder of phagocytes resulting in impaired killing of bacteria and fungi. A mutation in one of the 4 genes encoding the components p22(phox), p47(phox), p67(phox), and p40(phox) of the leukocyte nicotinamide dinucleotide phosphate reduced (NADPH) oxidase leads to autosomal recessive (AR) CGD. A mutation in the CYBB gene encoding gp91(phox) leads to X-linked recessive CGD.
Related JoVE Video
Chronic granulomatous disease: a 25-year patient registry based on a multistep diagnostic procedure, from the referral center for primary immunodeficiencies in Greece.
J. Clin. Immunol.
PUBLISHED: 03-31-2013
Show Abstract
Hide Abstract
Chronic Granulomatous Disease (CGD) is an uncommon primary immunodeficiency caused by the absence or dysfunction of one of NADPH oxidase subunits, with heterogeneous genetic aetiologies. The aim of this study was the CGD patient registry in Greece, the identification of the responsible genotype and the potential correlation with the patients clinical phenotype. Medical charts of 24 CGD patients, investigated by NBT test or DHR for NADPH oxidase activity, Western blot analysis for NADPH oxidase component expression and DNA sequencing (pyro- and cycle sequencing) for mutation analysis, were reviewed. All patients, but one, were classified into the different types of CGD. Sixteen from 14 unrelated families had X-linked CGD (66.7 %), four patients had mutations in the NCF1 gene (16.7 %), and three, from two unrelated families, had mutations in NCF2 (12.5 %). Fifteen mutations were detected in the CYBB gene, including nonsense (53.8 %), splice site (30.8 %) and missense mutations (7.7 %), and deletions (7.7 %). Two novel mutations were identified; one in CYBB and one in NCF1. Carrier detection for X-CGD revealed that the de novo mutation rate was about 7 %. Prenatal diagnosis identified one affected male in three male fetuses tested. In both the X-linked and the autosomal recessive (AR-CGD) group, the gastrointestinal and respiratory manifestations were more common, followed by lympadenopathy in X-CGD and skin infections in the AR-CGD group. The patients with a mutation in CYBB had a wider variability of clinical manifestations and earlier diagnosis (4.6 years) compared to the AR-CGD group (12.9 years). The incidence of CGD in Greece is estimated at 0.90 (95 % CI 0.89-0.91) per 100,000 live births for the last decade.
Related JoVE Video
A novel splice variant of Fc?RIIa: a risk factor for anaphylaxis in patients with hypogammaglobulinemia.
J. Allergy Clin. Immunol.
PUBLISHED: 02-11-2013
Show Abstract
Hide Abstract
Our index case was a patient with common variable immunodeficiency (CVID). She had anaphylactoid reactions on administration of intravenous immunoglobulin (IVIg) associated with the presence of IgG antibodies against IgA.
Related JoVE Video
Different unequal cross-over events between NCF1 and its pseudogenes in autosomal p47(phox)-deficient chronic granulomatous disease.
Biochim. Biophys. Acta
PUBLISHED: 02-08-2013
Show Abstract
Hide Abstract
Chronic granulomatous disease (CGD) is a rare congenital disorder in which phagocytes cannot generate superoxide (O2(-)) and other microbicidal oxidants due to mutations in one of the five components of the O2(-)-generating NADPH oxidase complex. The most common autosomal subtype of CGD is caused by mutations in NCF1, encoding the NADPH subunit p47(phox). Usually, these mutations are the result of unequal exchange of chromatid between NCF1 and one of its two pseudogenes. We have now investigated in detail the breakpoints within or between these (pseudo) NCF1 genes in 43 families with p47(phox)-deficient CGD by means of multiplex ligase-dependent probe amplification (MLPA). In 24 families the patients totally lacked NCF1 sequences, indicating that in these families the cross-over points are located between NCF1 and its pseudogenes. Six other families were compound heterozygous for a total NCF1 deletion and another mutation in NCF1 on the other allele. In 8 families, the patients lacked NCF1 exons 1-4 but had retained NCF1 exons 6-10, indicating that a cross-over point is located within NCF1 between exons 4 and 6. Similarly, in 4 families a cross-over point was located within NCF1 between exons 2 and 4. Similar cross-overs, in heterozygous form, were observed in family members of the patients. Several patients were compound heterozygous for total and partial NCF1 deletions. Thus, at least three different cross-over points exist within the NCF1 gene cluster, indicating that autosomal p47(phox)-deficient CGD is genetically heterogeneous but can be dissected in detail by MLPA.
