JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Innate sensing of malaria parasites.
Nat. Rev. Immunol.
PUBLISHED: 10-17-2014
Show Abstract
Hide Abstract
Innate immune receptors have a key role in immune surveillance by sensing microorganisms and initiating protective immune responses. However, the innate immune system is a classic 'double-edged sword' that can overreact to pathogens, which can have deleterious effects and lead to clinical manifestations. Recent studies have unveiled the complexity of innate immune receptors that function as sensors of Plasmodium spp. in the vertebrate host. This Review highlights the cellular and molecular mechanisms by which Plasmodium infection is sensed by different families of innate immune receptors. We also discuss how these events mediate both host resistance to infection and the pathogenesis of malaria.
Related JoVE Video
Hemolysis-induced lethality involves inflammasome activation by heme.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 09-15-2014
Show Abstract
Hide Abstract
The increase of extracellular heme is a hallmark of hemolysis or extensive cell damage. Heme has prooxidant, cytotoxic, and inflammatory effects, playing a central role in the pathogenesis of malaria, sepsis, and sickle cell disease. However, the mechanisms by which heme is sensed by innate immune cells contributing to these diseases are not fully characterized. We found that heme, but not porphyrins without iron, activated LPS-primed macrophages promoting the processing of IL-1? dependent on nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3). The activation of NLRP3 by heme required spleen tyrosine kinase, NADPH oxidase-2, mitochondrial reactive oxygen species, and K(+) efflux, whereas it was independent of heme internalization, lysosomal damage, ATP release, the purinergic receptor P2X7, and cell death. Importantly, our results indicated the participation of macrophages, NLRP3 inflammasome components, and IL-1R in the lethality caused by sterile hemolysis. Thus, understanding the molecular pathways affected by heme in innate immune cells might prove useful to identify new therapeutic targets for diseases that have heme release.
Related JoVE Video
The CD14+CD16+ inflammatory monocyte subset displays increased mitochondrial activity and effector function during acute Plasmodium vivax malaria.
PLoS Pathog.
PUBLISHED: 09-01-2014
Show Abstract
Hide Abstract
Infection with Plasmodium vivax results in strong activation of monocytes, which are important components of both the systemic inflammatory response and parasite control. The overall goal of this study was to define the role of monocytes during P. vivax malaria. Here, we demonstrate that P. vivax-infected patients display significant increase in circulating monocytes, which were defined as CD14(+)CD16- (classical), CD14(+)CD16(+) (inflammatory), and CD14loCD16(+) (patrolling) cells. While the classical and inflammatory monocytes were found to be the primary source of pro-inflammatory cytokines, the CD16(+) cells, in particular the CD14(+)CD16(+) monocytes, expressed the highest levels of activation markers, which included chemokine receptors and adhesion molecules. Morphologically, CD14(+) were distinguished from CD14lo monocytes by displaying larger and more active mitochondria. CD14(+)CD16(+) monocytes were more efficient in phagocytizing P. vivax-infected reticulocytes, which induced them to produce high levels of intracellular TNF-? and reactive oxygen species. Importantly, antibodies specific for ICAM-1, PECAM-1 or LFA-1 efficiently blocked the phagocytosis of infected reticulocytes by monocytes. Hence, our results provide key information on the mechanism by which CD14(+)CD16(+) cells control parasite burden, supporting the hypothesis that they play a role in resistance to P. vivax infection.
Related JoVE Video
3-Hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor (statin)-induced 28-kDa interleukin-1? interferes with mature IL-1? signaling.
J. Biol. Chem.
PUBLISHED: 04-30-2014
Show Abstract
Hide Abstract
Multiple clinical trials have shown that the 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors known as statins have anti-inflammatory effects. However, the underlying molecular mechanism remains unclear. The proinflammatory cytokine interleukin-1? (IL-1?) is synthesized as a non-active precursor. The 31-kDa pro-IL-1? is processed into the 17-kDa active form by caspase-1-activating inflammasomes. Here, we report a novel signaling pathway induced by statins, which leads to processing of pro-IL-1? into an intermediate 28-kDa form. This statin-induced IL-1? processing is independent of caspase-1- activating inflammasomes. The 28-kDa form of IL-1? cannot activate interleukin-1 receptor-1 (IL1R1) to signal inflammatory responses. Instead, it interferes with mature IL-1? signaling through IL-1R1 and therefore may dampen inflammatory responses initiated by mature IL-1?. These results may provide new clues to explain the anti-inflammatory effects of statins.
Related JoVE Video
RNA and ?-hemolysin of group B Streptococcus induce interleukin-1? (IL-1?) by activating NLRP3 inflammasomes in mouse macrophages.
J. Biol. Chem.
PUBLISHED: 04-01-2014
Show Abstract
Hide Abstract
The inflammatory cytokine IL-1? is critical for host responses against many human pathogens. Here, we define Group B Streptococcus (GBS)-mediated activation of the Nod-like receptor-P3 (NLRP3) inflammasome in macrophages. NLRP3 activation requires GBS expression of the cytolytic toxin, ?-hemolysin, lysosomal acidification, and leakage. These processes allow the interaction of GBS RNA with cytosolic NLRP3. The present study supports a model in which GBS RNA, along with lysosomal components including cathepsins, leaks out of lysosomes and interacts with NLRP3 to induce IL-1? production.
Related JoVE Video
Increased survival in B-cell-deficient mice during experimental cerebral malaria suggests a role for circulating immune complexes.
MBio
PUBLISHED: 03-20-2014
Show Abstract
Hide Abstract
The pathogenesis of malaria, an insect-borne disease that takes millions of lives every year, is still not fully understood. Complement receptor 1 (CR1) has been described as a receptor for Plasmodium falciparum, which causes cerebral malaria in humans. We investigated the role of CR1 in an experimental model of cerebral malaria. Transgenic mice expressing human CR1 (hCR1(+)) on erythrocytes were infected with Plasmodium berghei ANKA and developed cerebral malaria. No difference in survival was observed in hCR1(+) mice compared to wild-type mice following infection with P. berghei ANKA; however, hCR1 detection was significantly diminished on erythrocytes between days 7 and 10 postinfection. hCR1 levels returned to baseline by day 17 postinfection in surviving animals. Immunoblot assays revealed that total erythrocyte hCR1 levels were diminished, confirming that immune complexes in association with erythrocyte hCR1 were likely removed from erythrocytes in vivo by clearance following immune adherence. Decreases in hCR1 were completely dependent on C3 expression, as mice treated with cobra venom factor (which consumes and depletes C3) retained hCR1 on erythrocytes during C3 depletion through day 7; erythrocyte hCR1 decreases were observed only when C3 levels recovered on day 9. B-cell-deficient mice exhibit a marked increase in survival following infection with P. berghei ANKA, which suggests that immune complexes play a central role in the pathogenesis of experimental cerebral malaria. Together, our findings highlight the importance of complement and immune complexes in experimental cerebral malaria. IMPORTANCE Cerebral malaria is a deadly complication of infection with Plasmodium falciparum. Despite its high prevalence, relatively little is understood about its pathogenesis. We have determined that immune complexes are generated and deposited on erythrocytes specifically expressing human complement receptor 1 in a mouse model of cerebral malaria. We also provide evidence demonstrating the importance of immunoglobulins in the pathogenesis of cerebral malaria in mice. These findings may have important implications in human cerebral malaria.
Related JoVE Video
TRIF signaling is essential for TLR4-driven IgE class switching.
J. Immunol.
PUBLISHED: 02-14-2014
Show Abstract
Hide Abstract
The TLR4 ligand LPS causes mouse B cells to undergo IgE and IgG1 isotype switching in the presence of IL-4. TLR4 activates two signaling pathways mediated by the adaptor molecules MyD88 and Toll/IL-IR domain-containing adapter-inducing IFN-? (TRIF)-related adaptor molecule (TRAM), which recruits TRIF. Following stimulation with LPS plus IL-4, Tram(-/-) and Trif(-/-) B cells completely failed to express C? germline transcripts (GLT) and secrete IgE. In contrast, Myd88(-/-) B cells had normal expression of C? GLT but reduced IgE secretion in response to LPS plus IL-4. Following LPS plus IL-4 stimulation, C?1 GLT expression was modestly reduced in Tram(-/-) and Trif(-/-) B cells, whereas Aicda expression and IgG1 secretion were reduced in Tram(-/-), Trif(-/-), and Myd88(-/-) B cells. B cells from all strains secreted normal amounts of IgE and IgG1 in response to anti-CD40 plus IL-4. Following stimulation with LPS plus IL-4, Trif(-/-) B cells failed to sustain NF-?B p65 nuclear translocation beyond 3 h and had reduced binding of p65 to the I? promoter. Addition of the NF-?B inhibitor, JSH-23, to wild-type B cells 15 h after LPS plus IL-4 stimulation selectively blocked C? GLT expression and IgE secretion but had little effect on C?1 GLT expression and IgG secretion. These results indicate that sustained activation of NF-?B driven by TRIF is essential for LPS plus IL-4-driven activation of the C? locus and class switching to IgE.
Related JoVE Video
Escherichia coli isolates from inflammatory bowel diseases patients survive in macrophages and activate NLRP3 inflammasome.
Int. J. Med. Microbiol.
PUBLISHED: 01-14-2014
Show Abstract
Hide Abstract
Crohn's disease (CD) is a multifactorial pathology associated with the presence of adherent-invasive Escherichia coli (AIEC) and NLRP3 polymorphic variants. The presence of intracellular E. coli in other intestinal pathologies (OIP) and the role of NLRP3-inflammasome in the immune response activated by these bacteria have not been investigated. In this study, we sought to characterize intracellular strains isolated from patients with CD, ulcerative colitis (UC) and OIP, and analyze NLRP3-inflammasome role in the immune response and bactericidal activity induced in macrophages exposed to invasive bacteria. For this, intracellular E. coli isolation from ileal biopsies, using gentamicin-protection assay, revealed a prevalence and CFU/biopsy of E. coli higher in biopsies from CD, UC and OIP patients than in controls. To characterize bacterial isolates, pulsed-field gel electrophoresis (PFGE) patterns, virulence genes, serogroup and phylogenetic group were analyzed. We found out that bacteria isolated from a given patient were closely related and shared virulence factors; however, strains from different patients were genetically heterogeneous. AIEC characteristics in isolated strains, such as invasive and replicative properties, were assessed in epithelial cells and macrophages, respectively. Some strains from CD and UC demonstrated AIEC properties, but not strains from OIP. Furthermore, the role of NLRP3 in pro-inflammatory cytokines production and bacterial elimination was determined in macrophages. E. coli strains induced IL-1? through NLRP3-dependent mechanism; however, their elimination by macrophages was independent of NLRP3. Invasiveness of intracellular E. coli strains into the intestinal mucosa and IL-1? production may contribute to CD and UC pathogenesis.
