JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Fast and sensitive detection of enteropathogenic Yersinia by immunoassays.
J. Clin. Microbiol.
PUBLISHED: 10-31-2014
Show Abstract
Hide Abstract
Yersinia enterocolitica and Yersinia pseudotuberculosis, the two enteropathogenic Yersinia species for humans are worldwide distributed and are causing frequently diarrhea to inhabitants of temperate and cold countries. Yersinia enterocolitica is a major cause of foodborne disease, by consumption of contaminated pork meat further associated substantial economic cost. However, investigating enteropathogenic Yersinia is hardly performed routinely in clinical laboratories because of their specific growth characteristics, which make difficult their isolation from stools samples. Moreover, current isolation procedures are time consuming and expensive, thus leading to underestimated incidence of enteric yersiniosis, inappropriate prescriptions of antibiotic treatments and unnecessary appendectomies. The main objective of the study was to develop fast, sensitive, specific and easy-to-use immunoassays, useful for both human and veterinary diagnosis. Monoclonal antibodies (mAbs) directed against Y. enterocolitica bioserotypes 2/O:9 and 4/O:3 and Y. pseudotuberculosis serotypes I and III were produced. Pairs of mAbs were selected by testing their specificity and affinity toward enteropathogenic Yersinia and other commonly found enterobacteria. Pairs of mAbs were selected to develop highly sensitive enzyme immunoassays (EIA) and lateral flow immunoassays (LFI or dipsticks) convenient for rapid diagnostic purpose. The limit of detection of the EIAs ranged from 3.2 x 10(3) cfu/ml to 8.8 x 10(4) cfu/ml for pathogenic serotypes I and III of Y. pseudotuberculosis and pathogenic bioserotypes 2/O:9 and 4/O:3 of Y. enterocolitica and ranged for the LFIs from 10(5) cfu/ml to 10(6) cfu/ml. A similar limit of detection was observed for artificially contaminated human feces.
Related JoVE Video
Use of whole genus genome sequence data to develop a Multi-Locus Sequencing Type tool that accurately speciates and sub-speciates within the Yersinia genus.
J. Clin. Microbiol.
PUBLISHED: 10-24-2014
Show Abstract
Hide Abstract
The genus Yersinia is a large and diverse bacterial genus consisting of human pathogenic species, a fish pathogenic species, and a large number of environmental species. Recently the phylogenetic and population structure of the entire genus was elucidated through genome sequence data of 241 strains encompassing every known species in the genus. Here we report the mining of this enormous data set to create a multi-locus sequence typing-based scheme that can speciate Yersinia strains to a level of resolution equal to whole genome sequencing. Our assay is designed so that it is able to accurately sub-type the important human pathogenic species Y. enterocolitica to whole genome resolution levels. We also report the validation of the scheme on 386 strains from reference laboratory collections across Europe. We propose the scheme to be an important molecular typing system to allow accurate and reproducible speciation of Yersinia isolates, a process often inconsistent in non-specialist laboratories. Additionally our assay is the most phylogenetically informative typing scheme available for Y. enterocolitica.
Related JoVE Video
Evaluation of a modified Cefsulodin-Irgasan-Novobiocin agar for isolation of Yersinia spp.
PLoS ONE
PUBLISHED: 08-29-2014
Show Abstract
Hide Abstract
Y. enterocolitica and Y. pseudotuberculosis are important food borne pathogens. However, the presence of competitive microbiota makes the isolation of Y. enterocolitica and Y. pseudotuberculosis from naturally contaminated foods difficult. We attempted to evaluate the performance of a modified Cefsulodin-Irgasan-Novobiocin (CIN) agar in the differentiation of Y. enterocolitica from non-Yersinia species, particularly the natural intestinal microbiota. The modified CIN enabled the growth of Y. enterocolitica colonies with the same efficiency as CIN and Luria-Bertani agar. The detection limits of the modified CIN for Y. enterocolitica in culture medium (10 cfu/ml) and in artificially contaminated pork (10(4) cfu/ml) were also comparable to those of CIN. However, the modified CIN provided a better discrimination of Yersinia colonies from other bacteria exhibiting Yersinia-like colonies on CIN (H2S-producing Citrobacter freundii, C. braakii, Enterobacter cloacae, Aeromonas hydrophila, Providencia rettgeri, and Morganella morganii). The modified CIN exhibited a higher recovery rate of Y. enterocolitica from artificially prepared bacterial cultures and naturally contaminated samples compared with CIN. Our results thus demonstrated that the use of modified CIN may be a valuable means to increase the recovery rate of food borne Yersinia from natural samples, which are usually contaminated by multiple types of bacteria.
