JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants.
Plant J.
PUBLISHED: 01-23-2014
Show Abstract
Hide Abstract
The 2-oxoglutarate-dependent dioxygenase (2OGD) superfamily is the second largest enzyme family in the plant genome, and its members are involved in various oxygenation/hydroxylation reactions. Despite their biochemical significance in metabolism, a systematic analysis of plant 2OGDs remains to be accomplished. We present a phylogenetic classification of 479 2OGDs in six plant models, ranging from green algae to angiosperms. These were classified into three classes - DOXA, DOXB and DOXC - based on amino acid sequence similarity. The DOXA class includes plant homologs of Escherichia coli AlkB, which is a prototype of 2OGD involved in the oxidative demethylation of alkylated nucleic acids and histones. The DOXB class is conserved across all plant taxa and is involved in proline 4-hydroxylation in cell wall protein synthesis. The DOXC class is involved in specialized metabolism of various phytochemicals, including phytohormones and flavonoids. The vast majority of 2OGDs from land plants were classified into the DOXC class, but only seven from Chlamydomonas, suggesting that this class has diversified during land plant evolution. Phylogenetic analysis assigned DOXC-class 2OGDs to 57 phylogenetic clades. 2OGD genes involved in gibberellin biosynthesis were conserved among vascular plants, and those involved in flavonoid and ethylene biosynthesis were shared among seed plants. Several angiosperm-specific clades were found to be involved in various lineage-specific specialized metabolisms, but 31 of the 57 DOXC-class clades were only found in a single species. Therefore, the evolution and diversification of DOXC-class 2OGDs is partly responsible for the diversity and complexity of specialized metabolites in land plants.
Related JoVE Video
Recent advances in the metabolic engineering of lignan biosynthesis pathways for the production of transgenic plant-based foods and supplements.
J. Agric. Food Chem.
PUBLISHED: 06-10-2013
Show Abstract
Hide Abstract
Plant physiological, epidemiological, and food science studies have shed light on lignans as healthy diets for the reduction of the risk of lifestyle-related noncommunicable diseases and, thus, the demand for lignans has been rapidly increasing. However, the low efficiency and instability of lignan production via extraction from plant resources remain to be resolved, indicating the requirement for the development of new procedures for lignan production. The metabolic engineering of lignan-biosynthesizing plants is expected to be most promising for efficient, sustainable, and stable lignan production. This is supported by the recent verification of biosynthetic pathways of major dietary lignans and the exploration of lignan production via metabolic engineering using transiently gene-transfected or transgenic plants. The aim of this review is to present an overview of the biosynthetic pathways, biological activities, and metabolic engineering of lignans and also perspectives in metabolic engineering-based lignan production using transgenic plants for practical application.
Related JoVE Video
CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis.
Plant Cell Physiol.
PUBLISHED: 10-28-2011
Show Abstract
Hide Abstract
Triterpenoids are a diverse group of secondary metabolites that are associated with a variety of biological activities. Oleanolic acid, ursolic acid and betulinic acid are common triterpenoids in plants with diverse biological activities, including antifungal, antibacterial, anti-human immunodeficiency virus (HIV) and/or antitumor activities. In the present study, using the gene co-expression analysis tool of Medicago truncatula, we found a strong correlation between CYP716A12 and ?-amyrin synthase (bAS), which encodes the enzyme responsible for the initial cyclization of 2,3-oxidosqualene to ?-amyrin (the basic structural backbone of most triterpenoid saponins). Through an in vitro assay, we identified CYP716A12 as a ?-amyrin 28-oxidase able to modify ?-amyrin to oleanolic acid (through erythrodiol and, possibly, oleanolic aldehyde). We also confirmed its activity in vivo, by expressing CYP716A12 in transgenic yeast that endogenously produce ?-amyrin. In addition, CYP716A12 was evaluated for its potential ?-amyrin- and lupeol-oxidizing activities. Interestingly, CYP716A12 was able to generate ursolic acid (through uvaol and, possibly, ursolic aldehyde) and betulinic acid (through betulin). Hence, CYP716A12 was characterized as a multifunctional enzyme with ?-amyrin 28-oxidase, ?-amyrin 28-oxidase and lupeol 28-oxidase activities. We also identified homologs of CYP716A12 in grape (CYP716A15 and CYP716A17) that are involved in triterpenoid biosynthesis, which indicates the highly conserved functionality of the CYP716A subfamily among plants. These findings will be useful in the heterologous production of pharmacologically and industrially important triterpenoids, including oleanolic acid, ursolic acid and betulinic acid.
Related JoVE Video
Functional differentiation of the glycosyltransferases that contribute to the chemical diversity of bioactive flavonol glycosides in grapevines (Vitis vinifera).