Related JoVE Video
Dual engagement of the NLRP3 and AIM2 inflammasomes by plasmodium-derived hemozoin and DNA during malaria.
Cell Rep
PUBLISHED: 01-02-2014
Show Abstract
Hide Abstract
Hemozoin (Hz) is the crystalline detoxification product of hemoglobin in Plasmodium-infected erythrocytes. We previously proposed that Hz can carry plasmodial DNA into a subcellular compartment that is accessible to Toll-like receptor 9 (TLR9), inducing an inflammatory signal. Hz also activates the NLRP3 inflammasome in primed cells. We found that Hz appears to colocalize with DNA in infected erythrocytes, even before RBC rupture or phagolysosomal digestion. Using synthetic Hz coated in vitro with plasmodial genomic DNA (gDNA) or CpG oligodeoxynucleotides, we observed that DNA-complexed Hz induced TLR9 translocation, providing a priming and an activation signal for inflammasomes. After phagocytosis, Hz and DNA dissociate. Hz subsequently induces phagolysosomal destabilization, allowing phagolysosomal contents access to the cytosol, where DNA receptors become activated. Similar observations were made with Plasmodium-infected RBCs. Finally, infected erythrocytes activated both the NLRP3 and AIM2 inflammasomes. These observations suggest that Hz and DNA work together to induce systemic inflammation during malaria.
Related JoVE Video
Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection.
PLoS Pathog.
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Cyclic paroxysm and high fever are hallmarks of malaria and are associated with high levels of pyrogenic cytokines, including IL-1?. In this report, we describe a signature for the expression of inflammasome-related genes and caspase-1 activation in malaria. Indeed, when we infected mice, Plasmodium infection was sufficient to promote MyD88-mediated caspase-1 activation, dependent on IFN-?-priming and the expression of inflammasome components ASC, P2X7R, NLRP3 and/or NLRP12. Pro-IL-1? expression required a second stimulation with LPS and was also dependent on IFN-?-priming and functional TNFR1. As a consequence of Plasmodium-induced caspase-1 activation, mice produced extremely high levels of IL-1? upon a second microbial stimulus, and became hypersensitive to septic shock. Therapeutic intervention with IL-1 receptor antagonist prevented bacterial-induced lethality in rodents. Similar to mice, we observed a significantly increased frequency of circulating CD14(+)CD16(-)Caspase-1(+) and CD14(dim)CD16(+)Caspase-1(+) monocytes in peripheral blood mononuclear cells from febrile malaria patients. These cells readily produced large amounts of IL-1? after stimulation with LPS. Furthermore, we observed the presence of inflammasome complexes in monocytes from malaria patients containing either NLRP3 or NLRP12 pyroptosomes. We conclude that NLRP12/NLRP3-dependent activation of caspase-1 is likely to be a key event in mediating systemic production of IL-1? and hypersensitivity to secondary bacterial infection during malaria.
Related JoVE Video
Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection.
Nat. Med.
PUBLISHED: 10-10-2013
Show Abstract
Hide Abstract
Before they infect red blood cells and cause malaria, Plasmodium parasites undergo an obligate and clinically silent expansion phase in the liver that is supposedly undetected by the host. Here, we demonstrate the engagement of a type I interferon (IFN) response during Plasmodium replication in the liver. We identified Plasmodium RNA as a previously unrecognized pathogen-associated molecular pattern (PAMP) capable of activating a type I IFN response via the cytosolic pattern recognition receptor Mda5. This response, initiated by liver-resident cells through the adaptor molecule for cytosolic RNA sensors, Mavs, and the transcription factors Irf3 and Irf7, is propagated by hepatocytes in an interferon-?/? receptor-dependent manner. This signaling pathway is critical for immune cell-mediated host resistance to liver-stage Plasmodium infection, which we find can be primed with other PAMPs, including hepatitis C virus RNA. Together, our results show that the liver has sensor mechanisms for Plasmodium that mediate a functional antiparasite response driven by type I IFN.
Related JoVE Video
The genome of Anopheles darlingi, the main neotropical malaria vector.
Osvaldo Marinotti, Gustavo C Cerqueira, Luiz Gonzaga Paula de Almeida, Maria Inês Tiraboschi Ferro, Élgion Lúcio da Silva Loreto, Arnaldo Zaha, Santuza M R Teixeira, Adam R Wespiser, Alexandre Almeida E Silva, Aline Daiane Schlindwein, Ana Carolina Landim Pacheco, Artur Luiz da Costa da Silva, Brenton R Graveley, Brian P Walenz, Bruna de Araujo Lima, Carlos Alexandre Gomes Ribeiro, Carlos Gustavo Nunes-Silva, Carlos Roberto de Carvalho, Célia Maria de Almeida Soares, Claudia Beatriz Afonso de Menezes, Cleverson Matiolli, Daniel Caffrey, Demetrius Antonio M Araújo, Diana Magalhaes de Oliveira, Douglas Golenbock, Edmundo Carlos Grisard, Fabiana Fantinatti-Garboggini, Fabíola Marques de Carvalho, Fernando Gomes Barcellos, Francisco Prosdocimi, Gemma May, Gilson Martins de Azevedo Junior, Giselle Moura Guimarães, Gustavo Henrique Goldman, Itácio Q M Padilha, Jacqueline da Silva Batista, Jesus Aparecido Ferro, José M C Ribeiro, Juliana Lopes Rangel Fietto, Karina Maia Dabbas, Louise Cerdeira, Lucymara Fassarella Agnez-Lima, Marcelo Brocchi, Marcos Oliveira de Carvalho, Marcus de Melo Teixeira, Maria de Mascena Diniz Maia, Maria Helena S Goldman, Maria Paula Cruz Schneider, Maria Sueli Soares Felipe, Mariangela Hungria, Marisa Fabiana Nicolás, Maristela Pereira, Martín Alejandro Montes, Mauricio E Cantão, Michel Vincentz, Míriam Silva Rafael, Neal Silverman, Patrícia Hermes Stoco, Rangel Celso Souza, Renato Vicentini, Ricardo Tostes Gazzinelli, Rogério de Oliveira Neves, Rosane Silva, Spartaco Astolfi-Filho, Talles Eduardo Ferreira Maciel, Turán P Urményi, Wanderli Pedro Tadei, Erney Plessmann Camargo, Ana Tereza Ribeiro de Vasconcelos.
Nucleic Acids Res.
PUBLISHED: 06-12-2013
Show Abstract
Hide Abstract
Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ?100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector-human and vector-parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi.
Related JoVE Video
Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 05-28-2013
Show Abstract
Hide Abstract
Microbial capsular antigens are effective vaccines but are chemically and immunologically diverse, resulting in a major barrier to their use against multiple pathogens. A ?-(1?6)-linked poly-N-acetyl-d-glucosamine (PNAG) surface capsule is synthesized by four proteins encoded in genetic loci designated intercellular adhesion in Staphylococcus aureus or polyglucosamine in selected Gram-negative bacterial pathogens. We report that many microbial pathogens lacking an identifiable intercellular adhesion or polyglucosamine locus produce PNAG, including Gram-positive, Gram-negative, and fungal pathogens, as well as protozoa, e.g., Trichomonas vaginalis, Plasmodium berghei, and sporozoites and blood-stage forms of Plasmodium falciparum. Natural antibody to PNAG is common in humans and animals and binds primarily to the highly acetylated glycoform of PNAG but is not protective against infection due to lack of deposition of complement opsonins. Polyclonal animal antibody raised to deacetylated glycoforms of PNAG and a fully human IgG1 monoclonal antibody that both bind to native and deacetylated glycoforms of PNAG mediated complement-dependent opsonic or bactericidal killing and protected mice against local and/or systemic infections by Streptococcus pyogenes, Streptococcus pneumoniae, Listeria monocytogenes, Neisseria meningitidis serogroup B, Candida albicans, and P. berghei ANKA, and against colonic pathology in a model of infectious colitis. PNAG is also a capsular polysaccharide for Neisseria gonorrhoeae and nontypable Hemophilus influenzae, and protects cells from environmental stress. Vaccination targeting PNAG could contribute to immunity against serious and diverse prokaryotic and eukaryotic pathogens, and the conserved production of PNAG suggests that it is a critical factor in microbial biology.
Related JoVE Video
The history of Toll-like receptors - redefining innate immunity.
Nat. Rev. Immunol.
PUBLISHED: 05-17-2013
Show Abstract
Hide Abstract
The discovery of Toll-like receptors (TLRs) was an important event for immunology research and was recognized as such with the awarding of the 2011 Nobel Prize in Physiology or Medicine to Jules Hoffmann and Bruce Beutler, who, together with Ralph Steinman, the third winner of the 2011 Nobel Prize and the person who discovered the dendritic cell, were pioneers in the field of innate immunity. TLRs have a central role in immunity - in this Timeline article, we describe the landmark findings that gave rise to this important field of research.
Related JoVE Video
CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation.
Nat. Immunol.
PUBLISHED: 03-06-2013
Show Abstract
Hide Abstract
Particulate ligands, including cholesterol crystals and amyloid fibrils, induce production of interleukin 1? (IL-1?) dependent on the cytoplasmic sensor NLRP3 in atherosclerosis, Alzheimers disease and diabetes. Soluble endogenous ligands, including oxidized low-density lipoprotein (LDL), amyloid-? and amylin peptides, accumulate in such diseases. Here we identify an endocytic pathway mediated by the pattern-recognition receptor CD36 that coordinated the intracellular conversion of those soluble ligands into crystals or fibrils, which resulted in lysosomal disruption and activation of the NLRP3 inflammasome. Consequently, macrophages that lacked CD36 failed to elicit IL-1? production in response to those ligands, and targeting CD36 in atherosclerotic mice resulted in lower serum concentrations of IL-1? and accumulation of cholesterol crystals in plaques. Collectively, our findings highlight the importance of CD36 in the accrual and nucleation of NLRP3 ligands from within the macrophage and position CD36 as a central regulator of inflammasome activation in sterile inflammation.
Related JoVE Video
Interferon-? and granulocyte/monocyte colony-stimulating factor production by natural killer cells involves different signaling pathways and the adaptor stimulator of interferon genes (STING).
