JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Glioma-associated microglia and macrophages/monocytes display distinct electrophysiological properties and do not communicate via gap junctions.
Neurosci. Lett.
PUBLISHED: 08-08-2014
Show Abstract
Hide Abstract
Both brain-resident microglia and peripheral macrophages/monocytes infiltrate into glioma and promote glioma growth. In the present study we analyzed coupling and membrane currents in glioma-associated microglia and macrophages/monocytes and compared this to control and stab wound-associated microglia. Using the Cx3cr1(GFP/wt)Ccr2(RFP/wt) knock-in mouse line, we distinguished membrane currents of glioma-associated microglia and macrophages/monocytes in acute brain slices prepared 14-16 days after inoculation of GL261 glioma cells. The current profile of microglia showed inward rectifying currents reminiscent of an intermediate activation state when compared to other disease models or cell culture. Macrophages/monocytes showed a higher specific outward conductance and a significantly lower capacitance indicative of a smaller membrane area than microglia. As controls, we also recorded currents from control microglia and stab wound-associated microglia. Since there are reports of microglial coupling in vitro, we injected biocytin into these cells and analyzed for cell coupling after fixing the slices and processed for biocytin labeling with Cy3-conjugated-Streptavidin. Neither control microglia nor glioma-associated microglia and macrophages/monocytes nor stab wound-associated microglia showed any sign of coupling. Moreover, performing qRT-PCR revealed that no connexin43 was detectable on isolated and sorted glioma-associated microglia and macrophages/monocytes, indicating that these cells are not part of a coupled network.
Related JoVE Video
The SHH/Gli pathway is reactivated in reactive glia and drives proliferation in response to neurodegeneration-induced lesions.
Glia
PUBLISHED: 03-22-2014
Show Abstract
Hide Abstract
In response to neurodegeneration, the adult mammalian brain activates a cellular cascade that results in reactive astrogliosis and microgliosis. The mechanism through which astrocytes become reactive and the physiological consequences of their activation in response to neurodegeneration is complex. While the activation and proliferation of astrocytes has been shown to occur during massive neuronal cell death, the functional relationship between these two events has not been clearly elucidated. Here we show that in response to kainic acid- (KA) induced neurodegeneration, the mitogen sonic hedgehog (SHH) is upregulated in reactive astrocytes. SHH activity peaks at 7 days and is accompanied by increased Gli activity and elevated proliferation in several cell types. To determine the functional role of SHH-Gli signaling following KA lesions, we used a pharmacological approach to show that SHH secreted by astrocytes drives the activation and proliferation of astrocytes and microglia. The consequences of SHH-Gli signaling in KA-induced lesions appear to be independent of the severity of neurodegeneration.
Related JoVE Video
Profilin-1 phosphorylation directs angiocrine expression and glioblastoma progression through HIF-1? accumulation.
Nat. Cell Biol.
PUBLISHED: 03-20-2014
Show Abstract
Hide Abstract
The tumour vascular microenvironment supports tumorigenesis not only by supplying oxygen and diffusible nutrients but also by secreting soluble factors that promote tumorigenesis. Here we identify a feedforward mechanism in which endothelial cells (ECs), in response to tumour-derived mediators, release angiocrines driving aberrant vascularization and glioblastoma multiforme (GBM) progression through a hypoxia-independent induction of hypoxia-inducible factor (HIF)-1?. Phosphorylation of profilin-1 (Pfn-1) at Tyr 129 in ECs induces binding to the tumour suppressor protein von Hippel-Lindau (VHL), and prevents VHL-mediated degradation of prolyl-hydroxylated HIF-1?, culminating in HIF-1? accumulation even in normoxia. Elevated HIF-1? induces expression of multiple angiogenic factors, leading to vascular abnormality and tumour progression. In a genetic model of GBM, mice with an EC-specific defect in Pfn-1 phosphorylation exhibit reduced tumour angiogenesis, normalized vasculature and improved survival. Moreover, EC-specific Pfn-1 phosphorylation is associated with tumour aggressiveness in human glioma. These findings suggest that targeting Pfn-1 phosphorylation may offer a selective strategy for therapeutic intervention of malignant solid tumours.
Related JoVE Video
Mathematical modeling of PDGF-driven glioblastoma reveals optimized radiation dosing schedules.
