JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Emerging Roles of P2X Receptors in Cancer.
Curr. Med. Chem.
PUBLISHED: 06-11-2014
Show Abstract
Hide Abstract
Tumor microenvironment composition strongly conditions cancer growth and progression, acting not only at cancer itself but also modifying its interactions with immune, endothelial and nervous cells. Extracellular ATP and its receptors recently gained increasing attention in the oncological field. ATP accumulates in cancer milieu through spontaneous release, tumor necrosis or chemotherapy exerting a trophic activity on cancer cells, modulating the cross talk among tumor, and surrounding tissues. Accordingly, ATP gated P2X receptors emerged as central players in tumor development, invasion, progression and related symptoms. Indeed, P2X receptors are expressed and functional on tumor cells itself-but also in immune-infiltrate and nearby neurons. In this review, we summarize recent findings on P2X receptors role in tumor cell differentiation, bioenergetics, angiogenesis, metastasis and associated pain, giving an outline of the potential anti-neoplastic activity of receptor agonists and antagonists.
Related JoVE Video
Methods to monitor and compare mitochondrial and glycolytic ATP production.
Meth. Enzymol.
PUBLISHED: 05-28-2014
Show Abstract
Hide Abstract
ATP is commonly considered as the main energy unit of the cell and participates in a variety of cellular processes. Thus, intracellular ATP concentrations rapidly vary in response to a wide variety of stimuli, including nutrients, hormones, cytotoxic agents, and hypoxia. Such alterations not necessarily affect cytosolic and mitochondrial ATP to similar extents. From an oncological perspective, this is particularly relevant in the course of tumor progression as well as in the response of cancer cells to therapy. In normal cells, mitochondrial oxidative phosphorylation (OXPHOS) is the predominant source of ATP. Conversely, many cancer cells exhibit an increased flux through glycolysis irrespective of oxygen tension. Assessing the relative contribution of glycolysis and OXPHOS to intracellular ATP production is fundamental not only for obtaining further insights into the peculiarities and complexities of oncometabolism but also for developing therapeutic and diagnostic tools. Several techniques have been developed to measure intracellular ATP levels including enzymatic methods based on hexokinase, glucose-6-phosphate dehydrogenase, and firefly luciferase. Here, we summarize conventional methods for measuring intracellular ATP levels and we provide a detailed protocol based on cytosol- and mitochondrion-targeted variants of firefly luciferase to determine the relative contribution of glycolysis and OXPHOS to ATP synthesis.
Related JoVE Video
The mitochondrial permeability transition pore is a dispensable element for mitochondrial calcium efflux.
Cell Calcium
PUBLISHED: 03-15-2014
Show Abstract
Hide Abstract
The mitochondrial permeability transition pore (mPTP) has long been known to have a role in mitochondrial calcium (Ca(2+)) homeostasis under pathological conditions as a mediator of the mitochondrial permeability transition and the activation of the consequent cell death mechanism. However, its role in the context of mitochondrial Ca(2+) homeostasis is not yet clear. Several studies that were based on PPIF inhibition or knock out suggested that mPTP is involved in the Ca(2+) efflux mechanism, while other observations have revealed the opposite result. The c subunit of the mitochondrial F1/FO ATP synthase has been recently found to be a fundamental component of the mPTP. In this work, we focused on the contribution of the mPTP in the Ca(2+) efflux mechanism by modulating the expression of the c subunit. We observed that forcing mPTP opening or closing did not impair mitochondrial Ca(2+) efflux. Therefore, our results strongly suggest that the mPTP does not participate in mitochondrial Ca(2+) homeostasis in a physiological context in HeLa cells.