J. Biol. Chem.
PUBLISHED: 02-26-2013
Show Abstract
Hide Abstract
Natural killer (NK) cells are important for innate immunity in particular through the production of IFN-? and GM-CSF. Both cytokines are important in restoration of immune function of tolerized leukocytes under inflammatory events. The expression of TLRs in NK cells has been widely studied by analyzing the mRNA of these receptors, rarely seeking their protein expression. We previously showed that murine spleen NK cells express TLR9 intracellularly and respond to CpG oligodeoxynucleotide (CpG-ODN) by producing IFN-? and GM-CSF. However, to get such production the presence of accessory cytokines (such as IL-15 and IL-18) was required, whereas CpG-ODN or accessory cytokines alone did not induce IFN-? or GM-CSF. We show here that TLR9 overlaps with the Golgi apparatus in NK cells. Furthermore, CpG-ODN stimulation in the presence of accessory cytokines induces the phosphorylation of c-Jun, STAT3, and I?B?. IFN-? and GM-CSF production requires NF-?B and STAT3 activation as well as Erk-dependent mechanisms for IFN-? and p38 signaling for GM-CSF. Using knock-out-mice, we show that UNC93b1 and IL-12 (produced by NK cells themselves) are also necessary for IFN-? and GM-CSF production. IFN-? production was found to be MyD88- and TLR9-dependent, whereas GM-CSF was TLR9-independent but dependent on STING (stimulator of interferon genes), a cytosolic adaptor recently described for DNA sensing. Our study thereby allows us to gain insight into the mechanisms of synergy between accessory cytokines and CpG-ODN in NK cells. It also identifies a new and alternative signaling pathway for CpG-ODN in murine NK cells.
Related JoVE Video
The Abi-domain protein Abx1 interacts with the CovS histidine kinase to control virulence gene expression in group B Streptococcus.
PLoS Pathog.
PUBLISHED: 02-21-2013
Show Abstract
Hide Abstract
Group B Streptococcus (GBS), a common commensal of the female genital tract, is the leading cause of invasive infections in neonates. Expression of major GBS virulence factors, such as the hemolysin operon cyl, is regulated directly at the transcriptional level by the CovSR two-component system. Using a random genetic approach, we identified a multi-spanning transmembrane protein, Abx1, essential for the production of the GBS hemolysin. Despite its similarity to eukaryotic CaaX proteases, the Abx1 function is not involved in a post-translational modification of the GBS hemolysin. Instead, we demonstrate that Abx1 regulates transcription of several virulence genes, including those comprising the hemolysin operon, by a CovSR-dependent mechanism. By combining genetic analyses, transcriptome profiling, and site-directed mutagenesis, we showed that Abx1 is a regulator of the histidine kinase CovS. Overexpression of Abx1 is sufficient to activate virulence gene expression through CovS, overcoming the need for an additional signal. Conversely, the absence of Abx1 has the opposite effect on virulence gene expression consistent with CovS locked in a kinase-competent state. Using a bacterial two-hybrid system, direct interaction between Abx1 and CovS was mapped specifically to CovS domains involved in signal processing. We demonstrate that the CovSR two-component system is the core of a signaling pathway integrating the regulation of CovS by Abx1 in addition to the regulation of CovR by the serine/threonine kinase Stk1. In conclusion, our study reports a regulatory function for Abx1, a member of a large protein family with a characteristic Abi-domain, which forms a signaling complex with the histidine kinase CovS in GBS.
Related JoVE Video
UNC93B1 and nucleic acid-sensing Toll-like receptors mediate host resistance to infection with Leishmania major.
J. Biol. Chem.
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
The mammalian homolog B1 of Unc-93 Caenorhabditis elegans known as UNC93B1 is a chaperone protein that mediates translocation of the nucleic acid-sensing Toll-like receptors (TLRs) from the endoplasmic reticulum to the endolysosomes. The triple deficient (UNC93B1 mutant) mice have a functional single point mutation in the UNC93B1 that results in non-functional TLR3, TLR7, and TLR9. Herein, we demonstrate that UNC93B1 mutant mice, in the C57BL/6 (resistant) genetic background, are highly susceptible to Leishmania major infection. Enhanced swelling of the footpad was associated with high levels of interleukin 10, decreased levels of interferon ?, and increased parasitism. None of the single TLR3, TLR7, and TLR9 knock-out (KO) mice resemble the UNC93B1 mutant phenotype upon infection with L. major. Whereas the double TLR7/TLR9 KO showed a partial phenotype, the triple TLR3/TLR7/TLR9 KO mice were as susceptible as the UNC93B1 mutant mice, when infected with Leishmania parasites. Finally, we demonstrate that treatment with either anti-interleukin 10 receptor monoclonal antibody or recombinant interleukin 12 restored a robust anti-parasite TH1 response and reverted the susceptible phenotype of UNC93B1 mutant mice. Altogether, our results indicate the redundant and essential role of nucleic acid-sensing TLR3, TLR7 and TLR9 in inducing interleukin 12, development of a TH1 response, and resistance to L. major infection in resistant C57BL/6 mice.
Related JoVE Video
Inflammation in mice ectopically expressing human Pyogenic Arthritis, Pyoderma Gangrenosum, and Acne (PAPA) Syndrome-associated PSTPIP1 A230T mutant proteins.
J. Biol. Chem.
PUBLISHED: 01-04-2013
Show Abstract
Hide Abstract
Pyogenic Arthritis, Pyoderma Gangrenosum, and Acne Syndrome (PAPA syndrome) is an autoinflammatory disease caused by aberrant production of the proinflammatory cytokine interleukin-1. Mutations in the gene encoding proline serine threonine phosphatase-interacting protein-1 (PSTPIP1) have been linked to PAPA syndrome. PSTPIP1 is an adaptor protein that interacts with PYRIN, the protein encoded by the Mediterranean Fever (MEFV) gene whose mutations cause Familial Mediterranean Fever (FMF). However, the pathophysiological function of PSTPIP1 remains to be elucidated. We have generated mouse strains that either are PSTPIP1 deficient or ectopically express mutant PSTPIP1. Results from analyzing these mice suggested that PSTPIP1 is not an essential regulator of the Nlrp3, Aim2, or Nlrc4 inflammasomes. Although common features of human PAPA syndrome such as pyogenic arthritis and skin inflammation were not recapitulated in the mouse model, ectopic expression of the mutant but not the wild type PSTPIP1 in mice lead to partial embryonic lethality, growth retardation, and elevated level of circulating proinflammatory cytokines.
Related JoVE Video
Combined action of nucleic acid-sensing Toll-like receptors and TLR11/TLR12 heterodimers imparts resistance to Toxoplasma gondii in mice.
Cell Host Microbe
PUBLISHED: 01-03-2013
Show Abstract
Hide Abstract
"Triple-defective" (3d) mice carrying a mutation in UNC93B1, a chaperone for the endosomal nucleic acid-sensing (NAS) Toll-like receptors TLR3, TLR7, and TLR9, are highly susceptible to Toxoplasma gondii infection. However, none of the single or even the triple NAS-TLR-deficient animals recapitulated the 3d susceptible phenotype to experimental toxoplasmosis. Investigating this further, we found that while parasite RNA and DNA activate innate immune responses via TLR7 and TLR9, TLR11 and TLR12 working as heterodimers are required for sensing and responding to Toxoplasma profilin. Consequently, the triple TLR7/TLR9/TLR11-deficient mice are highly susceptible to T. gondii infection, recapitulating the phenotype of 3d mice. Humans lack functional TLR11 and TLR12 genes. Consistently, human cells produce high levels of proinflammatory cytokines in response to parasite-derived RNA and DNA, but not to Toxoplasma profilin, supporting a more critical role for NAS-TLRs in human toxoplasmosis.
Related JoVE Video
NO is a macrophage autonomous modifier of the cytokine response to streptococcal single-stranded RNA.
J. Immunol.
PUBLISHED: 12-19-2011
Show Abstract
Hide Abstract
Group B streptococci, a major cause of sepsis, induce inflammatory cytokines in strict dependence on bacterial ssRNA and the host molecules MyD88 and UNC-93B. In this study, we show that NO plays an important role in Group B streptococci-induced transcriptional activation of cytokine genes. Phagocytosis induced NO in a MyD88-dependent fashion. In turn, NO propagated the acidification of phagosomes and the processing of phagosomal bacterial nucleic acids and was required for potent transcriptional activation of cytokine genes by streptococci. This NO-dependent amplification loop has important mechanistic implications for the anti-streptococcal macrophage response and sepsis pathogenesis.
Related JoVE Video
Genome-wide expression profiling and mutagenesis studies reveal that lipopolysaccharide responsiveness appears to be absolutely dependent on TLR4 and MD-2 expression and is dependent upon intermolecular ionic interactions.
J. Immunol.
PUBLISHED: 08-24-2011
Show Abstract
Hide Abstract
Lipid A (a hexaacylated 1,4 bisphosphate) is a potent immune stimulant for TLR4/MD-2. Upon lipid A ligation, the TLR4/MD-2 complex dimerizes and initiates signal transduction. Historically, studies also suggested the existence of TLR4/MD-2-independent LPS signaling. In this article, we define the role of TLR4 and MD-2 in LPS signaling by using genome-wide expression profiling in TLR4- and MD-2-deficient macrophages after stimulation with peptidoglycan-free LPS and synthetic Escherichia coli lipid A. Of the 1396 genes significantly induced or repressed by any one of the treatments in the wild-type macrophages, none was present in the TLR4- or MD-2-deficient macrophages, confirming that the TLR4/MD-2 complex is the only receptor for endotoxin and that both are required for responses to LPS. Using a molecular genetics approach, we investigated the mechanism of TLR4/MD-2 activation by combining the known crystal structure of TLR4/MD-2 with computer modeling. According to our murine TLR4/MD-2-activation model, the two phosphates on lipid A were predicted to interact extensively with the two positively charged patches on mouse TLR4. When either positive patch was abolished by mutagenesis into Ala, the responses to LPS and lipid A were nearly abrogated. However, the MyD88-dependent and -independent pathways were impaired to the same extent, indicating that the adjuvant activity of monophosphorylated lipid A most likely arises from its decreased potential to induce an active receptor complex and not more downstream signaling events. Hence, we concluded that ionic interactions between lipid A and TLR4 are essential for optimal LPS receptor activation.
Related JoVE Video
Requirement of UNC93B1 reveals a critical role for TLR7 in host resistance to primary infection with Trypanosoma cruzi.