Related JoVE Video
Detection of Yersinia pestis in environmental and food samples by intact cell immunocapture and liquid chromatography-tandem mass spectrometry.
Anal. Chem.
PUBLISHED: 05-29-2014
Show Abstract
Hide Abstract
Yersinia pestis is the causative agent of bubonic and pneumonic plague, an acute and often fatal disease in humans. In addition to the risk of natural exposure to plague, there is also the threat of a bioterrorist act, leading to the deliberate spread of the bacteria in the environment or food. We report here an immuno-liquid chromatography-tandem mass spectrometry (immuno-LC-MS/MS) method for the direct (i.e., without prior culture), sensitive, and specific detection of Y. pestis in such complex samples. In the first step, a bottom-up proteomics approach highlighted three relevant protein markers encoded by the Y. pestis-specific plasmids pFra (murine toxin) and pPla (plasminogen activator and pesticin). Suitable proteotypic peptides were thoroughly selected to monitor the three protein markers by targeted MS using the selected reaction monitoring (SRM) mode. Immunocapture conditions were optimized for the isolation and concentration of intact bacterial cells from complex samples. The immuno-LC-SRM assay has a limit of detection of 2 × 10(4) CFU/mL in milk or tap water, which compares well with those of state-of-the-art immunoassays. Moreover, we report the first direct detection of Y. pestis in soil, which could be extremely useful in confirming Y. pestis persistence in the ground.
Related JoVE Video
Parallel independent evolution of pathogenicity within the genus Yersinia.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 04-21-2014
Show Abstract
Hide Abstract
The genus Yersinia has been used as a model system to study pathogen evolution. Using whole-genome sequencing of all Yersinia species, we delineate the gene complement of the whole genus and define patterns of virulence evolution. Multiple distinct ecological specializations appear to have split pathogenic strains from environmental, nonpathogenic lineages. This split demonstrates that contrary to hypotheses that all pathogenic Yersinia species share a recent common pathogenic ancestor, they have evolved independently but followed parallel evolutionary paths in acquiring the same virulence determinants as well as becoming progressively more limited metabolically. Shared virulence determinants are limited to the virulence plasmid pYV and the attachment invasion locus ail. These acquisitions, together with genomic variations in metabolic pathways, have resulted in the parallel emergence of related pathogens displaying an increasingly specialized lifestyle with a spectrum of virulence potential, an emerging theme in the evolution of other important human pathogens.
Related JoVE Video
Genetic variations of live attenuated plague vaccine strains (Yersinia pestis EV76 lineage) during laboratory passages in different countries.
Infect. Genet. Evol.
PUBLISHED: 02-08-2014
Show Abstract
Hide Abstract
Plague, one of the most devastating infectious diseases in human history, is caused by the bacterial species Yersinia pestis. A live attenuated Y. pestis strain (EV76) has been widely used as a plague vaccine in various countries around the world. Here we compared the whole genome sequence of an EV76 strain used in China (EV76-CN) with the genomes of Y. pestis wild isolates to identify genetic variations specific to the EV76 lineage. We identified 6 SNPs and 6 Indels (insertions and deletions) differentiating EV76-CN from its counterparts. Then, we screened these polymorphic sites in 28 other strains of EV76 lineage that were stored in different countries. Based on the profiles of SNPs and Indels, we reconstructed the parsimonious dissemination history of EV76 lineage. This analysis revealed that there have been at least three independent imports of EV76 strains into China. Additionally, we observed that the pyrE gene is a mutation hotspot in EV76 lineages. The fine comparison results based on whole genome sequence in this study provide better understanding of the effects of laboratory passages on the accumulation of genetic polymorphisms in plague vaccine strains. These variations identified here will also be helpful in discriminating different EV76 derivatives.
Related JoVE Video
The Yersinia pseudotuberculosis complex: characterization and delineation of a new species, Yersinia wautersii.
Int. J. Med. Microbiol.