Cell
PUBLISHED: 02-04-2014
Show Abstract
Hide Abstract
Glioblastomas (GBMs) are the most common and malignant primary brain tumors and are aggressively treated with surgery, chemotherapy, and radiotherapy. Despite this treatment, recurrence is inevitable and survival has improved minimally over the last 50 years. Recent studies have suggested that GBMs exhibit both heterogeneity and instability of differentiation states and varying sensitivities of these states to radiation. Here, we employed an iterative combined theoretical and experimental strategy that takes into account tumor cellular heterogeneity and dynamically acquired radioresistance to predict the effectiveness of different radiation schedules. Using this model, we identified two delivery schedules predicted to significantly improve efficacy by taking advantage of the dynamic instability of radioresistance. These schedules led to superior survival in mice. Our interdisciplinary approach may also be applicable to other human cancer types treated with radiotherapy and, hence, may lay the foundation for significantly increasing the effectiveness of a mainstay of oncologic therapy. PAPERCLIP:
Related JoVE Video
F11R Is a Novel Monocyte Prognostic Biomarker for Malignant Glioma.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Brain tumors (gliomas) contain large populations of infiltrating macrophages and recruited microglia, which in experimental murine glioma models promote tumor formation and progression. Among the barriers to understanding the contributions of these stromal elements to high-grade glioma (glioblastoma; GBM) biology is the relative paucity of tools to characterize infiltrating macrophages and resident microglia. In this study, we leveraged multiple RNA analysis platforms to identify new monocyte markers relevant to GBM patient outcome.
Related JoVE Video
Prominin 1/CD133 endothelium sustains growth of proneural glioma.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
In glioblastoma high expression of the CD133 gene, also called Prominin1, is associated with poor prognosis. The PDGF-driven proneural group represents a subset of glioblastoma in which CD133 is not overexpressed. Interestingly, this particular subset shows a relatively good prognosis. As with many other tumors, gliobastoma is believed to arise and be maintained by a restricted population of stem-like cancer cells that express the CD133 transmembrane protein. The significance of CD133(+) cells for gliomagenesis is controversial because of conflicting supporting evidence. Contributing to this inconsistency is the fact that the isolation of CD133(+) cells has largely relied on the use of antibodies against ill-defined glycosylated epitopes of CD133. To overcome this problem, we used a knock-in lacZ reporter mouse, Prom1(lacZ/+) , to track Prom1(+) cells in the brain. We found that Prom1 (prominin1, murine CD133 homologue) is expressed by cells that express markers characteristic of the neuronal, glial or vascular lineages. In proneural tumors derived from injection of RCAS-PDGF into the brains of tv-a;Ink4a-Arf(-/-) Prom1(lacZ/+) mice, Prom1(+) cells expressed markers for astrocytes or endothelial cells. Mice co-transplanted with proneural tumor sphere cells and Prom1(+) endothelium had a significantly increased tumor burden and more vascular proliferation (angiogenesis) than those co-transplanted with Prom1(-) endothelium. We also identified specific genes in Prom1(+) endothelium that code for endothelial signaling modulators that were not overexpressed in Prom1(-) endothelium. These factors may support proneural tumor progression and could be potential targets for anti-angiogenic therapy.
Related JoVE Video
Glioma development: where did it all go wrong?
Cell
PUBLISHED: 07-26-2011
Show Abstract
Hide Abstract
Investigating the family tree of a tumor to identify its cellular origins is a daunting task. Liu et al. (2011) now use an elegant lineage tracing technique (MADM) to visualize glioma from its earliest stages. They show that mutations originally induced in neural stem cells lie dormant and only trigger malignant transformation following differentiation into oligodendrocyte precursor cells.
Related JoVE Video
The probable cell of origin of NF1- and PDGF-driven glioblastomas.