J. Immunol.
PUBLISHED: 07-13-2011
Show Abstract
Hide Abstract
UNC93B1 associates with TLR3, 7, and 9, mediating their translocation from the endoplasmic reticulum to the endolysosome, thus allowing proper activation by microbial nucleic acids. We found that the triple-deficient 3d mice, which lack functional UNC93B1 as well as functional endosomal TLRs, are highly susceptible to infection with Trypanosoma cruzi. The enhanced parasitemia and mortality in 3d animals were associated with impaired proinflammatory response, including reduced levels of IL-12p40 and IFN-?. Importantly, the phenotype of 3d mice was intermediary between MyD88(-/-) (highly susceptible) and TLR9(-/-) (moderately susceptible), indicating the involvement of an additional UN93B1-dependent TLR(s) on host resistance to T. cruzi. Hence, our experiments also revealed that TLR7 is a critical innate immune receptor involved in recognition of parasite RNA, induction of IL-12p40 by dendritic cells, and consequent IFN-? by T lymphocytes. Furthermore, we show that upon T. cruzi infection, triple TLR3/7/9(-/-) mice had similar phenotype than 3d mice. These data imply that the nucleic acid-sensing TLRs are critical determinants of host resistance to primary infection with T. cruzi.
Related JoVE Video
Innate immune recognition of an AT-rich stem-loop DNA motif in the Plasmodium falciparum genome.
Immunity
PUBLISHED: 04-28-2011
Show Abstract
Hide Abstract
Although Toll-like receptor 9 (TLR9) has been implicated in cytokine and type I interferon (IFN) production during malaria in humans and mice, the high AT content of the Plasmodium falciparum genome prompted us to examine the possibility that malarial DNA triggered TLR9-independent pathways. Over 6000 ATTTTTAC ("AT-rich") motifs are present in the genome of P. falciparum, which we show here potently induce type I IFNs. Parasite DNA, parasitized erythrocytes and oligonucleotides containing the AT-rich motif induce type I IFNs via a pathway that did not involve the previously described sensors TLR9, DAI, RNA polymerase-III or IFI16/p204. Rather, AT-rich DNA sensing involved an unknown receptor that coupled to the STING, TBK1 and IRF3-IRF7 signaling pathway. Mice lacking IRF3, IRF7, the kinase TBK1 or the type I IFN receptor were resistant to otherwise lethal cerebral malaria. Collectively, these observations implicate AT-rich DNA sensing via STING, TBK1 and IRF3-IRF7 in P. falciparum malaria.
Related JoVE Video
Toll-like receptors participate in macrophage activation and intracellular control of Leishmania (Viannia) panamensis.
Infect. Immun.
PUBLISHED: 04-25-2011
Show Abstract
Hide Abstract
Toll-like receptors (TLRs) play a central role in macrophage activation and control of parasitic infections. Their contribution to the outcome of Leishmania infection is just beginning to be deciphered. We examined the interaction of Leishmania panamensis with TLRs in the activation of host macrophages. L. panamensis infection resulted in upregulation of TLR1, TLR2, TLR3, and TLR4 expression and induced tumor necrosis factor alpha (TNF-?) secretion by human primary macrophages at comparable levels and kinetics to those of specific TLR ligands. The TLR dependence of the host cell response was substantiated by the absence of TNF-? production in MyD88/TRIF(-/-) murine bone marrow-derived macrophages and mouse macrophage cell lines in response to promastigotes and amastigotes. Systematic screening of TLR-deficient macrophages revealed that TNF-? production was completely abrogated in TLR4(-/-) macrophages, consistent with the increased intracellular parasite survival at early time points of infection. TNF-? secretion was significantly reduced in macrophages lacking endosomal TLRs but was unaltered by a lack of TLR2 or MD-2. Together, these findings support the participation of TLR4 and endosomal TLRs in the activation of host macrophages by L. panamensis and in the early control of infection.
Related JoVE Video
Natural loss-of-function mutation of myeloid differentiation protein 88 disrupts its ability to form Myddosomes.
J. Biol. Chem.
PUBLISHED: 02-16-2011
Show Abstract
Hide Abstract
Myeloid differentiation protein 88 (MyD88) is a key signaling adapter in Toll-like receptor (TLR) signaling. MyD88 is also one of the most polymorphic adapter proteins. We screened the reported nonsynonymous coding mutations in MyD88 to identify variants with altered function. In reporter assays, a death domain variant, S34Y, was found to be inactive. Importantly, in reconstituted macrophage-like cell lines derived from knock-out mice, MyD88 S34Y was severely compromised in its ability to respond to all MyD88-dependent TLR ligands. Unlike wild-type MyD88, S34Y is unable to form distinct foci in the cells but is present diffused in the cytoplasm. We observed that IRAK4 co-localizes with MyD88 in these aggregates, and thus these foci appear to be "Myddosomes." The MyD88 S34Y loss-of-function mutant demonstrates how proper cellular localization of MyD88 to the Myddosome is a feature required for MyD88 function.
Related JoVE Video
Therapeutical targeting of nucleic acid-sensing Toll-like receptors prevents experimental cerebral malaria.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-08-2011
Show Abstract
Hide Abstract
Excessive release of proinflammatory cytokines by innate immune cells is an important component of the pathogenic basis of malaria. Proinflammatory cytokines are a direct output of Toll-like receptor (TLR) activation during microbial infection. Thus, interference with TLR function is likely to render a better clinical outcome by preventing their aberrant activation and the excessive release of inflammatory mediators. Herein, we describe the protective effect and mechanism of action of E6446, a synthetic antagonist of nucleic acid-sensing TLRs, on experimental cerebral malaria (ECM) induced by Plasmodium berghei ANKA. We show that in vitro, low doses of E6446 specifically inhibited the activation of human and mouse TLR9. Tenfold higher concentrations of this compound also inhibited the human TLR8 response to single-stranded RNA. In vivo, therapy with E6446 diminished the activation of TLR9 and prevented the exacerbated cytokine response observed during acute Plasmodium infection. Furthermore, severe signs of ECM, such as limb paralysis, brain vascular leak, and death, were all prevented by oral treatment with E6446. Hence, we provide evidence that supports the involvement of nucleic acid-sensing TLRs in malaria pathogenesis and that interference with the activation of these receptors is a promising strategy to prevent deleterious inflammatory responses that mediate pathogenesis and severity of malaria.
Related JoVE Video
Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation.
J. Biol. Chem.
PUBLISHED: 01-12-2011
Show Abstract
Hide Abstract
Autophagy is a key regulator of cellular homeostasis that can be activated by pathogen-associated molecules and recently has been shown to influence IL-1? secretion by macrophages. However, the mechanisms behind this are unclear. Here, we describe a novel role for autophagy in regulating the production of IL-1? in antigen-presenting cells. After treatment of macrophages with Toll-like receptor ligands, pro-IL-1? was specifically sequestered into autophagosomes, whereas further activation of autophagy with rapamycin induced the degradation of pro-IL-1? and blocked secretion of the mature cytokine. Inhibition of autophagy promoted the processing and secretion of IL-1? by antigen-presenting cells in an NLRP3- and TRIF-dependent manner. This effect was reduced by inhibition of reactive oxygen species but was independent of NOX2. Induction of autophagy in mice in vivo with rapamycin reduced serum levels of IL-1? in response to challenge with LPS. These data demonstrate that autophagy controls the production of IL-1? through at least two separate mechanisms: by targeting pro-IL-1? for lysosomal degradation and by regulating activation of the NLRP3 inflammasome.
Related JoVE Video
Viral inhibitory peptide of TLR4, a peptide derived from vaccinia protein A46, specifically inhibits TLR4 by directly targeting MyD88 adaptor-like and TRIF-related adaptor molecule.
J. Immunol.
PUBLISHED: 08-27-2010
Show Abstract
Hide Abstract
TLRs are critical pattern recognition receptors that recognize bacterial and viral pathogen-associated molecular patterns leading to innate and adaptive immune responses. TLRs signal via homotypic interactions between their cytoplasmic Toll/IL-1R (TIR) domains and TIR domain-containing adaptor proteins. Over the course of evolution, viruses have developed various immune evasion strategies, one of which involves inhibiting TLR signaling pathways to avoid immune detection. Thus, vaccinia virus encodes the A46 protein, which binds to multiple TIR-domain containing proteins, ultimately preventing TLRs from signaling. We have identified an 11-aa-long peptide from A46 (termed viral inhibitor peptide of TLR4, or VIPER), which, when fused to a cell-penetrating delivery sequence, potently inhibits TLR4-mediated responses. VIPER was TLR4 specific, being inert toward other TLR pathways, and was active in murine and human cells and in vivo, where it inhibited LPS-induced IL-12p40 secretion. VIPER also prevented TLR4-mediated MAPK and transcription factor activation, suggesting it acted close to the TLR4 complex. Indeed, VIPER directly interacted with the TLR4 adaptor proteins MyD88 adaptor-like (Mal) and TRIF-related adaptor molecule (TRAM). Viral proteins target host proteins using evolutionary optimized binding surfaces. Thus, VIPER possibly represents a surface domain of A46 that specifically inhibits TLR4 by masking critical binding sites on Mal and TRAM. Apart from its potential therapeutic and experimental use in suppressing TLR4 function, identification of VIPERs specific binding sites on TRAM and Mal may reveal novel therapeutic target sites. Overall, we demonstrate for the first time disruption of a specific TLR signaling pathway by a short virally derived peptide.
Related JoVE Video
UNC93B1 mediates host resistance to infection with Toxoplasma gondii.
PLoS Pathog.
PUBLISHED: 07-26-2010
Show Abstract
Hide Abstract
UNC93B1 associates with Toll-Like Receptor (TLR) 3, TLR7 and TLR9, mediating their translocation from the endoplasmic reticulum to the endolysosome, hence allowing proper activation by nucleic acid ligands. We found that the triple deficient 3d mice, which lack functional UNC93B1, are hyper-susceptible to infection with Toxoplasma gondii. We established that while mounting a normal systemic pro-inflammatory response, i.e. producing abundant MCP-1, IL-6, TNF? and IFN?, the 3d mice were unable to control parasite replication. Nevertheless, infection of reciprocal bone marrow chimeras between wild-type and 3d mice with T. gondii demonstrated a primary role of hemopoietic cell lineages in the enhanced susceptibility of UNC93B1 mutant mice. The protective role mediated by UNC93B1 to T. gondii infection was associated with impaired IL-12 responses and delayed IFN? by spleen cells. Notably, in macrophages infected with T. gondii, UNC93B1 accumulates on the parasitophorous vacuole. Furthermore, upon in vitro infection the rate of tachyzoite replication was enhanced in non-activated macrophages carrying mutant UNC93B1 as compared to wild type gene. Strikingly, the role of UNC93B1 on intracellular parasite growth appears to be independent of TLR function. Altogether, our results reveal a critical role for UNC93B1 on induction of IL-12/IFN? production as well as autonomous control of Toxoplasma replication by macrophages.