PUBLISHED: 01-24-2014
Show Abstract
Hide Abstract
The genus Yersinia contains three species pathogenic for humans, one of which is the enteropathogen Yersinia pseudotuberculosis. A recent analysis by Multi Locus Sequence Typing (MLST) of the 'Y. pseudotuberculosis complex' revealed that this complex comprises three distinct populations: the Y. pestis/Y. pseudotuberculosis group, the recently described species Yersinia similis, and a third not yet characterized population designated 'Korean Group', because most strains were isolated in Korea. The aim of this study was to perform an in depth phenotypic and genetic characterization of the three populations composing the Y. pseudotuberculosis complex (excluding Y. pestis, which belonged to the Y. pseudotuberculosis cluster in the MLST analysis). Using a set of strains representative of each group, we found that the three populations had close metabolic properties, but were nonetheless distinguishable based on D-raffinose and D-melibiose fermentation, and on pyrazinamidase activity. Moreover, high-resolution electrospray mass spectrometry highlighted protein peaks characteristic of each population. Their 16S rRNA gene sequences shared high identity (?99.5%), but specific nucleotide signatures for each group were identified. Multi-Locus Sequence Analysis also identified three genetically closely related but distinct populations. Finally, an Average Nucleotide Identity (ANI) analysis performed after sequencing the genomes of a subset of strains of each group also showed that intragroup identity (average for each group ?99%) was higher than intergroup diversity (94.6-97.4%). Therefore, all phenotypic and genotypic traits studied concurred with the initial MLST data indicating that the Y. pseudotuberculosis complex comprises a third and clearly distinct population of strains forming a novel Yersinia species that we propose to designate Yersinia wautersii sp. nov. The isolation of some strains from humans, the detection of virulence genes (on the pYV and pVM82 plasmids, or encoding the superantigen ypmA) in some isolates, and the absence of pyrazinamidase activity (a hallmark of pathogenicity in the genus Yersinia) argue for the pathogenic potential of Y. wautersii.
Related JoVE Video
Understanding the persistence of plague foci in Madagascar.
PLoS Negl Trop Dis
PUBLISHED: 11-01-2013
Show Abstract
Hide Abstract
Plague, a zoonosis caused by Yersinia pestis, is still found in Africa, Asia, and the Americas. Madagascar reports almost one third of the cases worldwide. Y. pestis can be encountered in three very different types of foci: urban, rural, and sylvatic. Flea vector and wild rodent host population dynamics are tightly correlated with modulation of climatic conditions, an association that could be crucial for both the maintenance of foci and human plague epidemics. The black rat Rattus rattus, the main host of Y. pestis in Madagascar, is found to exhibit high resistance to plague in endemic areas, opposing the concept of high mortality rates among rats exposed to the infection. Also, endemic fleas could play an essential role in maintenance of the foci. This review discusses recent advances in the understanding of the role of these factors as well as human behavior in the persistence of plague in Madagascar.
Related JoVE Video
Draft Genome Sequence of a Clinical Strain of Yersinia enterocolitica (IP10393) of Bioserotype 4/O:3 from France.
Genome Announc
PUBLISHED: 02-21-2013
Show Abstract
Hide Abstract
We sequenced the genome of a clinical isolate of Yersinia enterocolitica (IP10393) from France. This strain belongs to bioserotype 4/O:3, which is the most common pathogenic subgroup worldwide. The draft genome has a size of 4,463,212 bp and a G+C content of 47.0%, and it is predicted to contain 4,181 coding sequences.
Related JoVE Video
Fast and simple detection of Yersinia pestis applicable to field investigation of plague foci.
PLoS ONE
PUBLISHED: 01-29-2013
Show Abstract
Hide Abstract
Yersinia pestis, the plague bacillus, has a rodent-flea-rodent life cycle but can also persist in the environment for various periods of time. There is now a convenient and effective test (F1-dipstick) for the rapid identification of Y. pestis from human patient or rodent samples, but this test cannot be applied to environmental or flea materials because the F1 capsule is mostly produced at 37°C. The plasminogen activator (PLA), a key virulence factor encoded by a Y. pestis-specific plasmid, is synthesized both at 20°C and 37°C, making it a good candidate antigen for environmental detection of Y. pestis by immunological methods. A recombinant PLA protein from Y. pestis synthesized by an Escherichia coli strain was used to produce monoclonal antibodies (mAbs). PLA-specific mAbs devoid of cross-reactions with other homologous proteins were further cloned. A pair of mAbs was selected based on its specificity, sensitivity, comprehensiveness, and ability to react with Y. pestis strains grown at different temperatures. These antibodies were used to develop a highly sensitive one-step PLA-enzyme immunoassay (PLA-EIA) and an immunostrip (PLA-dipstick), usable as a rapid test under field conditions. These two PLA-immunometric tests could be valuable, in addition to the F1-disptick, to confirm human plague diagnosis in non-endemic areas (WHO standard case definition). They have the supplementary advantage of allowing a rapid and easy detection of Y. pestis in environmental and flea samples, and would therefore be of great value for surveillance and epidemiological investigations of plague foci. Finally, they will be able to detect natural or genetically engineered F1-negative Y. pestis strains in human patients and environmental samples.