Related JoVE Video
Functional and genetic characterization of two extremely rare cases of Williams-Beuren syndrome associated with chronic granulomatous disease.
Eur. J. Hum. Genet.
PUBLISHED: 01-23-2013
Show Abstract
Hide Abstract
Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder with multi-systemic manifestations, caused by a heterozygous segmental deletion of 1.55-1.83?Mb at chromosomal band 7q11.23. The deletion can include the NCF1 gene that encodes the p47(phox) protein, a component of the leukocyte NADPH oxidase enzyme, which is essential for the defense against microbial pathogens. It has been postulated that WBS patients with two functional NCF1 genes are more susceptible to occurrence of hypertension than WBS patients with only one functional NCF1 gene. We now describe two extremely rare WBS patients without any functional NCF1 gene, because of a mutation in NCF1 on the allele not carrying the NCF1-removing WBS deletion. These two patients suffer from chronic granulomatous disease with increased microbial infections in addition to WBS. Interestingly, one of these patients did suffer from hypertension, indicating that other factors than NADPH oxidase in vascular tissue may be involved in causing hypertension.
Related JoVE Video
Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency.
Blood
PUBLISHED: 01-18-2013
Show Abstract
Hide Abstract
Caspase recruitment domain-containing protein 9 (CARD9) is an adaptor molecule in the cytosol of myeloid cells, required for induction of T-helper cells producing interleukin-17 (Th17 cells) and important in antifungal immunity. In a patient suffering from Candida dubliniensis meningoencephalitis, mutations in the CARD9 gene were found to result in the loss of protein expression. Apart from the reduced numbers of CD4(+) Th17 lymphocytes, we identified a lack of monocyte-derived cytokines in response to Candida strains. Importantly, CARD9-deficient neutrophils showed a selective Candida albicans killing defect with abnormal ultrastructural phagolysosomes and outgrowth of hyphae. The neutrophil killing defect was independent of the generation of reactive oxygen species by the reduced NAD phosphate oxidase system. Taken together, this demonstrates that human CARD9 deficiency results in selective defect in the host defense against invasive fungal infection, caused by an impaired phagocyte killing.
Related JoVE Video
Inborn defects in the antioxidant systems of human red blood cells.
Free Radic. Biol. Med.
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
Red blood cells (RBCs) contain large amounts of iron and operate in highly oxygenated tissues. As a result, these cells encounter a continuous oxidative stress. Protective mechanisms against oxidation include prevention of formation of reactive oxygen species (ROS), scavenging of various forms of ROS, and repair of oxidized cellular contents. In general, a partial defect in any of these systems can harm RBCs and promote senescence, but is without chronic hemolytic complaints. In this review we summarize the often rare inborn defects that interfere with the various protective mechanisms present in RBCs. NADPH is the main source of reduction equivalents in RBCs, used by most of the protective systems. When NADPH becomes limiting, red cells are prone to being damaged. In many of the severe RBC enzyme deficiencies, a lack of protective enzyme activity is frustrating erythropoiesis or is not restricted to RBCs. Common hereditary RBC disorders, such as thalassemia, sickle-cell trait, and unstable hemoglobins, give rise to increased oxidative stress caused by free heme and iron generated from hemoglobin. The beneficial effect of thalassemia minor, sickle-cell trait, and glucose-6-phosphate dehydrogenase deficiency on survival of malaria infection may well be due to the shared feature of enhanced oxidative stress. This may inhibit parasite growth, enhance uptake of infected RBCs by spleen macrophages, and/or cause less cytoadherence of the infected cells to capillary endothelium.
Related JoVE Video
Extensive variation in gene copy number at the killer immunoglobulin-like receptor locus in humans.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Killer immunoglobulin-like receptors (KIRs) are involved in the regulation of natural killer cell cytotoxicity. Within the human genome seventeen KIR genes are present, which all contain a large number of allelic variants. The high level of homology among KIR genes has hampered KIR genotyping in larger cohorts, and determination of gene copy number variation (CNV) has been difficult. We have designed a multiplex ligation-dependent probe amplification (MLPA) technique for genotyping and CNV determination in one single assay and validated the results by next-generation sequencing and with a KIR gene-specific short tandem repeat assay. In this way, we demonstrate in a cohort of 120 individuals a high level of CNV for all KIR genes except for the framework genes KIR3DL3 and KIR3DL2. Application of our MLPA assay in segregation analyses of families from the Centre dEtude du Polymorphisme Humaine, previously KIR-genotyped by classical techniques, confirmed an earlier reported duplication and resulted in the identification of a novel duplication event in one of these families. In summary, our KIR MLPA assay allows rapid and accurate KIR genotyping and CNV detection, thus rendering improved transplantation programs and oncology treatment feasible, and enables more detailed studies on the role of KIRs in human (auto)immunity and infectious disease.