Related JoVE Video
MD-2 residues tyrosine 42, arginine 69, aspartic acid 122, and leucine 125 provide species specificity for lipid IVA.
J. Biol. Chem.
PUBLISHED: 06-30-2010
Show Abstract
Hide Abstract
Lipopolysaccharide (LPS) activates the innate immune response through the Toll-like receptor 4 (TLR4).MD-2 complex. A synthetic lipid A precursor, lipid IV(A), induces an innate immune response in mice but not in humans. Both TLR4 and MD-2 are required for the agonist activity of lipid IV(A) in mice, with TLR4 interacting through specific surface charges at the dimerization interface. In this study, we used site-directed mutagenesis to identify the MD-2 residues that determine lipid IV(A) species specificity. A single mutation of murine MD-2 at the hydrophobic pocket entrance, E122K, substantially reduced the response to lipid IV(A). Combining the murine MD-2 E122K with the murine TLR4 K367E/S386K/R434Q mutations completely abolished the response to lipid IV(A), effectively converting the murine cellular response to a human-like response. In human cells, however, simultaneous mutations of K122E, K125L, Y41F, and R69G on human MD-2 were required to promote a response to lipid IV(A). Combining the human MD-2 quadruple mutations with the human TLR4 E369K/Q436R mutations completely converted the human MD-2/human TLR4 receptor to a murine-like receptor. Because MD-2 residues 122 and 125 reside at the dimerization interface near the pocket entrance, surface charge differences here directly affect receptor dimerization. In comparison, residues 42 and 69 reside at the MD-2/TLR4 interaction surface opposite the dimerization interface. Surface charge differences there likely affect the binding angle and/or rigidity between MD-2 and TLR4, exerting an indirect influence on receptor dimerization and activation. Thus, surface charge differences at the two MD-2/TLR4 interfaces determine the species-specific activation of lipid IV(A).
Related JoVE Video
Macrophages recognize streptococci through bacterial single-stranded RNA.
EMBO Rep.
PUBLISHED: 06-04-2010
Show Abstract
Hide Abstract
Group B streptococcus (GBS) is a leading cause of both neonatal sepsis and meningitis, two diseases that are characterized by inflammation. However, the manner in which GBS organisms are recognized by monocytes and macrophages is poorly understood. In this study, we report that the recognition of GBS and other Gram-positive bacteria by macrophages and monocytes relies on bacterial single-stranded RNA (ssRNA). ssRNA interacts with a signalling complex, which comprises the Toll-like receptor adaptors MyD88 and UNC-93B, but not the established MyD88-dependent ssRNA sensors. The role of ssRNA in the recognition of Gram-positive bacteria--leading to the induction of inflammatory cytokines--has potential implications for sepsis pathogenesis, diagnosis and treatment.
Related JoVE Video
TLR3-mediated IFN-? gene induction is negatively regulated by the TLR adaptor MyD88 adaptor-like.
Eur. J. Immunol.
PUBLISHED: 04-01-2010
Show Abstract
Hide Abstract
There is limited insight into the mechanisms involved in the counterregulation of TLR. Given the important role of TLR3/TIR domain-containing adaptor-inducing IFN-? (TRIF)-dependent signalling in innate immunity, novel insights into its modulation is of significance in the context of many physiological and pathological processes. Herein, we sought to perform analysis to definitively assign a mechanistic role for MyD88 adaptor-like (Mal), an activator of TLR2/4 signalling, in the negative regulation of TLR3/TRIF signalling. Biochemical and functional analysis demonstrates that Mal negatively regulates TLR3, but not TLR4, mediated IFN-? production. Co-immunoprecipitation experiments demonstrate that Mal associates with IRF7 (IRF, IFN regulatory factor), not IRF3, and Mal specifically blocks IRF7 activation. In doing so, Mal impedes TLR3 ligand-induced IFN-? induction. Interestingly, Mal does not affect the induction of IL-6 and TNF-? upon TLR3 ligand engagement. Together, these data show that the TLR adaptor Mal interacts with IRF7 and, in doing so, impairs IFN-? induction through the positive regulatory domains I-III enhancer element of the IFN-? gene following poly(I:C) stimulation. Our findings offer a new mechanistic insight into TLR3/TRIF signalling through a hitherto unknown mechanism whereby Mal inhibits poly(I:C)-induced IRF7 activation and concomitant IFN-? production. Thus, Mal is essential in restricting TLR3 signalling thereby protecting the host from unwanted immunopathologies associated with excessive IFN-? production.
Related JoVE Video
Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress.
Cell Metab.
PUBLISHED: 03-31-2010
Show Abstract
Hide Abstract
Macrophage apoptosis in advanced atheromata, a key process in plaque necrosis, involves the combination of ER stress with other proapoptotic stimuli. We show here that oxidized phospholipids, oxidized LDL, saturated fatty acids (SFAs), and lipoprotein(a) trigger apoptosis in ER-stressed macrophages through a mechanism requiring both CD36 and Toll-like receptor 2 (TLR2). In vivo, macrophage apoptosis was induced in SFA-fed, ER-stressed wild-type but not Cd36?(/)? or Tlr2?(/)? mice. For atherosclerosis, we combined TLR2 deficiency with that of TLR4, which can also promote apoptosis in ER-stressed macrophages. Advanced lesions of fat-fed Ldlr?(/)? mice transplanted with Tlr4?(/)?Tlr2?(/)? bone marrow were markedly protected from macrophage apoptosis and plaque necrosis compared with WT ?Ldlr?(/)? lesions. These findings provide insight into how atherogenic lipoproteins trigger macrophage apoptosis in the setting of ER stress and how TLR activation might promote macrophage apoptosis and plaque necrosis in advanced atherosclerosis.
Related JoVE Video
TLR2 mediates recognition of live Staphylococcus epidermidis and clearance of bacteremia.
PLoS ONE
PUBLISHED: 01-24-2010
Show Abstract
Hide Abstract
Staphylococcus epidermidis (SE) is a nosocomial pathogen that causes catheter-associated bacteremia in the immunocompromised, including those at the extremes of age, motivating study of host clearance mechanisms. SE-derived soluble components engage TLR2; but additional signaling pathways have also been implicated, and TLR2 can play complex, at times detrimental, roles in host defense against other Staphylococcal spp. The role of TLR2 in responses of primary blood leukocytes to live SE and in clearance of SE bacteremia, the most common clinical manifestation of SE infection, is unknown.
Related JoVE Video
MD-2-mediated ionic interactions between lipid A and TLR4 are essential for receptor activation.
J. Biol. Chem.
PUBLISHED: 12-15-2009
Show Abstract
Hide Abstract
Lipopolysaccharide (LPS) activates innate immune responses through TLR4.MD-2. LPS binds to the MD-2 hydrophobic pocket and bridges the dimerization of two TLR4.MD-2 complexes to activate intracellular signaling. However, exactly how lipid A, the endotoxic moiety of LPS, activates myeloid lineage cells remains unknown. Lipid IV(A), a tetra-acylated lipid A precursor, has been used widely as a model for lipid A activation. For unknown reasons, lipid IV(A) activates proinflammatory responses in rodent cells but inhibits the activity of LPS in human cells. Using stable TLR4-expressing cell lines and purified monomeric MD-2, as well as MD-2-deficient bone marrow-derived macrophages, we found that both mouse TLR4 and mouse MD-2 are required for lipid IV(A) activation. Computational studies suggested that unique ionic interactions exist between lipid IV(A) and TLR4 at the dimerization interface in the mouse complex only. The negatively charged 4-phosphate on lipid IV(A) interacts with two positively charged residues on the opposing mouse, but not human, TLR4 (Lys(367) and Arg(434)) at the dimerization interface. When replaced with their negatively charged human counterparts Glu(369) and Gln(436), mouse TLR4 was no longer responsive to lipid IV(A). In contrast, human TLR4 gained lipid IV(A) responsiveness when ionic interactions were enabled by charge reversal at the dimerization interface, defining the basis of lipid IV(A) species specificity. Thus, using lipid IV(A) as a selective lipid A agonist, we successfully decoupled and coupled two sequential events required for intracellular signaling: receptor engagement and dimerization, underscoring the functional role of ionic interactions in receptor activation.
Related JoVE Video
CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer.
Nat. Immunol.
PUBLISHED: 12-07-2009
Show Abstract
Hide Abstract
In atherosclerosis and Alzheimers disease, deposition of the altered self components oxidized low-density lipoprotein (LDL) and amyloid-beta triggers a protracted sterile inflammatory response. Although chronic stimulation of the innate immune system is believed to underlie the pathology of these diseases, the molecular mechanisms of activation remain unclear. Here we show that oxidized LDL and amyloid-beta trigger inflammatory signaling through a heterodimer of Toll-like receptors 4 and 6. Assembly of this newly identified heterodimer is regulated by signals from the scavenger receptor CD36, a common receptor for these disparate ligands. Our results identify CD36-TLR4-TLR6 activation as a common molecular mechanism by which atherogenic lipids and amyloid-beta stimulate sterile inflammation and suggest a new model of TLR heterodimerization triggered by coreceptor signaling events.
Related JoVE Video
Inflammasomes: too big to miss.
J. Clin. Invest.
PUBLISHED: 12-01-2009
Show Abstract
Hide Abstract
Inflammation is the coordinated immune response to harmful stimuli that appear during infections or after tissue damage. Cells of the innate immune system are the central players in mediating inflammatory tissue responses. These cells are equipped with an array of signaling receptors that detect foreign molecular substances or altered endogenous molecules that appear under situations of stress. This review provides an overview of recent progress in elucidating the molecular mechanisms that lead to inflammatory reactions. We discuss the current knowledge of the mechanisms leading to the activation of cytoplasmic, multimolecular protein complexes, termed "inflammasomes," which regulate the activity of caspase-1 and the maturation and release of IL-1beta.
Related JoVE Video
MyD88 adaptor-like is not essential for TLR2 signaling and inhibits signaling by TLR3.