PLoS ONE
PUBLISHED: 04-28-2011
Show Abstract
Hide Abstract
Primary glioblastomas are subdivided into several molecular subtypes. There is an ongoing debate over the cell of origin for these tumor types where some suggest a progenitor while others argue for a stem cell origin. Even within the same molecular subgroup, and using lineage tracing in mouse models, different groups have reached different conclusions. We addressed this problem from a combined mathematical modeling and experimental standpoint. We designed a novel mathematical framework to identify the most likely cells of origin of two glioma subtypes. Our mathematical model of the unperturbed in vivo system predicts that if a genetic event contributing to tumor initiation imparts symmetric self-renewing cell division (such as PDGF overexpression), then the cell of origin is a transit amplifier. Otherwise, the initiating mutations arise in stem cells. The mathematical framework was validated with the RCAS/tv-a system of somatic gene transfer in mice. We demonstrated that PDGF-induced gliomas can be derived from GFAP-expressing cells of the subventricular zone or the cortex (reactive astrocytes), thus validating the predictions of our mathematical model. This interdisciplinary approach allowed us to determine the likelihood that individual cell types serve as the cells of origin of gliomas in an unperturbed system.
Related JoVE Video
Genetic modeling of gliomas in mice: new tools to tackle old problems.
Glia
PUBLISHED: 02-08-2011
Show Abstract
Hide Abstract
The recently published comprehensive profiles of genomic alterations in glioma have led to a refinement in our understanding of the molecular events that underlie this cancer. Using state-of-the-art genomic tools, several laboratories have created and characterized accurate genetically engineered mouse models of glioma based on specific genetic alterations observed in human tumors. These in vivo brain tumor models faithfully recapitulate the histopathology, etiology, and biology of gliomas and provide an exceptional experimental system to discover novel therapeutic targets and test therapeutic agents. This review focuses on mouse models of glioma with a special emphasis on genetically engineered models developed around key genetic glioma signature mutations in the PDGFR, EGFR, and NF1 genes and pathways. The resulting animal models have provided insight into many fundamental and mechanistic facets of tumor initiation, maintenance and resistance to therapeutic intervention and will continue to do so in the future.
Related JoVE Video
Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3.
Cancer Cell
PUBLISHED: 02-01-2011
Show Abstract
Hide Abstract
Glioblastomas display cellular hierarchies containing tumor-propagating glioblastoma stem cells (GSCs). STAT3 is a critical signaling node in GSC maintenance but molecular mechanisms underlying STAT3 activation in GSCs are poorly defined. Here we demonstrate that the bone marrow X-linked (BMX) nonreceptor tyrosine kinase activates STAT3 signaling to maintain self-renewal and tumorigenic potential of GSCs. BMX is differentially expressed in GSCs relative to nonstem cancer cells and neural progenitors. BMX knockdown potently inhibited STAT3 activation, expression of GSC transcription factors, and growth of GSC-derived intracranial tumors. Constitutively active STAT3 rescued the effects of BMX downregulation, supporting that BMX signals through STAT3 in GSCs. These data demonstrate that BMX represents a GSC therapeutic target and reinforces the importance of STAT3 signaling in stem-like cancer phenotypes.
Related JoVE Video
An activated mutant BRAF kinase domain is sufficient to induce pilocytic astrocytoma in mice.
J. Clin. Invest.
PUBLISHED: 01-19-2011
Show Abstract
Hide Abstract
Pilocytic astrocytoma (PA) is the most common type of primary brain tumor in children and the second most frequent cancer in childhood. Children with incompletely resected PA represent a clinically challenging patient cohort for whom conventional adjuvant therapies are only moderately effective. This has produced high clinical demand for testing of new molecularly targeted treatments. However, the development of new therapeutics for PA has been hampered by the lack of an adequate in vivo tumor model. Recent studies have identified activation of MAPK signaling, mainly by oncogenic BRAF activation, as a hallmark genetic event in the pathogenesis of human PA. Using in vivo retroviral somatic gene transfer into mouse neural progenitor cells, we have shown here that ectopic expression of the activated BRAF kinase domain is sufficient to induce PA in mice. Further in vitro analyses demonstrated that overexpression of activated BRAF led to increased proliferation of primary mouse astrocytes that could be inhibited by treatment with the kinase inhibitor sorafenib. Our in vivo model for PA shows that the activated BRAF kinase domain is sufficient to induce PA and highlights its role as a potential therapeutic target.
Related JoVE Video
Perifosine and CCI 779 co-operate to induce cell death and decrease proliferation in PTEN-intact and PTEN-deficient PDGF-driven murine glioblastoma.