Related JoVE Video
Trophic activity of human P2X7 receptor isoforms A and B in osteosarcoma.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The P2X7 receptor (P2X7R) is attracting increasing attention for its involvement in cancer. Several recent studies have shown a crucial role of P2X7R in tumour cell growth, angiogenesis and invasiveness. In this study, we investigated the role of the two known human P2X7R functional splice variants, the full length P2X7RA and the truncated P2X7RB, in osteosarcoma cell growth. Immunohistochemical analysis of a tissue array of human osteosarcomas showed that forty-four, of a total fifty-four tumours (81.4%), stained positive for both P2X7RA and B, thirty-one (57.4%) were positive using an anti-P2X7RA antibody, whereas fifteen of the total number (27.7%) expressed only P2X7RB. P2X7RB positive tumours showed increased cell density, at the expense of extracellular matrix. The human osteosarcoma cell line Te85, which lacks endogenous P2X7R expression, was stably transfected with either P2X7RA, P2X7RB, or both. Receptor expression was a powerful stimulus for cell growth, the most efficient growth-promoting isoform being P2X7RB alone. Growth stimulation was matched by increased Ca(2+) mobilization and enhanced NFATc1 activity. Te85 P2X7RA+B cells presented pore formation as well as spontaneous extracellular ATP release. The ATP release was sustained in all clones by P2X7R agonist (BzATP) and reduced following P2X7R antagonist (A740003) application. BzATP also increased cell growth and activated NFATc1 levels. On the other hand cyclosporin A (CSA) affected both NFATc1 activation and cell growth, definitively linking P2X7R stimulation to NFATc1 and cell proliferation. All transfected clones also showed reduced RANK-L expression, and an overall decreased RANK-L/OPG ratio. Mineralization was increased in Te85 P2X7RA+B cells while it was significantly diminished in Te85 P2X7RB clones, in agreement with immunohistochemical results. In summary, our data show that the majority of human osteosarcomas express P2X7RA and B and suggest that expression of either isoform is differently coupled to cell growth or activity.
Related JoVE Video
Oxidative stress in cardiovascular diseases and obesity: role of p66Shc and protein kinase C.
Oxid Med Cell Longev
PUBLISHED: 01-25-2013
Show Abstract
Hide Abstract
Reactive oxygen species (ROS) are a byproduct of the normal metabolism of oxygen and have important roles in cell signalling and homeostasis. An imbalance between ROS production and the cellular antioxidant defence system leads to oxidative stress. Environmental factors and genetic interactions play key roles in oxidative stress mediated pathologies. In this paper, we focus on cardiovascular diseases and obesity, disorders strongly related to each other; in which oxidative stress plays a fundamental role. We provide evidence of the key role played by p66(Shc) protein and protein kinase C (PKC) in these pathologies by their intracellular regulation of redox balance and oxidative stress levels. Additionally, we discuss possible therapeutic strategies aimed at attenuating the oxidative damage in these diseases.
Related JoVE Video
Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition.
Cell Cycle
PUBLISHED: 01-23-2013
Show Abstract
Hide Abstract
The term "mitochondrial permeability transition" (MPT) refers to an abrupt increase in the permeability of the inner mitochondrial membrane to low molecular weight solutes. Due to osmotic forces, MPT is paralleled by a massive influx of water into the mitochondrial matrix, eventually leading to the structural collapse of the organelle. Thus, MPT can initiate mitochondrial outer membrane permeabilization (MOMP), promoting the activation of the apoptotic caspase cascade as well as of caspase-independent cell death mechanisms. MPT appears to be mediated by the opening of the so-called "permeability transition pore complex" (PTPC), a poorly characterized and versatile supramolecular entity assembled at the junctions between the inner and outer mitochondrial membranes. In spite of considerable experimental efforts, the precise molecular composition of the PTPC remains obscure and only one of its constituents, cyclophilin D (CYPD), has been ascribed with a crucial role in the regulation of cell death. Conversely, the results of genetic experiments indicate that other major components of the PTPC, such as voltage-dependent anion channel (VDAC) and adenine nucleotide translocase (ANT), are dispensable for MPT-driven MOMP. Here, we demonstrate that the c subunit of the FO ATP synthase is required for MPT, mitochondrial fragmentation and cell death as induced by cytosolic calcium overload and oxidative stress in both glycolytic and respiratory cell models. Our results strongly suggest that, similar to CYPD, the c subunit of the FO ATP synthase constitutes a critical component of the PTPC.