J. Immunol.
PUBLISHED: 08-28-2009
Show Abstract
Hide Abstract
Although a clear role for the adaptor protein myeloid differentiation factor-88 (MyD88) adaptor-like (Mal, or TIRAP) in TLR4 signaling has been demonstrated, there is limited information on its role in TLR2 signaling. Here we have systematically analyzed the role of Mal in signaling by TLR2, TLR4, and as a control TLR3 in murine macrophages and dendritic cells. Mal was not required for the induction of IL-6 or NFkappaB activation at high concentrations of the TLR1/2 ligand Pam(3)Cys-Ser-(Lys)(4) or the TLR2/6 ligand macrophage-activating lipopeptide-2 and was required for these responses only at low ligand concentrations. Similarly, induction of IL-6 by Salmonella typhimurium, which is sensed by TLR2, required Mal only at low levels of bacteria. Mal was required for IL-6 induction at all concentrations of the TLR4 ligand LPS. Mal deficiency boosted IL-6 induction by the TLR3 ligand polyinosinic-polycytidylic acid. Activation of JNK, but not p38 or IkappaB degradation, was similarly potentiated in response to polyinosinic-polycytidylic acid in Mal-deficient macrophages. MyD88 was vital for all TLR2 and TLR4 responses and, similar to Mal, was also inhibitory for TLR3-dependent IL-6 and JNK induction. MyD88 interacted with the Toll/IL-1R domains of TLR1, TLR2, TLR4, and TLR6. Mal interacted with the Toll/Il-1R domains of TLR1, TLR2, and TLR4 but not with TLR6. Our study, therefore, reveals that Mal is dispensable in TLR2 signaling at high ligand concentrations in macrophages and dendritic cells, with MyD88 probably coupling to the TLR2 receptor complex at sufficient levels to allow activation. An inhibitory role for Mal in TLR3 signaling to JNK was also demonstrated.
Related JoVE Video
Alternating 2-O-ribose methylation is a universal approach for generating non-stimulatory siRNA by acting as TLR7 antagonist.
Immunobiology
PUBLISHED: 08-21-2009
Show Abstract
Hide Abstract
Small interfering RNA (siRNA) is widely used to modulate gene expression, but its potential induction of cytokines via Toll-like receptors (TLR) strongly impairs its use. Selective 2-O-ribose methylation of sense or antisense strand can abolish the immunostimulatory potential, however, no universal approach is available and the mechanism of action is unknown. Here, we demonstrate that alternating 2-O-ribose methylation of the sense strand within a siRNA duplex specific for eGFP or beta(2)-microglobulin destroyed its immunostimulatory function in primary immune cells, while reduction in target gene expression was functional. Furthermore, addition of siRNA containing a 2-O-ribose-methylated sense strand to immunostimulatory siRNA abolished its stimulatory activity and binding studies revealed that 2-O-ribose-methylated RNA bound stronger to TLR7 than unmodified RNA. We conclude that 2-O-ribose methylation acts as inhibitor for RNA-driven immune stimulation via TLR7 and recommend alternating 2-O-ribose methylation of the sense strand as a universal approach for the generation of non-immunostimulatory siRNA.
Related JoVE Video
MyD88 adapter-like (Mal)/TIRAP interaction with TRAF6 is critical for TLR2- and TLR4-mediated NF-kappaB proinflammatory responses.
J. Biol. Chem.
PUBLISHED: 07-10-2009
Show Abstract
Hide Abstract
Toll/interleukin-1 (TIR)receptor-containing adapters are critical in orchestrating the different signal transduction pathways following Toll-like receptor (TLR) activation. MyD88 adapter-like (Mal), also termed TIRAP, is involved in bridging MyD88 to the receptor complex for TLR-2 and TLR4 signaling in response to bacterial infection. We have previously reported an interaction between Mal and tumor necrosis factor receptor-associated factor 6 (TRAF6) via a TRAF6-binding motif, the disruption of which inhibited TLR-mediated NF-kappaB-luciferase reporter activity. Given the recent report of intracellular TRAM localization promoting sequential signaling in TLR4 responses, we further characterized Mal interaction with TRAF6, the cellular localization, and the outcomes of disrupting this association on TLR inflammatory responses. We found that Mal and TRAF6 directly interact in response to TLR2 and TLR4 stimulation, although membrane localization is not necessary to facilitate interaction. Critically, reconstitution of murine Mal-deficient macrophages with MalE190A, containing a mutation within the TRAF6-binding motif, fails to reconstitute the proinflammatory response to TLR2 and TLR4 ligands compared with wild type Mal. Furthermore, Mal interaction with TRAF6 mediates Ser phosphorylation of the p65 subunit of NF-kappaB and thus controls transcriptional activation but not nuclear translocation of NF-kappaB. This study characterizes the novel role for Mal in facilitating the direct recruitment of TRAF6 to the plasma membrane, which is necessary for TLR2- and TLR4-induced transactivation of NF-kappaB and regulation of the subsequent pro-inflammatory response.
Related JoVE Video
A TIR domain variant of MyD88 adapter-like (Mal)/TIRAP results in loss of MyD88 binding and reduced TLR2/TLR4 signaling.
J. Biol. Chem.
PUBLISHED: 06-09-2009
Show Abstract
Hide Abstract
The adapter protein MyD88 adapter-like (Mal), encoded by TIR-domain containing adapter protein (Tirap) (MIM 606252), is the most polymorphic of the five adapter proteins involved in Toll-like receptor signaling, harboring eight non-synonymous single nucleotide polymorphisms in its coding region. We screened reported mutations of Mal for activity in reporter assays to test the hypothesis that variants of Mal existed with altered signaling potential. A TIR domain variant, Mal D96N (rs8177400), was found to be inactive. In reconstituted cell lines, Mal D96N acted as a hypomorphic mutation, with impaired cytokine production and NF-kappaB activation upon lipopolysaccharide or PAM2CSK4 stimulation. Moreover, co-immunoprecipitation studies revealed that Mal D96N is unable to interact with MyD88, a prerequisite for downstream signaling to occur. Computer modeling data suggested that residue 96 resides in the MyD88 binding site, further supporting these findings. Genotyping of Mal D96N in three different cohorts suggested that it is a rare mutation. We, thus, describe a rare variant in Mal that exerts its effect via its inability to bind MyD88.
Related JoVE Video
Marked upregulation of cholesterol 25-hydroxylase expression by lipopolysaccharide.
J. Lipid Res.
PUBLISHED: 06-05-2009
Show Abstract
Hide Abstract
During screening of genes upregulated by lipopolysaccharide (LPS; endotoxin) treatment of bone marrow-derived mouse macrophages, it was unexpectedly found that cholesterol 25-hydroxylase (Ch25h) was strongly upregulated. Treatment of macrophages with 10 ng/ml of LPS for 2 h resulted in a 35-fold increase in the expression of Ch25h. In contrast, LPS treatment did not increase the expression of Cyp27a1 or Cyp7b1. The increased Ch25h expression was found to be independent of Myeloid differentiation protein 88 signaling but dependent on Toll-like receptor 4 signaling. LPS treatment of macrophages caused a 6- to 7-fold increase in cellular 25-hydroxycholesterol concentration. When macrophages were treated with increasing concentrations of 25-hydroxycholesterol, a dose-dependent release of CCL5 into the culture medium was observed. Intravenous injection of LPS in eight healthy volunteers resulted in an increase in plasma 25-hydroxycholesterol concentration. The possibility is discussed that 25-hydroxycholesterol may have a role in the inflammatory response, in addition to its more established role in the regulation of cholesterol homeostasis.
Related JoVE Video
Mal connects TLR2 to PI3Kinase activation and phagocyte polarization.
EMBO J.
PUBLISHED: 05-22-2009
Show Abstract
Hide Abstract
The recognition of bacterial lipoproteins by toll-like receptor (TLR) 2 is pivotal for inflammation initiation and control in many bacterial infections. TLR2-dependent signalling is currently believed to essentially require both adaptor proteins MyD88 (myeloid differentiation primary response gene 88) and Mal/TIRAP (MyD88-adapter-like/TIR-domain-containing adaptor protein). TLR2-dependent, but MyD88-independent responses have not been described yet. We report here on a novel-signalling pathway downstream of TLR2, which does not adhere to the established model. On stimulation of the TLR2/6 heterodimer with diacylated bacterial lipoproteins, Mal directly interacts with the regulatory subunit of phosphoinositide 3-kinase (PI3K), p85alpha, in an inducible fashion. The Mal-p85alpha interaction drives PI3K-dependent phosphorylation of Akt, phosphatidylinositol(3,4,5)P3 (PIP(3)) generation and macrophage polarization. MyD88 is not essential for PI3K activation and Akt phosphorylation; however, cooperates with Mal for PIP(3) formation and accumulation at the leading edge. In contrast to TLR2/6, TLR2/1 does not require Mal or MyD88 for Akt phosphorylation. Hence, Mal specifically connects TLR2/6 to PI3K activation, PIP(3) generation and macrophage polarization.
Related JoVE Video
Innate immune recognition of Yersinia pseudotuberculosis type III secretion.
PLoS Pathog.
PUBLISHED: 04-24-2009
Show Abstract
Hide Abstract
Specialized protein translocation systems are used by many bacterial pathogens to deliver effector proteins into host cells that interfere with normal cellular functions. How the host immune system recognizes and responds to this intrusive event is not understood. To address these questions, we determined the mammalian cellular response to the virulence-associated type III secretion system (T3SS) of the human pathogen Yersinia pseudotuberculosis. We found that macrophages devoid of Toll-like receptor (TLR) signaling regulate expression of 266 genes following recognition of the Y. pseudotuberculosis T3SS. This analysis revealed two temporally distinct responses that could be separated into activation of NFkappaB- and type I IFN-regulated genes. Extracellular bacteria were capable of triggering these signaling events, as inhibition of bacterial uptake had no effect on the ensuing innate immune response. The cytosolic peptidoglycan sensors Nod1 and Nod2 and the inflammasome component caspase-1 were not involved in NFkappaB activation following recognition of the Y. pseudotuberculosis T3SS. However, caspase-1 was required for secretion of the inflammatory cytokine IL-1beta in response to T3SS-positive Y. pseudotuberculosis. In order to characterize the bacterial requirements for induction of this novel TLR-, Nod1/2-, and caspase-1-independent response, we used Y. pseudotuberculosis strains lacking specific components of the T3SS. Formation of a functional T3SS pore was required, as bacteria expressing a secretion needle, but lacking the pore-forming proteins YopB or YopD, did not trigger these signaling events. However, nonspecific membrane disruption could not recapitulate the NFkappaB signaling triggered by Y. pseudotuberculosis expressing a functional T3SS pore. Although host cell recognition of the T3SS did not require known translocated substrates, the ensuing response could be modulated by effectors such as YopJ and YopT, as YopT amplified the response, while YopJ dampened it. Collectively, these data suggest that combined recognition of the T3SS pore and YopBD-mediated delivery of immune activating ligands into the host cytosol informs the host cell of pathogenic challenge. This leads to a unique, multifactorial response distinct from the canonical immune response to a bacterium lacking a T3SS.