PLoS ONE
PUBLISHED: 01-18-2011
Show Abstract
Hide Abstract
Platelet derived growth factor receptor (PDGFR) activity is deregulated in human GBM due to amplification and rearrangement of the PDGFR-alpha gene locus or overexpression of the PDGF ligand, resulting in the activation of downstream kinases such as phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR). Aberrant PDGFR signaling is observed in approximately 25-30% of human GBMs, which are frequently molecularly classified as the proneural subclass. It would be valuable to understand how PDGFR driven GBMs respond to Akt and mTOR inhibition.
Related JoVE Video
Endothelial membrane remodeling is obligate for anti-angiogenic radiosensitization during tumor radiosurgery.
PLoS ONE
PUBLISHED: 09-30-2010
Show Abstract
Hide Abstract
While there is significant interest in combining anti-angiogenesis therapy with conventional anti-cancer treatment, clinical trials have as of yet yielded limited therapeutic gain, mainly because mechanisms of anti-angiogenic therapy remain to a large extent unknown. Currently, anti-angiogenic tumor therapy is conceptualized to either “normalize” dysfunctional tumor vasculature, or to prevent recruitment of circulating endothelial precursors into the tumor. An alternative biology, restricted to delivery of anti-angiogenics immediately prior to single dose radiotherapy (radiosurgery), is provided in the present study.
Related JoVE Video
Endothelial membrane remodeling is obligate for anti-angiogenic radiosensitization during tumor radiosurgery.
PLoS ONE
PUBLISHED: 03-08-2010
Show Abstract
Hide Abstract
While there is significant interest in combining anti-angiogenesis therapy with conventional anti-cancer treatment, clinical trials have as of yet yielded limited therapeutic gain, mainly because mechanisms of anti-angiogenic therapy remain to a large extent unknown. Currently, anti-angiogenic tumor therapy is conceptualized to either "normalize" dysfunctional tumor vasculature, or to prevent recruitment of circulating endothelial precursors into the tumor. An alternative biology, restricted to delivery of anti-angiogenics immediately prior to single dose radiotherapy (radiosurgery), is provided in the present study.
Related JoVE Video
Heterozygosity for Pten promotes tumorigenesis in a mouse model of medulloblastoma.
PLoS ONE
PUBLISHED: 03-05-2010
Show Abstract
Hide Abstract
Recent publications have described an important role for cross talk between PI-3 kinase and sonic hedgehog signaling pathways in the pathogenesis of medulloblastoma.
Related JoVE Video
Preclinical evaluation of radiation and perifosine in a genetically and histologically accurate model of brainstem glioma.
Cancer Res.
PUBLISHED: 03-02-2010
Show Abstract
Hide Abstract
Brainstem gliomas (BSG) are a rare group of central nervous system tumors that arise mostly in children and usually portend a particularly poor prognosis. We report the development of a genetically engineered mouse model of BSG using the RCAS/tv-a system and its implementation in preclinical trials. Using immunohistochemistry, we found that platelet-derived growth factor (PDGF) receptor alpha is overexpressed in 67% of pediatric BSGs. Based on this observation, we induced low-grade BSGs by overexpressing PDGF-B in the posterior fossa of neonatal nestin tv-a mice. To generate high-grade BSGs, we overexpressed PDGF-B in combination with Ink4a-ARF loss, given that this locus is commonly lost in high-grade pediatric BSGs. We show that the likely cells of origin for these mouse BSGs exist on the floor of the fourth ventricle and cerebral aqueduct. Irradiation of these high-grade BSGs shows that although single doses of 2, 6, and 10 Gy significantly increased the percent of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive nuclei, only 6 and 10 Gy significantly induce cell cycle arrest. Perifosine, an inhibitor of AKT signaling, significantly induced TUNEL-positive nuclei in this high-grade BSG model, but in combination with 10 Gy, it did not significantly increase the percent of TUNEL-positive nuclei relative to 10 Gy alone at 6, 24, and 72 hours. Survival analysis showed that a single dose of 10 Gy significantly prolonged survival by 27% (P = 0.0002) but perifosine did not (P = 0.92). Perifosine + 10 Gy did not result in a significantly increased survival relative to 10 Gy alone (P = 0.23). This PDGF-induced BSG model can serve as a preclinical tool for the testing of novel agents.