Related JoVE Video
Plague outbreak in Libya, 2009, unrelated to plague in Algeria.
Emerging Infect. Dis.
PUBLISHED: 01-26-2013
Show Abstract
Hide Abstract
After 25 years of no cases of plague, this disease recurred near Tobruk, Libya, in 2009. An epidemiologic investigation identified 5 confirmed cases. We determined ribotypes, Not1 restriction profiles, and IS100 and IS1541 hybridization patterns of strains isolated during this outbreak. We also analyzed strains isolated during the 2003 plague epidemic in Algeria to determine whether there were epidemiologic links between the 2 events. Our results demonstrate unambiguously that neighboring but independent plague foci coexist in Algeria and Libya. They also indicate that these outbreaks were most likely caused by reactivation of organisms in local or regional foci believed to be dormant (Libya) or extinct (Algeria) for decades, rather than by recent importation of Yersinia pestis from distant foci. Environmental factors favorable for plague reemergence might exist in this area and lead to reactivation of organisms in other ancient foci.
Related JoVE Video
Early systemic bacterial dissemination and a rapid innate immune response characterize genetic resistance to plague of SEG mice.
J. Infect. Dis.
PUBLISHED: 11-16-2011
Show Abstract
Hide Abstract
Although laboratory mice are usually highly susceptible to Yersinia pestis, we recently identified a mouse strain (SEG) that exhibited an exceptional capacity to resist bubonic plague and used it to identify immune mechanisms associated with resistance.
Related JoVE Video
Population structure of the Yersinia pseudotuberculosis complex according to multilocus sequence typing.
Environ. Microbiol.
PUBLISHED: 09-27-2011
Show Abstract
Hide Abstract
Multilocus sequence analysis of 417 strains of Yersinia pseudotuberculosis revealed that it is a complex of four populations, three of which have been previously assigned species status [Y.?pseudotuberculosis sensu stricto (s.s.), Yersinia pestis and Yersinia similis] and a fourth population, which we refer to as the Korean group, which may be in the process of speciation. We detected clear signs of recombination within Y.?pseudotuberculosis s.s. as well as imports from Y.?similis and the Korean group. The sources of genetic diversification within Y.?pseudotuberculosis s.s. were approximately equally divided between recombination and mutation, whereas recombination has not yet been demonstrated in Y.?pestis, which is also much more genetically monomorphic than is Y.?pseudotuberculosis s.s. Most Y.?pseudotuberculosis s.s. belong to a diffuse group of sequence types lacking clear population structure, although this species contains a melibiose-negative clade that is present globally in domesticated animals. Yersinia? similis corresponds to the previously identified Y.?pseudotuberculosis genetic type G4, which is probably not pathogenic because it lacks the virulence factors that are typical for Y.?pseudotuberculosis s.s. In contrast, Y.?pseudotuberculosis s.s., the Korean group and Y.?pestis can all cause disease in humans.
Related JoVE Video
Transfusion-transmitted Yersinia enterocolitica sepsis.
Clin. Infect. Dis.
PUBLISHED: 08-26-2011
Show Abstract
Hide Abstract
Bacterial sepsis has become the most frequent infectious complication of transfusion. Although Yersinia enterocolitica is a common enteropathogen usually causing relatively mild disease, it is nevertheless a prominent cause of life-threatening post-transfusion infection. To gain a better understanding of the clinical presentation and prognosis of this rare occurrence, we performed a systematic and detailed review of 55 published cases, which we present here after a description of the mechanisms underlying the contamination of red blood cell preparations by Y. enterocolitica. The symptoms are rapid-onset septic shock sometimes heralded by atypical symptoms, such as explosive diarrhea, with an overall fatality rate of 54.5%. Although the pathophysiology involves transfusion of preformed bacterial endotoxin, timely administration of effective antibiotics seems to improve the prognosis. Increased vigilance of the blood supply could help mitigate this transfusion hazard, although cost-effective strategies are difficult to define for this highly serious but infrequent event.
Related JoVE Video
Delineation and analysis of chromosomal regions specifying Yersinia pestis.
Infect. Immun.