Related JoVE Video
Role of p38 and early growth response factor 1 in the macrophage response to group B streptococcus.
Infect. Immun.
PUBLISHED: 03-30-2009
Show Abstract
Hide Abstract
Group B streptococcus (GBS), the most frequent single isolate in neonatal sepsis and meningitis, potently activates inflammatory macrophage genes via myeloid differentiation antigen 88 (MyD88). However, events parallel to and downstream of MyD88 that instruct the macrophage response are incompletely understood. In this study, we found that only MyD88, not the Toll-like receptor (TLR) adapter proteins MAL/TIRAP, TRIF, and TRAM, essentially mediates the cytokine (tumor necrosis factor [TNF] and interleukin-6) and chemokine (RANTES) responses to whole GBS organisms, although MAL, TRIF, and TRAM have been shown to mediate the responses to substructures in other gram-positive and gram-negative bacteria. GBS-induced, MyD88-dependent phosphorylation of the mitogen-activated protein kinase p38 activated the transcription factor AP-1 and early growth response factor 1 (Egr-1) but not NF-kappaB. Furthermore, phosphorylation of Ets-like molecule 1 (Elk-1) was mediated by p38. However, in contrast to Egr-1 and AP-1, Elk-1 was dispensable for transcriptional activation of TNF by GBS organisms. Studies of macrophages from Elk-1-deficient mice revealed that Elk-1 was furthermore nonessential for the TNF responses to purified TLR2 and TLR4 agonists, which was in notable contrast to what was revealed in studies employing in vitro expression systems. In conclusion, MyD88, p38, and Egr-1, but not Elk-1, essentially mediate the inflammatory cytokine response to GBS organisms.
Related JoVE Video
Recombinant Ov-ASP-1, a Th1-biased protein adjuvant derived from the helminth Onchocerca volvulus, can directly bind and activate antigen-presenting cells.
J. Immunol.
PUBLISHED: 03-21-2009
Show Abstract
Hide Abstract
We previously reported that rOv-ASP-1, a recombinant Onchocerca volvulus activation associated protein-1, was a potent adjuvant for recombinant protein or synthetic peptide-based Ags. In this study, we further evaluated the adjuvanticity of rOv-ASP-1 and explored its mechanism of action. Consistently, recombinant full-length spike protein of SARS-CoV or its receptor-binding domain in the presence of rOv-ASP-1 could effectively induce a mixed but Th1-skewed immune response in immunized mice. It appears that rOv-ASP-1 primarily bound to the APCs among human PBMCs and triggered Th1-biased proinflammatory cytokine production probably via the activation of monocyte-derived dendritic cells and the TLR, TLR2, and TLR4, thus suggesting that rOv-ASP-1 is a novel potent innate adjuvant.
Related JoVE Video
Malaria primes the innate immune response due to interferon-gamma induced enhancement of toll-like receptor expression and function.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 03-18-2009
Show Abstract
Hide Abstract
Malaria-induced sepsis is associated with an intense proinflammatory cytokinemia for which the underlying mechanisms are poorly understood. It has been demonstrated that experimental infection of humans with Plasmodium falciparum primes Toll-like receptor (TLR)-mediated proinflammatory responses. Nevertheless, the relevance of this phenomenon during natural infection and, more importantly, the mechanisms by which malaria mediates TLR hyperresponsiveness are unclear. Here we show that TLR responses are boosted in febrile patients during natural infection with P. falciparum. Microarray analyses demonstrated that an extraordinary percentage of the up-regulated genes, including genes involving TLR signaling, had sites for IFN-inducible transcription factors. To further define the mechanism involved in malaria-mediated "priming," we infected mice with Plasmodium chabaudi. The human data were remarkably predictive of what we observed in the rodent malaria model. Malaria-induced priming of TLR responses correlated with increased expression of TLR mRNA in a TLR9-, MyD88-, and IFNgamma-dependent manner. Acutely infected WT mice were highly susceptible to LPS-induced lethality while TLR9(-/-), IL12(-/-) and to a greater extent, IFNgamma(-/-) mice were protected. Our data provide unprecedented evidence that TLR9 and MyD88 are essential to initiate IL12 and IFNgamma responses and favor host hyperresponsiveness to TLR agonists resulting in overproduction of proinflammatory cytokines and the sepsis-like symptoms of acute malaria.
Related JoVE Video
TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway.
Nat. Immunol.
PUBLISHED: 03-11-2009
Show Abstract
Hide Abstract
Toll-like receptor 4 (TLR4) signals the induction of transcription factor IRF3-dependent genes from the early endosome via the adaptor TRAM. Here we report a splice variant of TRAM, TAG (TRAM adaptor with GOLD domain), which has a Golgi dynamics domain coupled to TRAMs Toll-interleukin 1 receptor domain. After stimulation with lipopolysaccharide, TRAM and TAG localized to late endosomes positive for the GTPase Rab7a. TAG inhibited activation of IRF3 by lipopolysaccharide. Knockdown of TAG with small interfering RNA enhanced induction of the chemokine CCL5 (RANTES), but not of interleukin 8, by lipopolysaccharide in human peripheral blood mononuclear cells. TAG displaced the adaptor TRIF from TRAM. TAG is therefore an example of a specific inhibitor of the adaptor MyD88-independent pathway activated by TLR4. Targeting TAG could be useful in the effort to boost the immunostimulatory effect of TLR4 without causing unwanted inflammation.
Related JoVE Video
TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis.
Cell. Immunol.
PUBLISHED: 02-22-2009
Show Abstract
Hide Abstract
Mycobacterium tuberculosis (Mtb) signals through Toll-like receptor 2 (TLR2) to regulate antigen presenting cells (APCs). Mtb lipoproteins, including LpqH, LprA, LprG and PhoS1, are TLR2 agonists, but their co-receptor requirements are unknown. We studied Mtb lipoprotein-induced responses in TLR2(-/-), TLR1(-/-), TLR6(-/-), CD14(-/-) and CD36(-/-) macrophages. Responses to LprA, LprG, LpqH and PhoS1 were completely dependent on TLR2. LprG, LpqH, and PhoS1 were dependent on TLR1, but LprA did not require TLR1. None of the lipoproteins required TLR6, although a redundant contribution by TLR6 cannot be excluded. CD14 contributed to detection of LprA, LprG and LpqH, whereas CD36 contributed only to detection of LprA. Studies of lung APC subsets revealed lower TLR2 expression by CD11b(high)/CD11c(low) lung macrophages than CD11b(low)/CD11c(high) alveolar macrophages, which correlated with hyporesponsiveness of lung macrophages to LpqH. Thus, lung APC subsets differ in TLR expression, which may determine differences in responses to Mtb.
Related JoVE Video
IL-10 enhances MD-2 and CD14 expression in monocytes and the proteins are increased and correlated in HIV-infected patients.
J. Immunol.
PUBLISHED: 02-14-2009
Show Abstract
Hide Abstract
Soluble proteins that bind LPS, like myeloid differentiation-2 (MD-2) and CD14, have essential roles in regulating LPS signaling through TLR4. During a gram-negative bacterial infection, the host may control the response by adjusting the levels of soluble MD-2 and CD14. To address the surface expression of MD-2 on human leukocytes, we developed a mAb, IIC1, that recognized MD-2 both free and when bound to TLR4. MD-2 was found on the surface of freshly isolated monocytes, on a subpopulation of CD19(+) B-cells and on CD15(+) neutrophils. LPS transiently reduced the MD-2 levels on monocytes, which is most likely due to endocytosis of the LPS receptor complex since MD-2 colocalized with TLR4 in early endosomes after LPS stimulation. In the absence of LPS, MD-2 partly colocalized with TLR4 in Golgi trans and medial compartments. Cultivating monocytes for 18-20 h resulted in loss of MD-2 expression on the surface, which was reversed either by LPS or IL-10. Furthermore, addition of IL-10, but not LPS, resulted in a considerable increase in mRNA for both MD-2 and CD14. Using ELISA, we demonstrated that IL-10 had a profound dose- and time-related effect on the release of soluble MD-2 and soluble CD14 from monocytes. In HIV-infected patients, the amounts of MD-2, CD14, and IL-10 increased significantly in the patient group with AIDS. Of interest, we found that IL-10, CD14, and MD-2 levels were positively correlated, suggesting that IL-10 may be a driving force for increased release of MD-2 and CD14 during systemic inflammation.
Related JoVE Video
Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice.
Infect. Immun.
PUBLISHED: 02-02-2009
Show Abstract
Hide Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) causes diarrhea and is implicated in inflammatory bowel diseases and colorectal cancer. The only known ETBF virulence factor is the Bacteroides fragilis toxin (BFT), which induces E-cadherin cleavage, interleukin-8 secretion, and epithelial cell proliferation. A murine model for ETBF has not been characterized. Specific pathogen-free (SPF) C57BL/6J or germfree 129S6/SvEv mice were orally inoculated with wild-type ETBF (WT-ETBF) strains, a nontoxigenic WT strain of B. fragilis (WT-NTBF), WT-NTBF overexpressing bft (rETBF), or WT-NTBF overexpressing a biologically inactive mutated bft (rNTBF). In SPF and germfree mice, ETBF caused colitis but was lethal only in germfree mice. Colonic histopathology demonstrated mucosal thickening with inflammatory cell infiltration, crypt abscesses, and epithelial cell exfoliation, erosion, and ulceration. SPF mice colonized with rETBF mimicked WT-ETBF, whereas rNTBF caused no histopathology. Intestinal epithelial E-cadherin was rapidly cleaved in vivo in WT-ETBF-colonized mice and in vitro in intestinal tissues cultured with purified BFT. ETBF mice colonized for 16 months exhibited persistent colitis. BFT did not directly induce lymphocyte proliferation, dendritic cell stimulation, or Toll-like receptor activation. In conclusion, WT-ETBF induced acute then persistent colitis in SPF mice and rapidly lethal colitis in WT germfree mice. Our data support the hypothesis that chronic colonization with the human commensal ETBF can induce persistent, subclinical colitis in humans.
Related JoVE Video
Dried whole plant Artemisia annua as an antimalarial therapy.