Related JoVE Video
SCCRO promotes glioma formation and malignant progression in mice.
Neoplasia
PUBLISHED: 01-22-2010
Show Abstract
Hide Abstract
Originally identified as an oncogene activated by amplification in squamous cell carcinomas, several lines of evidence now suggest that squamous cell carcinoma-related oncogene (SCCRO; aka DCUN1D1) may play a role in the pathogenesis of a wide range of human cancers including gliomas. SCCROs oncogenic function is substantiated by its ectopic expression, resulting in transformation of cells in culture and xenograft formation in nude mice. The aim of this study was to assess the in vivo oncogenicity of SCCRO in a murine model. Ubiquitous expression of SCCRO resulted in early embryonic lethality. Because SCCRO overexpression was detected in human gliomas, its in vivo oncogenic activity was assessed in an established murine glioma model. Conditional expression of SCCRO using a replication-competent ASLV long terminal repeat with splice acceptor/nestin-(tumor virus-A) tv-a model system was not sufficient to induce tumor formation in a wild-type genetic background, but tumors formed with increasing frequency and decreasing latency in facilitated background containing Ink4a deletion alone or in combination with PTEN loss. Ectopic expression of SCCRO in glial progenitor cells resulted in lower-grade gliomas in Ink4a(-/-) mice, whereas its expression in Ink4a(-/-)/PTEN(-/-) background produced high-grade glioblastoma-like lesions that were indistinguishable from human tumors. Expression of SCCRO with platelet-derived growth factor-beta (PDGF-beta) resulted in an increased proportion of mice forming glioblastoma-like tumors compared with those induced by PDGF-beta alone. This work substantiates SCCROs function as an oncogene by showing its ability to facilitate malignant transformation and carcinogenic progression in vivo and supports a role for SCCRO in the pathogenesis of gliomas and other human cancers.
Related JoVE Video
Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells.
Cell Stem Cell
PUBLISHED: 01-04-2010
Show Abstract
Hide Abstract
eNOS expression is elevated in human glioblastomas and correlated with increased tumor growth and aggressive character. We investigated the potential role of nitric oxide (NO) activity in the perivascular niche (PVN) using a genetic engineered mouse model of PDGF-induced gliomas. eNOS expression is highly elevated in tumor vascular endothelium adjacent to perivascular glioma cells expressing Nestin, Notch, and the NO receptor, sGC. In addition, the NO/cGMP/PKG pathway drives Notch signaling in PDGF-induced gliomas in vitro, and induces the side population phenotype in primary glioma cell cultures. NO also increases neurosphere forming capacity of PDGF-driven glioma primary cultures, and enhances their tumorigenic capacity in vivo. Loss of NO activity in these tumors suppresses Notch signaling in vivo and prolongs survival of mice. This mechanism is conserved in human PDGFR amplified gliomas. The NO/cGMP/PKG pathways promotion of stem cell-like character in the tumor PVN may identify therapeutic targets for this subset of gliomas.
Related JoVE Video
Tuberous sclerosis complex suppression in cerebellar development and medulloblastoma: separate regulation of mammalian target of rapamycin activity and p27 Kip1 localization.
Cancer Res.
PUBLISHED: 09-08-2009
Show Abstract
Hide Abstract
During development, proliferation of cerebellar granule neuron precursors (CGNP), candidate cells-of-origin for the pediatric brain tumor medulloblastoma, requires signaling by Sonic hedgehog (Shh) and insulin-like growth factor (IGF), the pathways of which are also implicated in medulloblastoma. One of the consequences of IGF signaling is inactivation of the mammalian target of rapamycin (mTOR)-suppressing tuberous sclerosis complex (TSC), comprised of TSC1 and TSC2, leading to increased mRNA translation. We show that mice, in which TSC function is impaired, display increased mTOR pathway activation, enhanced CGNP proliferation, glycogen synthase kinase-3 alpha/beta (GSK-3 alpha/beta) inactivation, and cytoplasmic localization of the cyclin-dependent kinase inhibitor p27(Kip1), which has been proposed to cause its inactivation or gain of oncogenic functions. We observed the same characteristics in wild-type primary cultures of CGNPs in which TSC1 and/or TSC2 were knocked down, and in mouse medulloblastomas induced by ectopic Shh pathway activation. Moreover, Shh-induced mouse medulloblastomas manifested Akt-mediated TSC2 inactivation, and the mutant TSC2 allele synergized with aberrant Shh signaling to increase medulloblastoma incidence in mice. Driving exogenous TSC2 expression in Shh-induced medulloblastoma cells corrected p27(Kip1) localization and reduced proliferation. GSK-3 alpha/beta inactivation in the tumors in vivo and in primary CGNP cultures was mTOR-dependent, whereas p27(Kip1) cytoplasmic localization was regulated upstream of mTOR by TSC2. These results indicate that a balance between Shh mitogenic signaling and TSC function regulating new protein synthesis and cyclin-dependent kinase inhibition is essential for the normal development and prevention of tumor formation or expansion.