PUBLISHED: 07-06-2010
Show Abstract
Hide Abstract
Yersinia pestis, the causative agent of plague, has recently diverged from the less virulent enteropathogen Yersinia pseudotuberculosis. Its emergence has been characterized by massive genetic loss and inactivation and limited gene acquisition. The acquired genes include two plasmids, a filamentous phage, and a few chromosomal loci. The aim of this study was to characterize the chromosomal regions acquired by Y. pestis. Following in silico comparative analysis and PCR screening of 98 strains of Y. pseudotuberculosis and Y. pestis, we found that eight chromosomal loci (six regions [R1pe to R6pe] and two coding sequences [CDS1pe and CDS2pe]) specified Y. pestis. Signatures of integration by site specific or homologous recombination were identified for most of them. These acquisitions and the loss of ancestral DNA sequences were concentrated in a chromosomal region opposite to the origin of replication. The specific regions were acquired very early during Y. pestis evolution and were retained during its microevolution, suggesting that they might bring some selective advantages. Only one region (R3pe), predicted to carry a lambdoid prophage, is most likely no longer functional because of mutations. With the exception of R1pe and R2pe, which have the potential to encode a restriction/modification and a sugar transport system, respectively, no functions could be predicted for the other Y. pestis-specific loci. To determine the role of the eight chromosomal loci in the physiology and pathogenicity of the plague bacillus, each of them was individually deleted from the bacterial chromosome. None of the deletants exhibited defects during growth in vitro. Using the Xenopsylla cheopis flea model, all deletants retained the capacity to produce a stable and persistent infection and to block fleas. Similarly, none of the deletants caused any acute flea toxicity. In the mouse model of infection, all deletants were fully virulent upon subcutaneous or aerosol infections. Therefore, our results suggest that acquisition of new chromosomal materials has not been of major importance in the dramatic change of life cycle that has accompanied the emergence of Y. pestis.
Related JoVE Video
Distinct clones of Yersinia pestis caused the black death.
PLoS Pathog.
PUBLISHED: 05-28-2010
Show Abstract
Hide Abstract
From AD 1347 to AD 1353, the Black Death killed tens of millions of people in Europe, leaving misery and devastation in its wake, with successive epidemics ravaging the continent until the 18(th) century. The etiology of this disease has remained highly controversial, ranging from claims based on genetics and the historical descriptions of symptoms that it was caused by Yersinia pestis to conclusions that it must have been caused by other pathogens. It has also been disputed whether plague had the same etiology in northern and southern Europe. Here we identified DNA and protein signatures specific for Y. pestis in human skeletons from mass graves in northern, central and southern Europe that were associated archaeologically with the Black Death and subsequent resurgences. We confirm that Y. pestis caused the Black Death and later epidemics on the entire European continent over the course of four centuries. Furthermore, on the basis of 17 single nucleotide polymorphisms plus the absence of a deletion in glpD gene, our aDNA results identified two previously unknown but related clades of Y. pestis associated with distinct medieval mass graves. These findings suggest that plague was imported to Europe on two or more occasions, each following a distinct route. These two clades are ancestral to modern isolates of Y. pestis biovars Orientalis and Medievalis. Our results clarify the etiology of the Black Death and provide a paradigm for a detailed historical reconstruction of the infection routes followed by this disease.
Related JoVE Video
The Yersinia pestis chromosome encodes active addiction toxins.
J. Bacteriol.
PUBLISHED: 05-14-2010
Show Abstract
Hide Abstract
Toxin-antitoxin (TA) loci consist of two genes in an operon, encoding a stable toxin and an unstable antitoxin. The expression of toxin leads to cell growth arrest and sometimes bacterial death, while the antitoxin prevents the cytotoxic activity of the toxin. In this study, we show that the chromosome of Yersinia pestis, the causative agent of plague, carries 10 putative TA modules and two solitary antitoxins that belong to five different TA families (HigBA, HicAB, RelEB, Phd/Doc, and MqsRA). Two of these toxin genes (higB2 and hicA1) could not be cloned in Escherichia coli unless they were coexpressed with their cognate antitoxin gene, indicating that they are highly toxic for this species. One of these toxin genes (higB2) could, however, be cloned directly and expressed in Y. pestis, where it was highly toxic, while the other one (hicA1) could not, probably because of its extreme toxicity. All eight other toxin genes were successfully cloned into the expression vector pBAD-TOPO. For five of them (higB1, higB3, higB5, hicA2, and tox), no toxic activity was detected in either E. coli or Y. pestis despite their overexpression. The three remaining toxin genes (relE1, higB4, and doc) were toxic for E. coli, and this toxic activity was abolished when the cognate antitoxin was coexpressed, showing that these three TA modules are functional in E. coli. Curiously, only one of these three toxins (RelE1) was active in Y. pestis. Cross-interaction between modules of the same family was observed but occurred only when the antitoxins were almost identical. Therefore, our study demonstrates that of the 10 predicted TA modules encoded by the Y. pestis chromosome, at least 5 are functional in E. coli and/or in Y. pestis. This is the first demonstration of active addiction toxins produced by the plague agent.