Related JoVE Video
Hematologically important mutations: leukocyte adhesion deficiency (first update).
Blood Cells Mol. Dis.
PUBLISHED: 10-18-2011
Show Abstract
Hide Abstract
Leukocyte adhesion deficiency (LAD) is an immunodeficiency caused by defects in the adhesion of leukocytes (especially neutrophils) to the blood vessel wall. As a result, patients with LAD suffer from severe bacterial infections and impaired wound healing, accompanied by neutrophilia. In LAD-I, mutations are found in ITGB2, the gene that encodes the ? subunit of the ?(2) integrins. This syndrome is characterized directly after birth by delayed separation of the umbilical cord. In the rare LAD-II disease, the fucosylation of selectin ligands is disturbed, caused by mutations in SLC35C1, the gene that encodes a GDP-fucose transporter of the Golgi system. LAD-II patients lack the H and Lewis Le(a) and Le(b) blood group antigens. Finally, in LAD-III (also called LAD-I/variant) the conformational activation of the hematopoietically expressed ? integrins is disturbed, leading to leukocyte and platelet dysfunction. This last syndrome is caused by mutations in FERMT3, encoding the kindlin-3 protein in all blood cells that is involved in the regulation of ? integrin conformation.
Related JoVE Video
Lessons learned from phagocytic function studies in a large cohort of patients with recurrent infections.
J. Clin. Immunol.
PUBLISHED: 09-13-2011
Show Abstract
Hide Abstract
There is a paucity of data on the relationship between demographic characteristics, specific clinical manifestations, and neutrophil dysfunction, guiding physicians to decide which clinical signs and symptoms are a code for an underlying phagocytic disorder.
Related JoVE Video
Two X-linked chronic granulomatous disease patients with unusual NADPH oxidase properties.
J. Clin. Immunol.
PUBLISHED: 03-25-2011
Show Abstract
Hide Abstract
Chronic granulomatous disease (CGD) is an immune deficiency syndrome caused by defects in the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, the enzyme that generates reactive oxygen species (ROS) in phagocytizing leukocytes. This study evaluates the NADPH oxidase capacity in two X-linked CGD patients with mutations in gp91(phox) that alter the regions in this membrane-bound NADPH oxidase component involved in docking of the cytosolic component p47(phox).
Related JoVE Video
Current concepts of hyperinflammation in chronic granulomatous disease.
Clin. Dev. Immunol.
PUBLISHED: 03-24-2011
Show Abstract
Hide Abstract
Chronic granulomatous disease (CGD) is the most common inherited disorder of phagocytic functions, caused by genetic defects in the leukocyte nicotinamide dinucleotide phosphate (NADPH) oxidase. Consequently, CGD phagocytes are impaired in destroying phagocytosed microorganisms, rendering the patients susceptible to bacterial and fungal infections. Besides this immunodeficiency, CGD patients suffer from various autoinflammatory symptoms, such as granuloma formation in the skin or urinary tract and Crohn-like colitis. Owing to improved antimicrobial treatment strategies, the majority of CGD patients reaches adulthood, yet the autoinflammatory manifestations become more prominent by lack of causative treatment options. The underlying pathomechanisms driving hyperinflammatory reactions in CGD are poorly understood, but recent studies implicate reduced neutrophil apoptosis and efferocytosis, dysbalanced innate immune receptors, altered T-cell surface redox levels, induction of Th17 cells, the enzyme indolamine-2,3-dioxygenase (IDO), impaired Nrf2 activity, and inflammasome activation. Here we discuss immunological mechanisms of hyperinflammation and their potential therapeutic implications in CGD.
Related JoVE Video
Deconjugation kinetics of glucuronidated phase II flavonoid metabolites by beta-glucuronidase from neutrophils.
Drug Metab. Pharmacokinet.