Related JoVE Video
Sonic hedgehog pathway activation is induced by acute brain injury and regulated by injury-related inflammation.
J. Neurosci.
PUBLISHED: 08-21-2009
Show Abstract
Hide Abstract
The adult mammalian brain responds to injury by activating a program of cell proliferation during which many oligodendrocyte precursors, microglia, and some astrocytes proliferate. Another common response to brain injury is the induction of reactive gliosis, a process whereby dormant astrocytes undergo morphological changes and alter their transcriptional profiles. Although brain injury-induced reactive gliosis is concurrent with the proliferation of surrounding cells, a functional relationship between reactive gliosis and this cell proliferation has not been clearly demonstrated. Here, we show that the mitogen sonic hedgehog (SHH) is produced in reactive astrocytes after injury to the cerebral cortex and participates in regulating the proliferation of Olig2-expressing (Olig2(+)) cells after brain injury. Using a cortical freeze injury to induce reactive gliosis in a Gli-luciferase reporter mouse, we show that the SHH pathway is maximally active 3 d after brain injury and returns to baseline levels by 14 d. SHH expression parallels Gli activation and localizes to glial fibrillary acidic protein-expressing reactive astrocytes. Inhibition of the SHH pathway with cyclopamine blocks the Gli response and significantly reduces both the proliferating and overall number of Olig2(+) cells in the injured cortex. To provide mechanistic insight into SHH pathway activation in astrocytes, we show that proinflammatory stimuli activate SHH-expressing reactive astrocytes, whereas inhibition of inflammation-induced reactive gliosis by macrophage depletion abolishes SHH activation after brain injury and dampens cell proliferation after injury. Our data describes a unique reactive astrocyte-based, SHH-expressing niche formed in response to injury and inflammation that regulates the proliferation of Olig2(+) cells.
Related JoVE Video
Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations.
PLoS ONE
PUBLISHED: 07-22-2009
Show Abstract
Hide Abstract
Glioblastoma multiforme (GBM) is an umbrella designation that includes a heterogeneous group of primary brain tumors. Several classification strategies of GBM have been reported, some by clinical course and others by resemblance to cell types either in the adult or during development. From a practical and therapeutic standpoint, classifying GBMs by signal transduction pathway activation and by mutation in pathway member genes may be particularly valuable for the development of targeted therapies.
Related JoVE Video
The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo.
Genes Dev.
PUBLISHED: 06-03-2009
Show Abstract
Hide Abstract
Activated oncogenic signaling is central to the development of nearly all forms of cancer, including the most common class of primary brain tumor, glioma. Research over the last two decades has revealed the particular importance of the Akt pathway, and its molecular antagonist PTEN (phosphatase and tensin homolog), in the process of gliomagenesis. Recent studies have also demonstrated that microRNAs (miRNAs) may be responsible for the modulation of cancer-implicated genes in tumors. Here we report the identification miR-26a as a direct regulator of PTEN expression. We also show that miR-26a is frequently amplified at the DNA level in human glioma, most often in association with monoallelic PTEN loss. Finally, we demonstrate that miR-26a-mediated PTEN repression in a murine glioma model both enhances de novo tumor formation and precludes loss of heterozygosity and the PTEN locus. Our results document a new epigenetic mechanism for PTEN regulation in glioma and further highlight dysregulation of Akt signaling as crucial to the development of these tumors.