Related JoVE Video
Insights into the infective properties of Ypf?, the Yersinia pestis filamentous phage.
Virology
PUBLISHED: 05-03-2010
Show Abstract
Hide Abstract
Ypf? is a filamentous phage that infected Yersinia pestis, the plague bacillus, during its emergence. Using an experimental transduction approach, we show here that this phage has the capacity to infect with variable efficiencies, all three pathogenic Yersinia species as well as Escherichia coli. Like other Inovirus phages, its genetic organization comprises three functional modules necessary for the production of infectious virions. Upon infection, Ypf? integrates into the chromosomal dif site, but extrachromosomal forms are also frequently observed. Several pieces of evidence suggest that the absence of chromosomal Ypf? in natural non-Orientalis Y. pestis isolates results from a higher chromosomal excision rate rather than from a defective integration machinery. A resident Ypf? confers some protection against a superinfection. In contrast to other filamentous phages, the incoming Ypf? genome inserts itself between two copies of the resident prophage. This analysis thus unravels infective properties specific to Ypf?.
Related JoVE Video
In silico comparison of Yersinia pestis and Yersinia pseudotuberculosis transcriptomes reveals a higher expression level of crucial virulence determinants in the plague bacillus.
Int. J. Med. Microbiol.
PUBLISHED: 03-07-2010
Show Abstract
Hide Abstract
Although Yersinia pestis and Yersinia pseudotuberculosis are genetically very similar (97% nucleotide sequence identity for most of the chromosomal genes), they exhibit very different patterns of infection. Y. pestis causes plague which is usually fatal in the absence of treatment, whereas Y. pseudotuberculosis generally triggers non-life-threatening intestinal symptoms. This drastic difference in pathogenicity may result from the acquisition of a few species-specific genes, but also from differences in their transcriptional regulation networks. In this study, we performed an in silico comparative whole-genome transcriptome analysis of Y. pestis and Y. pseudotuberculosis grown in parallel under 8 distinct conditions to determine whether they exhibit differences in their regulatory networks. In this analysis, 304 genes common to both species were found to display significant inter-species differences in transcriptional levels, with 91% of them being more expressed in Y. pestis. Remarkably, 3 major virulence determinants conserved in the 2 species (the pYV virulence plasmid, the High Pathogenicity Island, and the ail locus) were among the genes more expressed in Y. pestis. Furthermore, the induction at 37°C of pYV-borne genes was considerably greater in Y. pestis than in Y. pseudotuberculosis. Conversely, the rovA transcriptional regulator gene was more transcribed in Y. pseudotuberculosis. We also performed a clustering analysis of the transcriptome data of both Y. pestis and Y. pseudotuberculosis, which allowed to group genes according to their expression profiles. This analysis identified groups of genes with unknown functions which, based on regulation patterns similar to those of known virulence genes, are potential new virulence determinants in Y. pestis. In conclusion, this is the first comparative analysis at the whole-genome level of the transcription profiles of Y. pestis and Y. pseudotuberculosis. Our results suggest that the higher pathogenicity of the plague bacillus may not only result from the acquisition of new genetic material, but also from a higher expression level of common crucial virulence genes. This in silico analysis thus opens new avenues for investigating Y. pestis gain of pathogenicity and new potential virulence factors.
Related JoVE Video
Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity.
Nat. Genet.
PUBLISHED: 01-11-2010
Show Abstract
Hide Abstract
Plague is a pandemic human invasive disease caused by the bacterial agent Yersinia pestis. We here report a comparison of 17 whole genomes of Y. pestis isolates from global sources. We also screened a global collection of 286 Y. pestis isolates for 933 SNPs using Sequenom MassArray SNP typing. We conducted phylogenetic analyses on this sequence variation dataset, assigned isolates to populations based on maximum parsimony and, from these results, made inferences regarding historical transmission routes. Our phylogenetic analysis suggests that Y. pestis evolved in or near China and spread through multiple radiations to Europe, South America, Africa and Southeast Asia, leading to country-specific lineages that can be traced by lineage-specific SNPs. All 626 current isolates from the United States reflect one radiation, and 82 isolates from Madagascar represent a second radiation. Subsequent local microevolution of Y. pestis is marked by sequential, geographically specific SNPs.
Related JoVE Video
Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae.
Infect. Immun.