PLoS ONE
Show Abstract
Hide Abstract
Drugs are primary weapons for reducing malaria in human populations. However emergence of resistant parasites has repeatedly curtailed the lifespan of each drug that is developed and deployed. Currently the most effective anti-malarial is artemisinin, which is extracted from the leaves of Artemisia annua. Due to poor pharmacokinetic properties and prudent efforts to curtail resistance to monotherapies, artemisinin is prescribed only in combination with other anti-malarials composing an Artemisinin Combination Therapy (ACT). Low yield in the plant, and the added cost of secondary anti-malarials in the ACT, make artemisinin costly for the developing world. As an alternative, we compared the efficacy of oral delivery of the dried leaves of whole plant (WP) A. annua to a comparable dose of pure artemisinin in a rodent malaria model (Plasmodium chabaudi). We found that a single dose of WP (containing 24 mg/kg artemisinin) reduces parasitemia more effectively than a comparable dose of purified drug. This increased efficacy may result from a documented 40-fold increase in the bioavailability of artemisinin in the blood of mice fed the whole plant, in comparison to those administered synthetic drug. Synergistic benefits may derive from the presence of other anti-malarial compounds in A. annua. If shown to be clinically efficacious, well-tolerated, and compatible with the public health imperative of forestalling evolution of drug resistance, inexpensive, locally grown and processed A. annua might prove to be an effective addition to the global effort to reduce malaria morbidity and mortality.
Related JoVE Video
NLRP3 is activated in Alzheimers disease and contributes to pathology in APP/PS1 mice.
Nature
Show Abstract
Hide Abstract
Alzheimers disease is the worlds most common dementing illness. Deposition of amyloid-? peptide drives cerebral neuroinflammation by activating microglia. Indeed, amyloid-? activation of the NLRP3 inflammasome in microglia is fundamental for interleukin-1? maturation and subsequent inflammatory events. However, it remains unknown whether NLRP3 activation contributes to Alzheimers disease in vivo. Here we demonstrate strongly enhanced active caspase-1 expression in human mild cognitive impairment and brains with Alzheimers disease, suggesting a role for the inflammasome in this neurodegenerative disease. Nlrp3(-/-) or Casp1(-/-) mice carrying mutations associated with familial Alzheimers disease were largely protected from loss of spatial memory and other sequelae associated with Alzheimers disease, and demonstrated reduced brain caspase-1 and interleukin-1? activation as well as enhanced amyloid-? clearance. Furthermore, NLRP3 inflammasome deficiency skewed microglial cells to an M2 phenotype and resulted in the decreased deposition of amyloid-? in the APP/PS1 model of Alzheimers disease. These results show an important role for the NLRP3/caspase-1 axis in the pathogenesis of Alzheimers disease, and suggest that NLRP3 inflammasome inhibition represents a new therapeutic intervention for the disease.
Related JoVE Video
Toll-like receptor (TLR) 2 mediates inflammatory responses to oligomerized RrgA pneumococcal pilus type 1 protein.
J. Biol. Chem.
Show Abstract
Hide Abstract
The pneumococcal type 1 pilus is an inflammatory and adherence-promoting structure associated with increased virulence in mouse models. We show that RrgA, an ancillary pilus subunit devoid of a lipidation motif, particularly when presented as part of an oligomer, is a TLR2 agonist. The surface-exposed domain III, and in particular a 49-amino acid sequence (P3), of the protein is responsible for the TLR2 activity of RrgA. A pneumococcal mutant carrying RrgA with a deletion of the P3 region was significantly reduced in its ability to activate TLR2 and induce TNF-? responses after mouse intraperitoneal infection, whereas no such difference could be noted when TLR2(-/-) mice were challenged, further implicating this region in recognition by TLR2. Thus, we conclude that the type 1 pneumococcal pilus can activate cells via TLR2, and the ancillary pilus subunit RrgA is a key component of this activation.
Related JoVE Video
NLRP3 inflammasome activation in macrophage cell lines by prion protein fibrils as the source of IL-1? and neuronal toxicity.
Cell. Mol. Life Sci.
Show Abstract
Hide Abstract
Prion diseases are fatal transmissible neurodegenerative diseases, characterized by aggregation of the pathological form of prion protein, spongiform degeneration, and neuronal loss, and activation of astrocytes and microglia. Microglia can clear prion plaques, but on the other hand cause neuronal death via release of neurotoxic species. Elevated expression of the proinflammatory cytokine IL-1? has been observed in brains affected by several prion diseases, and IL-1R-deficiency significantly prolonged the onset of the neurodegeneration in mice. We show that microglial cells stimulated by prion protein (PrP) fibrils induced neuronal toxicity. Microglia and macrophages release IL-1? upon stimulation by PrP fibrils, which depends on the NLRP3 inflammasome. Activation of NLRP3 inflammasome by PrP fibrils requires depletion of intracellular K(+), and requires phagocytosis of PrP fibrils and consecutive lysosome destabilization. Among the well-defined molecular forms of PrP, the strongest NLRP3 activation was observed by fibrils, followed by aggregates, while neither native monomeric nor oligomeric PrP were able to activate the NLRP3 inflammasome. Our results together with previous studies on IL-1R-deficient mice suggest the IL-1 signaling pathway as the perspective target for the therapy of prion disease.
Related JoVE Video
Neutrophil paralysis in Plasmodium vivax malaria.
PLoS Negl Trop Dis
Show Abstract
Hide Abstract
The activation of innate immune responses by Plasmodium vivax results in activation of effector cells and an excessive production of pro-inflammatory cytokines that may culminate in deleterious effects. Here, we examined the activation and function of neutrophils during acute episodes of malaria.
Related JoVE Video
An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration.
Nat. Neurosci.
Show Abstract
Hide Abstract
Activation of innate immune receptors by host-derived factors exacerbates CNS damage, but the identity of these factors remains elusive. We uncovered an unconventional role for the microRNA let-7, a highly abundant regulator of gene expression in the CNS, in which extracellular let-7 activates the RNA-sensing Toll-like receptor (TLR) 7 and induces neurodegeneration through neuronal TLR7. Cerebrospinal fluid (CSF) from individuals with Alzheimer’s disease contains increased amounts of let-7b, and extracellular introduction of let-7b into the CSF of wild-type mice by intrathecal injection resulted in neurodegeneration. Mice lacking TLR7 were resistant to this neurodegenerative effect, but this susceptibility to let-7 was restored in neurons transfected with TLR7 by intrauterine electroporation of Tlr7(?/?) fetuses. Our results suggest that microRNAs can function as signaling molecules and identify TLR7 as an essential element in a pathway that contributes to the spread of CNS damage.
Related JoVE Video
DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation.
Nat. Immunol.
Show Abstract
Hide Abstract
The adaptors DOCK8 and MyD88 have been linked to serological memory. Here we report that DOCK8-deficient patients had impaired antibody responses and considerably fewer CD27(+) memory B cells. B cell proliferation and immunoglobulin production driven by Toll-like receptor 9 (TLR9) were considerably lower in DOCK8-deficient B cells, but those driven by the costimulatory molecule CD40 were not. In contrast, TLR9-driven expression of AICDA (which encodes the cytidine deaminase AID), the immunoglobulin receptor CD23 and the costimulatory molecule CD86 and activation of the transcription factor NF-?B, the kinase p38 and the GTPase Rac1 were intact. DOCK8 associated constitutively with MyD88 and the tyrosine kinase Pyk2 in normal B cells. After ligation of TLR9, DOCK8 became tyrosine-phosphorylated by Pyk2, bound the Src-family kinase Lyn and linked TLR9 to a Src-kinase Syk-transcription factor STAT3 cascade essential for TLR9-driven B cell proliferation and differentiation. Thus, DOCK8 functions as an adaptor in a TLR9-MyD88 signaling pathway in B cells.
Related JoVE Video
Beyond empiricism: informing vaccine development through innate immunity research.
Cell
Show Abstract
Hide Abstract
Although a great public heath success, vaccines provide suboptimal protection in some patient populations and are not available to protect against many infectious diseases. Insights from innate immunity research have led to a better understanding of how existing vaccines work and have informed vaccine development. New adjuvants and delivery systems are being designed based upon their capacity to stimulate innate immune sensors and target antigens to dendritic cells, the cells responsible for initiating adaptive immune responses. Incorporating these adjuvants and delivery systems in vaccines can beneficially alter the quantitative and qualitative nature of the adaptive immune response, resulting in enhanced protection.
Related JoVE Video
Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production.
Blood
Show Abstract
Hide Abstract
Diseases that cause hemolysis or myonecrosis lead to the leakage of large amounts of heme proteins. Free heme has proinflammatory and cytotoxic effects. Heme induces TLR4-dependent production of tumor necrosis factor (TNF), whereas heme cytotoxicity has been attributed to its ability to intercalate into cell membranes and cause oxidative stress. We show that heme caused early macrophage death characterized by the loss of plasma membrane integrity and morphologic features resembling necrosis. Heme-induced cell death required TNFR1 and TLR4/MyD88-dependent TNF production. Addition of TNF to Tlr4(-/-) or to Myd88(-/-) macrophages restored heme-induced cell death. The use of necrostatin-1, a selective inhibitor of receptor-interacting protein 1 (RIP1, also known as RIPK1), or cells deficient in Rip1 or Rip3 revealed a critical role for RIP proteins in heme-induced cell death. Serum, antioxidants, iron chelation, or inhibition of c-Jun N-terminal kinase (JNK) ameliorated heme-induced oxidative burst and blocked macrophage cell death. Macrophages from heme oxygenase-1 deficient mice (Hmox1(-/-)) had increased oxidative stress and were more sensitive to heme. Taken together, these results revealed that heme induces macrophage necrosis through 2 synergistic mechanisms: TLR4/Myd88-dependent expression of TNF and TLR4-independent generation of ROS.
Related JoVE Video
Activation of the NLRP3 inflammasome by group B streptococci.
J. Immunol.
Show Abstract
Hide Abstract
Group B Streptococcus (GBS) is a frequent agent of life-threatening sepsis and meningitis in neonates and adults with predisposing conditions. We tested the hypothesis that activation of the inflammasome, an inflammatory signaling complex, is involved in host defenses against this pathogen. We show in this study that murine bone marrow-derived conventional dendritic cells responded to GBS by secreting IL-1? and IL-18. IL-1? release required both pro-IL-1? transcription and caspase-1-dependent proteolytic cleavage of intracellular pro-IL-1?. Dendritic cells lacking the TLR adaptor MyD88, but not those lacking TLR2, were unable to produce pro-IL-1? mRNA in response to GBS. Pro-IL-1? cleavage and secretion of the mature IL-1? form depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) sensor and the apoptosis-associated speck-like protein containing a caspase activation and recruitment domain adaptor. Moreover, activation of the NLRP3 inflammasome required GBS expression of ?-hemolysin, an important virulence factor. We further found that mice lacking NLRP3, apoptosis-associated speck-like protein, or caspase-1 were considerably more susceptible to infection than wild-type mice. Our data link the production of a major virulence factor by GBS with the activation of a highly effective anti-GBS response triggered by the NLRP3 inflammasome.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.