Plant Cell
PUBLISHED: 08-06-2010
Show Abstract
Hide Abstract
We identified two glycosyltransferases that contribute to the structural diversification of flavonol glycosides in grapevine (Vitis vinifera): glycosyltransferase 5 (Vv GT5) and Vv GT6. Biochemical analyses showed that Vv GT5 is a UDP-glucuronic acid:flavonol-3-O-glucuronosyltransferase (GAT), and Vv GT6 is a bifunctional UDP-glucose/UDP-galactose:flavonol-3-O-glucosyltransferase/galactosyltransferase. The Vv GT5 and Vv GT6 genes have very high sequence similarity (91%) and are located in tandem on chromosome 11, suggesting that one of these genes arose from the other by gene duplication. Both of these enzymes were expressed in accordance with flavonol synthase gene expression and flavonoid distribution patterns in this plant, corroborating their significance in flavonol glycoside biosynthesis. The determinant of the specificity of Vv GT5 for UDP-glucuronic acid was found to be Arg-140, which corresponded to none of the determinants previously identified for other plant GATs in primary structures, providing another example of convergent evolution of plant GAT. We also analyzed the determinants of the sugar donor specificity of Vv GT6. Gln-373 and Pro-19 were found to play important roles in the bifunctional specificity of the enzyme. The results presented here suggest that the sugar donor specificities of these Vv GTs could be determined by a limited number of amino acid substitutions in the primary structures of protein duplicates, illustrating the plasticity of plant glycosyltransferases in acquiring new sugar donor specificities.
Related JoVE Video
Co-pigmentation and flavonoid glycosyltransferases in blue Veronica persica flowers.
Phytochemistry
PUBLISHED: 02-09-2010
Show Abstract
Hide Abstract
Glycosylation is one of the key modification steps for plants to produce a broad spectrum of flavonoids with various structures and colors. A survey of flavonoids in the blue flowers of Veronica persica Poiret (Lamiales, Scrophulariaceae), which is native of Eurasia and now widespread worldwide, led to the identification of highly glycosylated flavonoids, namely delphinidin 3-O-(2-O-(6-O-p-coumaroyl-glucosyl)-6-O-p-coumaroyl-glucoside)-5-O-glucoside (1) and apigenin 7-O-(2-O-glucuronosyl)-glucuronide (2), as two of its main flavonoids. Interestingly, the latter flavone glucuronide (2) caused a bathochromic shift on the anthocyanin (1) toward a blue hue in a dose-dependent manner, showing an intermolecular co-pigment effect. In order to understand the molecular basis for the biosynthesis of this glucuronide, we isolated a cDNA encoding a UDP-dependent glycosyltransferase (UGT88D8), based on the structural similarity to flavonoid 7-O-glucuronosyltransferases (F7GAT) from Lamiales plants. Enzyme assays showed that the recombinant UGT88D8 protein catalyzes the 7-O-glucuronosylation of apigenin and its related flavonoids with preference to UDP-glucuronic acid as a sugar donor. Furthermore, we identified and functionally characterized a cDNA encoding another UGT, UGT94F1, as the anthocyanin 3-O-glucoside-2-O-glucosyltransferase (A3Glc2GlcT), according to the structural similarity to sugar-sugar glycosyltransferases classified to the cluster IV of flavonoid UGTs. Preferential expression of UGT88D8 and UGT94F1 genes in the petals supports the idea that these UGTs play an important role in the biosynthesis of key flavonoids responsible for the development of the blue color of V. persica flowers.
Related JoVE Video
Metabolic engineering of lignan biosynthesis in Forsythia cell culture.
Plant Cell Physiol.
PUBLISHED: 11-03-2009
Show Abstract
Hide Abstract
Lignans are a large class of secondary metabolites in plants, with numerous biological effects in mammals, including antitumor and antioxidant activities. Sesamin, the most abundant furofuran-class lignan in sesame seeds (Sesamum plants), is produced by the cytochrome P450 enzyme CYP81Q1 from the precursor lignan, pinoresinol. In contrast, Forsythia plants produce dibenzylbutyrolactone-class lignans, such as matairesinol, from pinoresinol via the catalysis of pinoresinol/lariciresinol reductase (PLR) and secoisolariciresinol dehydrogenase. Here we present the engineering of lignan biosynthesis in Forsythia cell suspension cultures for the development of an efficient production method of beneficial lignans. A suspension cell culture prepared from leaves of Forsythia koreana produced lignans, mainly pinoresinol and matairesinol glucosides, at levels comparable with that obtained from the leaves. In an attempt to increase the pinoresinol content in Forsythia, we generated a transgenic cell line overexpressing an RNA interference (RNAi) construct of PLR (PLR-RNAi). Down-regulation of PLR expression led to a complete loss of matairesinol and an accumulation of approximately 20-fold pinoresinol in its glucoside form in comparison with the non-transformant. Moreover, the Forsythia transgenic cells co-expressing CYP81Q1 and PLR-RNAi exhibited production of sesamin as well as accumulation of pinoresinol glucoside. These data suggest Forsythia cell suspension to be a promising tool for the engineering of lignan production. To the best of our knowledge, this is the first report on transgenic production of an exogenous lignan in a plant species.