PUBLISHED: 09-04-2010
Show Abstract
Hide Abstract
Flavonoids are inactivated by phase II metabolism and occur in the body as glucuronides. Mammalian beta-glucuronidase released from neutrophils at inflammatory sites may be able to deconjugate and thus activate flavonoid glucuronides. We have studied deconjugation kinetics and pH optimum for four sources of beta-glucuronidase (human neutrophil, human recombinant, myeloid PLB-985 cells, Helix pomatia) with five flavonoid glucuronides (quercetin-3-glucuronide, quercetin-3-glucuronide, quercetin-4-glucuronide, quercetin-7-glucuronide, 3-methylquercetin-3-glucuronide), 4-methylumbelliferyl-beta-D-glucuronide, and para-nitrophenol-glucuronide. All substrate-enzyme combinations tested exhibited first order kinetics. The optimum pH for hydrolysis was between 3.5-5, with appreciable hydrolysis activities up to pH 5.5. At pH 4, the K(m) ranged 44-fold from 22 microM for quercetin-4-glucuronide with Helix pomatia beta-glucuronidase, to 981 microM for para-nitrophenol-glucuronide with recombinant beta-glucuronidase. V(max) (range: 0.735-24.012 micromol x min(-1) x unit(-1) [1 unit is defined as the release of 1 microM 4-methylumbelliferyl-beta-D-glucuronide per min]) and the reaction rate constants at low substrate concentrations (k) (range: 0.002-0.062 min(-1) x (unit/L)(-1) were similar for all substrates-enzyme combinations tested. In conclusion, we show that beta-glucuronidase from four different sources, including human neutrophils, is able to deconjugate flavonoid glucuronides and non-flavonoid substrates at fairly similar kinetic rates. At inflammatory sites in vivo the pH, neutrophil and flavonoid glucuronide concentrations seem favorable for deconjugation. However, it remains to be confirmed whether this is actually the case.
Related JoVE Video
Hematologically important mutations: X-linked chronic granulomatous disease (third update).
Blood Cells Mol. Dis.
PUBLISHED: 07-16-2010
Show Abstract
Hide Abstract
Chronic granulomatous disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. The disease is caused by a lack of superoxide production by the leukocyte enzyme NADPH oxidase. Superoxide is used to kill phagocytosed micro-organisms in neutrophils, eosinophils, monocytes and macrophages. The leukocyte NADPH oxidase is composed of five subunits, of which the enzymatic component is gp91-phox, also called Nox2. This protein is encoded by the CYBB gene on the X chromosome. Mutations in this gene are found in about 70% of all CGD patients. This article lists all mutations identified in CYBB in the X-linked form of CGD. Moreover, apparently benign polymorphisms in CYBB are also given, which should facilitate the recognition of future disease-causing mutations.
Related JoVE Video
CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation.
Nat. Med.
PUBLISHED: 06-07-2010
Show Abstract
Hide Abstract
Upon activation, neutrophils release DNA fibers decorated with antimicrobial proteins, forming neutrophil extracellular traps (NETs). Although NETs are bactericidal and contribute to innate host defense, excessive NET formation has been linked to the pathogenesis of autoinflammatory diseases. However, the mechanisms regulating NET formation, particularly during chronic inflammation, are poorly understood. Here we show that the G protein-coupled receptor (GPCR) CXCR2 mediates NET formation. Downstream analyses showed that CXCR2-mediated NET formation was independent of NADPH oxidase and involved Src family kinases. We show the pathophysiological relevance of this mechanism in cystic fibrosis lung disease, characterized by chronic neutrophilic inflammation. We found abundant NETs in airway fluids of individuals with cystic fibrosis and mouse cystic fibrosis lung disease, and NET amounts correlated with impaired obstructive lung function. Pulmonary blockade of CXCR2 by intra-airway delivery of small-molecule antagonists inhibited NET formation and improved lung function in vivo without affecting neutrophil recruitment, proteolytic activity or antibacterial host defense. These studies establish CXCR2 as a receptor mediating NADPH oxidase-independent NET formation and provide evidence that this GPCR pathway is operative and druggable in cystic fibrosis lung disease.
Related JoVE Video
Human NLRP3 inflammasome activation is Nox1-4 independent.
Blood
PUBLISHED: 04-20-2010
Show Abstract
Hide Abstract
The NLRP3 inflammasome can be activated by pathogen-associated molecular patterns or endogenous danger-associated molecular patterns. The activation of the NLRP3 inflammasome results in proteolytic activation and secretion of cytokines of the interleukin-1 (IL-1) family. The precise mode of activation of the NLRP3 inflammasome is still elusive, but has been postulated to be mediated by reactive oxygen species (ROS) generated by an NADPH oxidase. Using primary cells from chronic granulomatous disease (CGD) patients lacking expression of p22(phox), a protein that is required for the function of Nox1-4, we show that cells lacking NADPH oxidase activity are capable of secreting normal amounts of IL-1beta. Thus, we provide evidence that activation of the NLRP3 inflammasome does not depend on ROS generated from an NADPH oxidase.