Related JoVE Video
Calcium signaling around Mitochondria Associated Membranes (MAMs).
Cell Commun. Signal
PUBLISHED: 06-24-2011
Show Abstract
Hide Abstract
Calcium (Ca2+) homeostasis is fundamental for cell metabolism, proliferation, differentiation, and cell death. Elevation in intracellular Ca2+ concentration is dependent either on Ca2+ influx from the extracellular space through the plasma membrane, or on Ca2+ release from intracellular Ca2+ stores, such as the endoplasmic/sarcoplasmic reticulum (ER/SR). Mitochondria are also major components of calcium signalling, capable of modulating both the amplitude and the spatio-temporal patterns of Ca2+ signals. Recent studies revealed zones of close contact between the ER and mitochondria called MAMs (Mitochondria Associated Membranes) crucial for a correct communication between the two organelles, including the selective transmission of physiological and pathological Ca2+ signals from the ER to mitochondria. In this review, we summarize the most up-to-date findings on the modulation of intracellular Ca2+ release and Ca2+ uptake mechanisms. We also explore the tight interplay between ER- and mitochondria-mediated Ca2+ signalling, covering the structural and molecular properties of the zones of close contact between these two networks.
Related JoVE Video
Mitochondrial calcium homeostasis as potential target for mitochondrial medicine.
Mitochondrion
PUBLISHED: 06-10-2011
Show Abstract
Hide Abstract
Mitochondria are crucial in different intracellular pathways of signal transduction. Mitochondria are capable of decoding a variety of extracellular stimuli into markedly different intracellular actions, ranging from energy production to cell death. The fine modulation of mitochondrial calcium (Ca(2+)) homeostasis plays a fundamental role in many of the processes involving this organelle. When mitochondrial Ca(2+) homeostasis is compromised, different pathological conditions can occur, depending on the cell type involved. Recent data have shed light on the molecular identity of the main proteins involved in the handling of mitochondrial Ca(2+) traffic, opening fascinating and ambitious new avenues for mitochondria-based pharmacological strategies.
Related JoVE Video
Mitochondria-ros crosstalk in the control of cell death and aging.
J Signal Transduct
PUBLISHED: 06-09-2011
Show Abstract
Hide Abstract
Reactive oxygen species (ROS) are highly reactive molecules, mainly generated inside mitochondria that can oxidize DNA, proteins, and lipids. At physiological levels, ROS function as "redox messengers" in intracellular signalling and regulation, whereas excess ROS induce cell death by promoting the intrinsic apoptotic pathway. Recent work has pointed to a further role of ROS in activation of autophagy and their importance in the regulation of aging. This review will focus on mitochondria as producers and targets of ROS and will summarize different proteins that modulate the redox state of the cell. Moreover, the involvement of ROS and mitochondria in different molecular pathways controlling lifespan will be reported, pointing out the role of ROS as a "balance of power," directing the cell towards life or death.
Related JoVE Video
Protein kinases and phosphatases in the control of cell fate.
Enzyme Res
PUBLISHED: 03-15-2011
Show Abstract
Hide Abstract
Protein phosphorylation controls many aspects of cell fate and is often deregulated in pathological conditions. Several recent findings have provided an intriguing insight into the spatial regulation of protein phosphorylation across different subcellular compartments and how this can be finely orchestrated by specific kinases and phosphatases. In this review, the focus will be placed on (i) the phosphoinositide 3-kinase (PI3K) pathway, specifically on the kinases Akt and mTOR and on the phosphatases PP2a and PTEN, and on (ii) the PKC family of serine/threonine kinases. We will look at general aspects of cell physiology controlled by these kinases and phosphatases, highlighting the signalling pathways that drive cell division, proliferation, and apoptosis.
Related JoVE Video
Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25.
Curr. Biol.