Related JoVE Video
AUF1 and Hu proteins in the developing rat brain: implication in the proliferation and differentiation of neural progenitors.
J. Neurosci. Res.
PUBLISHED: 05-13-2009
Show Abstract
Hide Abstract
Posttranscriptional events such as RNA stabilization are important for cell differentiation, but little is known about the impact of AU-rich binding proteins (AUBPs) on the fate of neural cells. Expression of destabilizing AUBPs such as AUF1 and neuronal-specific stabilizing proteins such as HuB, HuC and HuD was therefore analyzed in the developing central nervous system. Real-time RT-PCR indicated a specific developmental pattern in the postnatal cerebellum, with a progressive down-regulation of AUF1 from P1, whereas HuB was strongly up-regulated at about P7. These changes were accompanied by a progressive increase in AUF1p45 and the disappearance of one HuB isoform from P15, suggesting particular roles for these AUBPs in the developing cerebellum. AUF1 was detected in the three main cerebellar layers, whereas Hu proteins were found only in postmitotic neurons. A role for Hu proteins in the early stages of neuronal differentiation is further supported by arrest of cell proliferation following induction of HuB or HuD expression in a neural stem cell line. The decrease in nestin expression suggest that HuD, but not HuB, favors the transition of neural progenitors into early neuroblasts, but other factors are most probably required for their full differentiation into neurons, insofar as GAP-43 was not detected in HuD-transfected cells. These data suggest critical roles for HuB at the very earliest stages of neuronal differentiation, such as cell cycle exit, and HuD might also be involved in the transition of neural progenitors into early neuroblasts. Taken together, the present results strengthen the importance of AUBPs in brain ontogenesis.
Related JoVE Video
Radiation Therapy Oncology Group translational research program stem cell symposium: incorporating stem cell hypotheses into clinical trials.
Int. J. Radiat. Oncol. Biol. Phys.
PUBLISHED: 02-25-2009
Show Abstract
Hide Abstract
At a meeting of the Translation Research Program of the Radiation Therapy Oncology Group held in early 2008, attendees focused on updating the current state of knowledge in cancer stem cell research and discussing ways in which this knowledge can be translated into clinical use across all disease sites. This report summarizes the major topics discussed and the future directions that research should take. Major conclusions of the symposium were that the flow cytometry of multiple markers in fresh tissue would remain the standard technique of evaluating cancer-initiating cells and that surrogates need to be developed for both experimental and clinical use.
Related JoVE Video
Modeling Adult Gliomas Using RCAS/t-va Technology.
Transl Oncol
PUBLISHED: 01-13-2009
Show Abstract
Hide Abstract
Malignant gliomas remain the most devastating childhood and adult tumors of the central nervous system. Although adult and pediatric gliomas are histologically indistinguishable, they differ in location, behavior, and molecular characteristics. This implies that the molecular pathways and pathophysiology of malignant gliomagenesis in these two populations are distinct. Such differences between adult and pediatric gliomas may predict different therapeutic responses. Therefore, accurate genetically engineered models of adult and pediatric gliomas may help understand the biology of these tumors and evaluate therapeutic agents in preclinical studies. It has been proposed that gliomas arise from the subventricular zone in mice during development. Here, we demonstrate that, in adult mice, gliomas may arise not only when injected in the subventricular zone but also when injected in the cortex and cerebellum. Our work demonstrates a versatile and highly reproducible adult mouse model of glioma, which can be easily incorporated into preclinical studies.
Related JoVE Video
PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells.
Cell Stem Cell
PUBLISHED: 01-13-2009
Show Abstract
Hide Abstract
In normal brain, the side population (SP) phenotype is generated by ABC transporter activity and identifies stem cell and endothelial cell subpopulations by dye exclusion. By drug efflux, the ABCG2 transporter provides chemoresistance in stem cells and contributes to the blood brain barrier (BBB) when active in endothelial cells. We investigated the SP phenotype of mouse and human gliomas. In glioma endothelial cells, ABC transporter function is impaired, corresponding to disruption of the BBB in these tumors. By contrast, the SP phenotype is increased in nonendothelial cells that form neurospheres and are highly tumorigenic. In this cell population, Akt, but not its downstream target mTOR, regulates ABCG2 activity, and loss of PTEN increases the SP. This Akt-induced ABCG2 activation results from its transport to the plasma membrane. Temozolomide, the standard treatment of gliomas, although not an ABCG2 substrate, increases the SP in glioma cells, especially in cells missing PTEN.