Related JoVE Video
Rapid genetic analysis of x-linked chronic granulomatous disease by high-resolution melting.
J Mol Diagn
PUBLISHED: 03-12-2010
Show Abstract
Hide Abstract
High-resolution melting analysis was applied to X-linked chronic granulomatous disease, a rare disorder resulting from mutations in CYBB. Melting curves of the 13 PCR products bracketing CYBB exons were predicted by Polands algorithm and compared with observed curves from 96 normal individuals. Primer plates were prepared robotically in batches and dried, greatly simplifying the 3- to 6-hour workflow that included DNA isolation, PCR, melting, and cycle sequencing of any positive products. Small point mutations or insertions/deletions were detected by mixing the hemizygous male DNA with normal male DNA to produce artificial heterozygotes, whereas detection of gross deletions was performed on unmixed samples. Eighteen validation samples and 22 clinical kindreds were analyzed for CYBB mutations. All blinded validation samples were correctly identified. The clinical probands were identified after screening for neutrophil oxidase activity. Nineteen different mutations were found, including seven near intron-exon boundaries predicting splicing defects, five substitutions within exons, three small deletions predicting premature termination, and four gross deletions of multiple exons. Ten novel mutations were found, including (c.) two missense (730T>A, 134T>G), one nonsense (90C>A), four splice site defects (45 + 1G>T, 674 + 4A>G, 1461 + 2delT, and 1462-2A>C), two small deletions (636delT, 1661_1662delCT), and one gross deletion of exons 6 to 8. High-resolution melting can provide timely diagnosis at low cost for effective clinical management of rare, genetic primary immunodeficiency disorders.
Related JoVE Video
Hematologically important mutations: the autosomal recessive forms of chronic granulomatous disease (second update).
Blood Cells Mol. Dis.
PUBLISHED: 01-11-2010
Show Abstract
Hide Abstract
Chronic granulomatous Disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. The disease is caused by mutations in the genes encoding the components of the leukocyte NADPH oxidase. This enzyme produces superoxide, which is essential in the process of intracellular pathogen killing by phagocytic leukocytes. Four of the five genes involved in CGD are autosomal; these are CYBA, encoding p22-phox, NCF2, encoding p67-phox, NCF1, encoding p47-phox, and NCF4, encoding p40-phox. This article lists all mutations identified in these genes in the autosomal forms of CGD. Moreover, polymorphisms in these genes are also given, which should facilitate the recognition of future disease-causing mutations.
Related JoVE Video
Molecular basis of autosomal recessive chronic granulomatous disease in iran.
J. Clin. Immunol.
PUBLISHED: 01-05-2010
Show Abstract
Hide Abstract
Chronic granulomatous disease (CGD) is a rare inherited condition resulting from mutations in the genes that encode the proteins of the NADPH oxidase enzyme in phagocytes, rendering these cells incapable of killing invading pathogens.
Related JoVE Video
Complement receptor 3, not Dectin-1, is the major receptor on human neutrophils for beta-glucan-bearing particles.
Mol. Immunol.
PUBLISHED: 08-07-2009
Show Abstract
Hide Abstract
We investigated the role of the beta-glucan receptor, Dectin-1, in the response of human neutrophils to unopsonized Saccharomyces cerevisiae and its major beta-glucan-containing capsular constituent, zymosan. Although reported to be indispensable for yeast phagocytosis in murine phagocytes, human Dectin-1 was not involved in the phagocytosis of S. cerevisiae or zymosan by human neutrophils. Phagocytosis of yeast particles proved to be completely dependent on CD11b/CD18, also known as complement receptor 3 (CR3). The findings were supported by data with neutrophils from a patient suffering from Leukocyte-Adhesion Deficiency type-1 (LAD-1) syndrome lacking CD11b/CD18. In addition, neither the priming by zymosan of the fMLP-induced NADPH-oxidase activity in human neutrophils nor the secretion of IL-8 by human neutrophils in response to zymosan preparations was affected by blocking anti-Dectin-1 antibodies or laminarin as a monovalent inhibitor. As shown by neutrophils from an IRAK-4-deficient patient, the zymosan-induced IL-8 release was also independent of TLR2. In summary, our data show that Dectin-1, although indispensable for recognition of beta-glucan-bearing particles in mice, is not the major receptor for yeast particles in human neutrophils.
Related JoVE Video
Mannose-binding lectin (MBL) substitution: recovery of opsonic function in vivo lags behind MBL serum levels.