PUBLISHED: 08-31-2009
Show Abstract
Hide Abstract
A genomic island encoding the biosynthesis and secretion pathway of putative hybrid nonribosomal peptide-polyketide colibactin has been recently described in Escherichia coli. Colibactin acts as a cyclomodulin and blocks the eukaryotic cell cycle. The origin and prevalence of the colibactin island among enterobacteria are unknown. We therefore screened 1,565 isolates of different genera and species related to the Enterobacteriaceae by PCR for the presence of this DNA element. The island was detected not only in E. coli but also in Klebsiella pneumoniae, Enterobacter aerogenes, and Citrobacter koseri isolates. It was highly conserved among these species and was always associated with the yersiniabactin determinant. Structural variations between individual strains were only observed in an intergenic region containing variable numbers of tandem repeats. In E. coli, the colibactin island was usually restricted to isolates of phylogenetic group B2 and inserted at the asnW tRNA locus. Interestingly, in K. pneumoniae, E. aerogenes, C. koseri, and three E. coli strains of phylogenetic group B1, the functional colibactin determinant was associated with a genetic element similar to the integrative and conjugative elements ICEEc1 and ICEKp1 and to several enterobacterial plasmids. Different asn tRNA genes served as chromosomal insertion sites of the ICE-associated colibactin determinant: asnU in the three E. coli strains of ECOR group B1, and different asn tRNA loci in K. pneumoniae. The detection of the colibactin genes associated with an ICE-like element in several enterobacteria provides new insights into the spread of this gene cluster and its putative mode of transfer. Our results shed light on the mechanisms of genetic exchange between members of the family Enterobacteriaceae.
Related JoVE Video
Characterization of atypical isolates of Yersinia intermedia and definition of two new biotypes.
J. Clin. Microbiol.
PUBLISHED: 06-03-2009
Show Abstract
Hide Abstract
The species Yersinia intermedia is a member of the genus Yersinia which belongs to the Enterobacteriaceae family. This species is divided into eight biotypes, according to Brenners biotyping scheme. This scheme relies on five tests (utilization of Simmons citrate and acid production from d-melibiose, d-raffinose, alpha-methyl-d-glucoside [alphaMG], and l-rhamnose). The collection of the French Yersinia Reference Laboratory (Institut Pasteur, Paris, France) contained 44 strains that were originally identified as Y. intermedia but whose characteristics did not fit into the biotyping scheme. These 44 strains were separated into two biochemical groups: variant 1 (positive for acid production from l-rhamnose and alphaMG and positive for Simmons citrate utlization) and variant 2 (positive for acid production from l-rhamnose and alphaMG). These atypical strains could correspond to new biotypes of Y. intermedia, to Y. frederiksenii strains having the atypical property of fermenting alphaMG, or to new Yersinia species. These strains did not exhibit growth or phenotypic properties different from those of Y. intermedia and Y. frederiksenii and did not harbor any of the virulence traits usually found in pathogenic species. DNA-DNA hybridizations performed between one strain each of variants 1 and 2 and the Y. intermedia and Y. frederiksenii type strains demonstrated that these variants do belong to the Y. intermedia species. We thus propose that Brenners biotyping scheme be updated by adding two new biotypes: 9 (for variant 1) and 10 (for variant 2) to the species Y. intermedia.
Related JoVE Video
Evaluation of a single procedure allowing the isolation of enteropathogenic Yersinia along with other bacterial enteropathogens from human stools.
PLoS ONE
Show Abstract
Hide Abstract
Enteropathogenic Yersinia are among the most frequent agents of human diarrhea in temperate and cold countries. However, the incidence of yersiniosis is largely underestimated because of the peculiar growth characteristics of pathogenic Yersinia, which make their isolation from poly-contaminated samples difficult. The use of specific procedures for Yersinia isolation is required, but is expensive and time consuming, and therefore is not systematically performed in clinical pathology laboratories. A means to circumvent this problem would be to use a single procedure for the isolation of all bacterial enteropathogens. Since the Statens Serum Institut enteric medium (SSI) has been reported to allow the growth at 37°C of most gram-negative bacteria, including Yersinia, our study aimed at evaluating its performances for Yersinia isolation, as compared to the commonly used Yersinia-specific semi-selective Cefsulodin-Irgasan-Novobiocin medium (CIN) incubated at 28°C. Our results show that Yersinia pseudotuberculosis growth was strongly inhibited on SSI at 37°C, and therefore that this medium is not suitable for the isolation of this species. All Yersinia enterocolitica strains tested grew on SSI, while some non-pathogenic Yersinia species were inhibited. The morphology of Y. enterocolitica colonies on SSI allowed their differentiation from various other gram-negative bacteria commonly isolated from stool samples. However, in artificially contaminated human stools, the recovery of Y. enterocolitica colonies on SSI at 37°C was difficult and was 3 logs less sensitive than on CIN at 28°C. Therefore, despite its limitations, the use of a specific procedure (CIN incubated at 28°C) is still required for an efficient isolation of enteropathogenic Yersinia from stools.