Related JoVE Video
Local differentiation of sugar donor specificity of flavonoid glycosyltransferase in Lamiales.
Plant Cell
PUBLISHED: 05-19-2009
Show Abstract
Hide Abstract
Flavonoids are most commonly conjugated with various sugar moieties by UDP-sugar:glycosyltransferases (UGTs) in a lineage-specific manner. Generally, the phylogenetics and regiospecificity of flavonoid UGTs are correlated, indicating that the regiospecificity of UGT differentiated prior to speciation. By contrast, it is unclear how the sugar donor specificity of UGTs evolved. Here, we report the biochemical, homology-modeled, and phylogenetic characterization of flavonoid 7-O-glucuronosyltransferases (F7GAT), which is responsible for producing specialized metabolites in Lamiales plants. All of the Lamiales F7GATs were found to be members of the UGT88-related cluster and specifically used UDP-glucuronic acid (UDPGA). We identified an Arg residue that is specifically conserved in the PSPG box in the Lamiales F7GATs. Substitution of this Arg with Trp was sufficient to convert the sugar donor specificity of the Lamiales F7GATs from UDPGA to UDP-glucose. Homology modeling of the Lamiales F7GAT suggested that the Arg residue plays a critical role in the specific recognition of anionic carboxylate of the glucuronic acid moiety of UDPGA with its cationic guanidinium moiety. These results support the hypothesis that differentiation of sugar donor specificity of UGTs occurred locally, in specific plant lineages, after establishment of general regiospecificity for the sugar acceptor. Thus, the plasticity of sugar donor specificity explains, in part, the extraordinary structural diversification of phytochemicals.
Related JoVE Video
Crystallization and preliminary X-ray crystallographic analysis of UDP-glucuronic acid:flavonol-3-O-glucuronosyltransferase (VvGT5) from the grapevine Vitis vinifera.
Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
Show Abstract
Hide Abstract
Grapevine (Vitis vinifera) glycosyltransferase 5 (VvGT5) is a UDP-glucuronic acid:flavonol-3-O-glucuronosyltransferase that catalyses the 3-O-specific glucuronosylation of flavonols using UDP-glucuronic acid as a sugar donor to produce flavonol 3-O-glucosides, which are important bioactive phytochemicals. Recombinant VvGT5 expressed in Escherichia coli cells was purified and crystallized by the sitting-drop vapour-diffusion method. A full set of X-ray diffraction data was collected to 2.2?Å Bragg spacing from a single crystal using a synchrotron-radiation source. The crystal was hexagonal, belonging to space group P6(1)22, with unit-cell parameters a = b = 102.70, c = 535.92?Å. The initial phases were determined by the molecular-replacement method.
Related JoVE Video
The Sg-1 glycosyltransferase locus regulates structural diversity of triterpenoid saponins of soybean.
Plant Cell
Show Abstract
Hide Abstract
Triterpene saponins are a diverse group of biologically functional products in plants. Saponins usually are glycosylated, which gives rise to a wide diversity of structures and functions. In the group A saponins of soybean (Glycine max), differences in the terminal sugar species located on the C-22 sugar chain of an aglycone core, soyasapogenol A, were observed to be under genetic control. Further genetic analyses and mapping revealed that the structural diversity of glycosylation was determined by multiple alleles of a single locus, Sg-1, and led to identification of a UDP-sugar-dependent glycosyltransferase gene (Glyma07g38460). Although their sequences are highly similar and both glycosylate the nonacetylated saponin A0-?g, the Sg-1(a) allele encodes the xylosyltransferase UGT73F4, whereas Sg-1(b) encodes the glucosyltransferase UGT73F2. Homology models and site-directed mutagenesis analyses showed that Ser-138 in Sg-1(a) and Gly-138 in Sg-1(b) proteins are crucial residues for their respective sugar donor specificities. Transgenic complementation tests followed by recombinant enzyme assays in vitro demonstrated that sg-1(0) is a loss-of-function allele of Sg-1. Considering that the terminal sugar species in the group A saponins are responsible for the strong bitterness and astringent aftertastes of soybean seeds, our findings herein provide useful tools to improve commercial properties of soybean products.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.