J. Immunol.
PUBLISHED: 08-05-2009
Show Abstract
Hide Abstract
Mannose-binding lectin (MBL) deficiency is often associated with an increased risk of infection or worse prognosis in immunocompromised patients. MBL substitution in these patients might diminish these risks. We therefore performed an open, uncontrolled safety and pharmacokinetic MBL-substitution study in 12 pediatric oncology patients with chemotherapy-induced neutropenia. Twice weekly MBL infusions with plasma-derived MBL yielded MBL trough levels >1.0 microg/ml. We tested whether MBL substitution in vivo increased MBL-dependent complement activation and opsonophagocytosis of zymosan in vitro. Upon MBL substitution, opsonophagocytosis by control neutrophils increased significantly (p < 0.001) but remained suboptimal, although repeated MBL infusions resulted in improvement over time. The MBL-dependent MBL-associated serine protease (MASP)-mediated complement C3 and C4 activation also showed a suboptimal increase. To explain these results, complement activation was studied in detail. We found that in the presence of normal MASP-2 blood levels, MASP-2 activity (p < 0.0001) was reduced as well as the alternative pathway of complement activation (p < 0.05). This MBL-substitution study demonstrates that plasma-derived MBL infusions increase MBL/MASP-mediated C3 and C4 activation and opsonophagocytosis, but that higher circulating levels of plasma-derived MBL are required to achieve MBL-mediated complement activation comparable to healthy controls. Other patient cohorts should be considered to demonstrate clinical efficacy in phase II/III MBL-substitution studies, because we found a suboptimal recovery of (in vitro) biological activity upon MBL substitution in our neutropenic pediatric oncology cohort.
Related JoVE Video
LAD-1/variant syndrome is caused by mutations in FERMT3.
Blood
PUBLISHED: 06-10-2009
Show Abstract
Hide Abstract
Leukocyte adhesion deficiency-1/variant (LAD1v) syndrome presents early in life and manifests by infections without pus formation in the presence of a leukocytosis combined with a Glanzmann-type bleeding disorder, resulting from a hematopoietic defect in integrin activation. In 7 consanguineous families, we previously established that this defect was not the result of defective Rap1 activation, as proposed by other investigators. In search of the genetic defect, we carried out homozygosity mapping in 3 of these patients, and a 13-Mb region on chromosome 11 was identified. All 7 LAD1v families share the same haplotype, in which 3 disease-associated sequence variants were identified: a putative splice site mutation in CALDAGGEF1 (encoding an exchange factor for Rap1), an intronic 1.8-kb deletion in NRXN2, and a premature stop codon (p.Arg509X) in FERMT3. Two other LAD1v patients were found to carry different stop codons in FERMT3 (p.Arg573X and p.Trp229X) and lacked the CALDAGGEF1 and NRXN2 mutations, providing convincing evidence that FERMT3 is the gene responsible for LAD1v. FERMT3 encodes kindlin-3 in hematopoietic cells, a protein present together with integrins in focal adhesions. Kindlin-3 protein expression was undetectable in the leukocytes and platelets of all patients tested. These results indicate that the LAD1v syndrome is caused by truncating mutations in FERMT3.
Related JoVE Video
Inherited glutathione reductase deficiency and Plasmodium falciparum malaria--a case study.
PLoS ONE
PUBLISHED: 05-16-2009
Show Abstract
Hide Abstract
In Plasmodium falciparum-infected red blood cells (RBCs), the flavoenzyme glutathione reductase (GR) regenerates reduced glutathione, which is essential for antioxidant defense. GR utilizes NADPH produced in the pentose phosphate shunt by glucose-6-phosphate dehydrogenase (G6PD). Thus, conditions affecting host G6PD or GR induce increased sensitivity to oxidants. Hereditary G6PD deficiency is frequent in malaria endemic areas and provides protection against severe malaria. Furthermore, GR deficiency resulting from insufficient saturation of the enzyme with its prosthetic group FAD is common. Based on these naturally occurring phenomena, GR of malaria parasites and their host cells represent attractive antimalarial drug targets. Recently we were given the opportunity to examine invasion, growth, and drug sensitivity of three P. falciparum strains (3D7, K1, and Palo Alto) in the RBCs from three homozygous individuals with total GR deficiency resulting from mutations in the apoprotein. Invasion or growth in the GR-deficient RBCs was not impaired for any of the parasite strains tested. Drug sensitivity to chloroquine, artemisinin, and methylene blue was comparable to parasites grown in GR-sufficient RBCs and sensitivity towards paraquat and sodium nitroprusside was only slightly enhanced. In contrast, membrane deposition of hemichromes as well as the opsonizing complement C3b fragments and phagocytosis were strongly increased in ring-infected RBCs of the GR-deficient individuals compared to ring-infected normal RBCs. Also, in one of the individuals, membrane-bound autologous IgGs were significantly enhanced. Thus, based on our in vitro data, GR deficiency and drug-induced GR inhibition may protect from malaria by inducing enhanced ring stage phagocytosis rather than by impairing parasite growth directly.