Related JoVE Video
Imaging of bubonic plague dynamics by in vivo tracking of bioluminescent Yersinia pestis.
PLoS ONE
Show Abstract
Hide Abstract
Yersinia pestis dissemination in a host is usually studied by enumerating bacteria in the tissues of animals sacrificed at different times. This laborious methodology gives only snapshots of the infection, as the infectious process is not synchronized. In this work we used in vivo bioluminescence imaging (BLI) to follow Y. pestis dissemination during bubonic plague. We first demonstrated that Y. pestis CO92 transformed with pGEN-luxCDABE stably emitted bioluminescence in vitro and in vivo, while retaining full virulence. The light produced from live animals allowed to delineate the infected organs and correlated with bacterial loads, thus validating the BLI tool. We then showed that the first step of the infectious process is a bacterial multiplication at the injection site (linea alba), followed by a colonization of the draining inguinal lymph node(s), and subsequently of the ipsilateral axillary lymph node through a direct connection between the two nodes. A mild bacteremia and an effective filtering of the blood stream by the liver and spleen probably accounted for the early bacterial blood clearance and the simultaneous development of bacterial foci within these organs. The saturation of the filtering capacity of the spleen and liver subsequently led to terminal septicemia. Our results also indicate that secondary lymphoid tissues are the main targets of Y. pestis multiplication and that colonization of other organs occurs essentially at the terminal phase of the disease. Finally, our analysis reveals that the high variability in the kinetics of infection is attributable to the time the bacteria remain confined at the injection site. However, once Y. pestis has reached the draining lymph nodes, the disease progresses extremely rapidly, leading to the invasion of the entire body within two days and to death of the animals. This highlights the extraordinary capacity of Y. pestis to annihilate the host innate immune response.
Related JoVE Video
A natural system of chromosome transfer in Yersinia pseudotuberculosis.
PLoS Genet.
Show Abstract
Hide Abstract
The High Pathogenicity Island of Yersinia pseudotuberculosis IP32637 was previously shown to be horizontally transferable as part of a large chromosomal segment. We demonstrate here that at low temperature other chromosomal loci, as well as a non-mobilizable plasmid (pUC4K), are also transferable. This transfer, designated GDT4 (Generalized DNA Transfer at 4°C), required the presence of an IP32637 endogenous plasmid (pGDT4) that carries several mobile genetic elements and a conjugation machinery. We established that cure of this plasmid or inactivation of its sex pilus fully abrogates this process. Analysis of the mobilized pUC4K recovered from transconjugants revealed the insertion of one of the pGDT4-borne ISs, designated ISYps1, at different sites on the transferred plasmid molecules. This IS belongs to the IS6 family, which moves by replicative transposition, and thus could drive the formation of cointegrates between pGDT4 and the host chromosome and could mediate the transfer of chromosomal regions in an Hfr-like manner. In support of this model, we show that a suicide plasmid carrying ISYps1 is able to integrate itself, flanked by ISYps1 copies, at multiple locations into the Escherichia coli chromosome. Furthermore, we demonstrate the formation of RecA-independent cointegrates between the ISYps1-harboring plasmid and an ISYps1-free replicon, leading to the passive transfer of the non-conjugative plasmid. We thus demonstrate here a natural mechanism of horizontal gene exchange, which is less constrained and more powerful than the classical Hfr mechanism, as it only requires the presence of an IS6-type element on a conjugative replicon to drive the horizontal transfer of any large block of plasmid or chromosomal DNA. This natural mechanism of chromosome transfer, which occurs under conditions mimicking those found in the environment, may thus play a significant role in bacterial evolution, pathogenesis, and adaptation to new ecological niches.
Related JoVE Video
An encapsulated Yersinia pseudotuberculosis is a highly efficient vaccine against pneumonic plague.
PLoS Negl Trop Dis
Show Abstract
Hide Abstract
Plague is still a public health problem in the world and is re-emerging, but no efficient vaccine is available. We previously reported that oral inoculation of a live attenuated Yersinia pseudotuberculosis, the recent ancestor of Yersinia pestis, provided protection against bubonic plague. However, the strain poorly protected against pneumonic plague, the most deadly and contagious form of the disease, and was not genetically defined.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.