Related JoVE Video
Fluorine-labeled dasatinib nanoformulations as targeted molecular imaging probes in a PDGFB-driven murine glioblastoma model.
Neoplasia
Show Abstract
Hide Abstract
Dasatinib, a new-generation Src and platelet-derived growth factor receptor (PDGFR) inhibitor, is currently under evaluation in high-grade glioma clinical trials. To achieve optimum physicochemical and/or biologic properties, alternative drug delivery vehicles may be needed. We used a novel fluorinated dasatinib derivative (F-SKI249380), in combination with nanocarrier vehicles and metabolic imaging tools (microPET) to evaluate drug delivery and uptake in a platelet-derived growth factor B (PDGFB)-driven genetically engineered mouse model (GEMM) of high-grade glioma. We assessed dasatinib survival benefit on the basis of measured tumor volumes. Using brain tumor cells derived from PDGFB-driven gliomas, dose-dependent uptake and time-dependent inhibitory effects of F-SKI249380 on biologic activity were investigated and compared with the parent drug. PDGFR receptor status and tumor-specific targeting were non-invasively evaluated in vivo using (18)F-SKI249380 and (18)F-SKI249380-containing micellar and liposomal nanoformulations. A statistically significant survival benefit was found using dasatinib (95 mg/kg) versus saline vehicle (P < .001) in tumor volume-matched GEMM pairs. Competitive binding and treatment assays revealed comparable biologic properties for F-SKI249380 and the parent drug. In vivo, Significantly higher tumor uptake was observed for (18)F-SKI249380-containing micelle formulations [4.9 percentage of the injected dose per gram tissue (%ID/g); P = .002] compared to control values (1.6%ID/g). Saturation studies using excess cold dasatinib showed marked reduction of tumor uptake values to levels in normal brain (1.5%ID/g), consistent with in vivo binding specificity. Using (18)F-SKI249380-containing micelles as radiotracers to estimate therapeutic dosing requirements, we calculated intratumoral drug concentrations (24-60 nM) that were comparable to in vitro 50% inhibitory concentration values. (18)F-SKI249380 is a PDGFR-selective tracer, which demonstrates improved delivery to PDGFB-driven high-grade gliomas and facilitates treatment planning when coupled with nanoformulations and quantitative PET imaging approaches.
Related JoVE Video
Therapeutic targeting of VEGF in the treatment of glioblastoma.
Expert Opin. Ther. Targets
Show Abstract
Hide Abstract
Glioblastoma (GBM) is the most common and aggressive type of primary malignant brain tumor in adults. Despite therapy with maximal safe surgical resection, radiation and temozolomide, prognosis remains poor at 14.6 months. Hence, there is an urgent need for developing novel therapeutic agents. In GBMs, the balance of angiogenic growth factors is skewed toward pro-angiogenesis and VEGF is identified as the key growth factor responsible for neovasculature. Targeting angiogenesis is hypothesized to arrest tumor growth and hence VEGF is an attractive therapeutic target.
Related JoVE Video
Self-renewal does not predict tumor growth potential in mouse models of high-grade glioma.
Cancer Cell
Show Abstract
Hide Abstract
Within high-grade gliomas, the precise identities and functional roles of stem-like cells remain unclear. In the normal neurogenic niche, ID (Inhibitor of DNA-binding) genes maintain self-renewal and multipotency of adult neural stem cells. Using PDGF- and KRAS-driven murine models of gliomagenesis, we show that high Id1 expression (Id1(high)) identifies tumor cells with high self-renewal capacity, while low Id1 expression (Id1(low)) identifies tumor cells with proliferative potential but limited self-renewal capacity. Surprisingly, Id1(low) cells generate tumors more rapidly and with higher penetrance than Id1(high) cells. Further, eliminating tumor cell self-renewal through deletion of Id1 has modest effects on animal survival, while knockdown of Olig2 within Id1(low) cells has a significant survival benefit, underscoring the importance of non-self-renewing lineages in disease progression.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.