Related JoVE Video
Chronic granulomatous disease: the European experience.
PLoS ONE
PUBLISHED: 04-21-2009
Show Abstract
Hide Abstract
CGD is an immunodeficiency caused by deletions or mutations in genes that encode subunits of the leukocyte NADPH oxidase complex. Normally, assembly of the NADPH oxidase complex in phagosomes of certain phagocytic cells leads to a "respiratory burst", essential for the clearance of phagocytosed micro-organisms. CGD patients lack this mechanism, which leads to life-threatening infections and granuloma formation. However, a clear picture of the clinical course of CGD is hampered by its low prevalence (approximately 1:250,000). Therefore, extensive clinical data from 429 European patients were collected and analyzed. Of these patients 351 were males and 78 were females. X-linked (XL) CGD (gp91(phox) deficient) accounted for 67% of the cases, autosomal recessive (AR) inheritance for 33%. AR-CGD was diagnosed later in life, and the mean survival time was significantly better in AR patients (49.6 years) than in XL CGD (37.8 years), suggesting a milder disease course in AR patients. The disease manifested itself most frequently in the lungs (66% of patients), skin (53%), lymph nodes (50%), gastrointestinal tract (48%) and liver (32%). The most frequently cultured micro-organisms per episode were Staphylococcus aureus (30%), Aspergillus spp. (26%), and Salmonella spp. (16%). Surprisingly, Pseudomonas spp. (2%) and Burkholderia cepacia (<1%) were found only sporadically. Lesions induced by inoculation with BCG occurred in 8% of the patients. Only 71% of the patients received antibiotic maintenance therapy, and 53% antifungal prophylaxis. 33% were treated with gamma-interferon. 24 patients (6%) had received a stem cell transplantation. The most prominent reason of death was pneumonia and pulmonary abscess (18/84 cases), septicemia (16/84) and brain abscess (4/84). These data provide further insight in the clinical course of CGD in Europe and hopefully can help to increase awareness and optimize the treatment of these patients.
Related JoVE Video
A novel mutation in NCF1 in an adult CGD patient with a liver abscess as first presentation.
J. Hum. Genet.
PUBLISHED: 03-27-2009
Show Abstract
Hide Abstract
Chronic granulomatous disease (CGD) is an immunodeficiency caused by defects in the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase complex and is usually diagnosed in early childhood. CGD patients suffer from severe, recurrent infections with bacteria, fungi and yeasts. We report a 25-year-old female with protracted fever because of a Staphylococcus aureus liver abscess, which did not resolve until breakthrough into the stomach. Despite her age, CGD was considered on diagnosis on the basis of the clinical symptoms. Analysis of the NADPH-oxidase activity confirmed CGD as the underlying condition. Western blotting revealed the absence of p47(phox) and subsequent sequencing of the p47(phox)-encoding gene, neutrophil cytosolic factor (NCF1), identified a deletion of 837C in the maternal NCF1 allele. The paternal allele contained a stopcodon because of a conversion between NCF1 and one of its PsiNCF1 pseudogenes. The patient had one novel mutation, c.837delC, and one conversion in NCF1, resulting in the complete absence of the p47(phox) component of the NADPH-oxidase complex. This p47(phox)-deficient CGD patient had the highest age at diagnosis reported thus far.
Related JoVE Video
Copy number variation at the FCGR locus includes FCGR3A, FCGR2C and FCGR3B but not FCGR2A and FCGR2B.
Hum. Mutat.
PUBLISHED: 03-25-2009
Show Abstract
Hide Abstract
Human Fcgamma receptors (FcgammaRs) are glycoproteins that bind the Fc region of IgG. The genes encoding the low-affinity FcgammaRs are located on chromosome 1q23-24. Beside single nucleotide polymorphisms (SNPs), gene copy number variation (CNV) is now being recognized as an important indicator for inter-individual differences. Recent studies on identifying CNV in the human genome suggest large areas at chromosome 1q23-24 to be involved, and CNV in this region has been associated with manifestations of systemic autoimmune disease. To study both SNPs and CNV of the low-affinity FcgammaRs in one assay, we have developed a Multiplex Ligation-dependent Probe Amplification (MLPA) assay. A novel CNV for FCGR3A was observed. Similar to FCGR3B and FCGR2C, a gene-dosage effect of FCGR3A was found, that seemed to correlate nicely with the FcgammaRIIIa expression on NK cells. Next, we delineated the approximate boundaries of CNV at the FCGR locus. Variation in co-segregation of neighboring FCGR genes was limited to four variants, with patterns of Mendelian inheritance. No CNV of the FCGR2A and FCGR2B genes was observed in over 600 individuals. In conclusion, we report a novel CNV of the FCGR3A gene that correlates with FcgammaRIIIa expression and function on NK cells. Only FCGR3A, FCGR2C and FCGR3B show CNV, in contrast to FCGR2A and FCGR2B.