Show Abstract
Hide Abstract
The recently discovered mitochondrial calcium uniporter (MCU) promotes Ca(2+) accumulation into the mitochondrial matrix. We identified in silico miR-25 as a cancer-related MCU-targeting microRNA family and demonstrate that its overexpression in HeLa cells drastically reduces MCU levels and mitochondrial Ca(2+) uptake, while leaving other mitochondrial parameters and cytosolic Ca(2+) signals unaffected. In human colon cancers and cancer-derived cells, miR-25 is overexpressed and MCU accordingly silenced. miR-25-dependent reduction of mitochondrial Ca(2+) uptake correlates with resistance to apoptotic challenges and can be reversed by anti-miR-25 overexpression. Overall, the data demonstrate that microRNA targeting of mitochondrial Ca(2+) signaling favors cancer cell survival, thus providing mechanistic insight into the role of mitochondria in tumorigenesis and identifying a novel therapeutic target in neoplasia.
Related JoVE Video
ATP synthesis and storage.
Purinergic Signal.
Show Abstract
Hide Abstract
Since 1929, when it was discovered that ATP is a substrate for muscle contraction, the knowledge about this purine nucleotide has been greatly expanded. Many aspects of cell metabolism revolve around ATP production and consumption. It is important to understand the concepts of glucose and oxygen consumption in aerobic and anaerobic life and to link bioenergetics with the vast amount of reactions occurring within cells. ATP is universally seen as the energy exchange factor that connects anabolism and catabolism but also fuels processes such as motile contraction, phosphorylations, and active transport. It is also a signalling molecule in the purinergic signalling mechanisms. In this review, we will discuss all the main mechanisms of ATP production linked to ADP phosphorylation as well the regulation of these mechanisms during stress conditions and in connection with calcium signalling events. Recent advances regarding ATP storage and its special significance for purinergic signalling will also be reviewed.
Related JoVE Video
Mitochondrial Ca(2+) and apoptosis.
Cell Calcium
Show Abstract
Hide Abstract
Mitochondria are key decoding stations of the apoptotic process. In support of this view, a large body of experimental evidence has unambiguously revealed that, in addition to the well-established function of producing most of the cellular ATP, mitochondria play a fundamental role in triggering apoptotic cell death. Various apoptotic stimuli cause the release of specific mitochondrial pro-apoptotic factors into the cytosol. The molecular mechanism of this release is still controversial, but there is no doubt that mitochondrial calcium (Ca(2+)) overload is one of the pro-apoptotic ways to induce the swelling of mitochondria, with perturbation or rupture of the outer membrane, and in turn the release of mitochondrial apoptotic factors into the cytosol. Here, we review as different proteins that participate in mitochondrial Ca(2+) homeostasis and in turn modulate the effectiveness of Ca(2+)-dependent apoptotic stimuli. Strikingly, the final outcome at the cellular level is similar, albeit through completely different molecular mechanisms: a reduced mitochondrial Ca(2+) overload upon pro-apoptotic stimuli that dramatically blunts the apoptotic response.
Related JoVE Video
Mitochondria-associated membranes (MAMs) as hotspot Ca(2+) signaling units.
Adv. Exp. Med. Biol.
Show Abstract
Hide Abstract
The tight interplay between endoplasmic reticulum (ER) and mitochondria is a key determinant of cell function and survival through the control of intracellular calcium (Ca(2+)) signaling. The specific sites of physical association between ER and mitochondria are known as mitochondria-associated membranes (MAMs). It has recently become clear that MAMs are crucial for highly efficient transmission of Ca(2+) from the ER to mitochondria, thus controlling fundamental processes involved in energy production and also determining cell fate by triggering or preventing apoptosis. In this contribution, we summarize the main features of the Ca(2+)-signaling toolkit, covering also the latest breakthroughs in the field, such as the identification of novel candidate proteins implicated in mitochondrial Ca(2+) transport and the recent direct characterization of the high-Ca(2+) microdomains between ER and mitochondria. We review the main functions of these two organelles, with special emphasis on Ca(2+) handling and on the structural and molecular foundations of the signaling contacts between them. Additionally, we provide important examples of the physiopathological role of this cross-talk, briefly describing the key role played by MAMs proteins in many diseases, and shedding light on the essential role of mitochondria-ER interactions in the maintenance of cellular homeostasis and the determination of cell fate.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.