Related JoVE Video
Prenatal diagnosis of chronic granulomatous disease in a male fetus.
Iran J Allergy Asthma Immunol
PUBLISHED: 03-13-2009
Show Abstract
Hide Abstract
Mutations in any of four known NADPH-oxidase components lead to CGD. X-linked CGD (X-CGD) is caused by defects in CYBB, the gene that encodes gp91-phox. Autosomal recessive (AR) CGD is caused by defects in the genes for p47 phox, p22-phox or p67-phox. The aim of this study was to screen the molecular defect in the fetus of an X-CGD carrier mother and postnatal confirmation of the results. In a family whose first-born child died from X-CGD, fetal DNA was obtained from an ongoing pregnancy by chorionic villus sampling (CVS). Direct sequencing was used to detect the previously identified CYBB gene mutation. The NADPH oxidase activity in the neutrophils from the carrier mother and from the newborn was analyzed by the DHR assay. Our studies predicted that the fetus in question was not affected by chronic granulomatous disease, which was demonstrated to be correct at birth. For prenatal screening in a pregnant X-CGD carrier, direct sequencing is a good method for detecting the mutation in the fetal DNA. Postnatal confirmation of results with the DHR assay is more practical than mutation screening to show whether the newborn have normal NADPH oxidase activity or does not.
Related JoVE Video
SIRP? controls the activity of the phagocyte NADPH oxidase by restricting the expression of gp91(phox).
Cell Rep
Show Abstract
Hide Abstract
The phagocyte NADPH oxidase mediates oxidative microbial killing in granulocytes and macrophages. However, because the reactive oxygen species produced by the NADPH oxidase can also be toxic to the host, it is essential to control its activity. Little is known about the endogenous mechanism(s) that limits NADPH oxidase activity. Here, we demonstrate that the myeloid-inhibitory receptor SIRP? acts as a negative regulator of the phagocyte NADPH oxidase. Phagocytes isolated from SIRP? mutant mice were shown to have an enhanced respiratory burst. Furthermore, overexpression of SIRP? in human myeloid cells prevented respiratory burst activation. The inhibitory effect required interactions between SIRP? and its natural ligand, CD47, as well as signaling through the SIRP? cytoplasmic immunoreceptor tyrosine-based inhibitory motifs. Suppression of the respiratory burst by SIRP? was caused by a selective repression of gp91(phox) expression, the catalytic component of the phagocyte NADPH oxidase complex. Thus, SIRP? can limit gp91(phox) expression during myeloid development, thereby controlling the magnitude of the respiratory burst in phagocytes.
Related JoVE Video
Rare duplication or deletion of exons 6, 7 and 8 in CYBB leading to X-linked chronic granulomatous disease in two patients from different families.
J. Clin. Immunol.
Show Abstract
Hide Abstract
Chronic granulomatous disease (CGD) is a rare congenital disorder in which phagocytes cannot generate superoxide (O(2)(-)) and other microbicidal oxidants due to mutations in one of the five components of the O(2)(-)-generating NADPH oxidase complex. The most common form is caused by mutations in CYBB on the X chromosome, encoding gp91phox, the enzymatic subunit of the phagocyte NADPH oxidase. Here, we report two rare cases of male X-linked CGD patients, one caused by a 5.7-kb duplication of a region containing CYBB exons 6 to 8 and the other caused by a deletion of this same region. We found both the duplication in patient 1 and the deletion in patient 2 to be bordered by a GT repeat. Indeed, in control DNA, the 3 part of CYBB intron 5 contains a GT repeat and the 5 part of intron 8 also contains such a repeat. Duplication of exons 6, 7 and 8 in patient 1 was probably caused by a non-homologous crossing over between the two GT repeats. The deletion found in patient 2 probably arose from a similar misalignment. The results found in these patients were confirmed by multiplex ligation-dependent probe amplification. The clinical profile of XCGD is severe in both patients.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.