JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A.
Brain
PUBLISHED: 09-06-2013
Show Abstract
Hide Abstract
Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10(-9), odds ratio (A) = 1.42, 95% confidence interval: 1.26-1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizures.
Related JoVE Video
Autosomal recessive cortical myoclonic tremor and epilepsy: association with a mutation in the potassium channel associated gene CNTN2.
Brain
PUBLISHED: 03-21-2013
Show Abstract
Hide Abstract
We characterize a consanguineous Egyptian family with an autosomal recessively inherited familial cortical myoclonic tremor and epilepsy. We used multipoint linkage analysis to map the causative mutation to a 12.7 megabase interval within 1q31.3-q32.2 with a log of odds score of 3.6. For further investigation of the linked region in an efficient and unbiased manner, we performed exome sequencing. Within the suspected region we identified a homozygous single base pair deletion (c.503_503delG) leading to a frameshift in the coding region of the sixth exon of CNTN2 alias TAG-1 (p.Trp168fs), which segregated in the respective family. Many studies point towards an important role of the CNTN2 product contactin 2 in neuronal excitability. Contactin 2, a glycosylphosphatidylinositol-anchored neuronal membrane protein, and another transmembrane protein called contactin associated protein-like 2 (CNTNAP2 alias CASPR2) are together necessary to maintain voltage-gated potassium channels at the juxtaparanodal region. CNTN2 knockout mice were previously reported to suffer from spontaneous seizures and mutations in the CNTNAP2 gene have been described to cause epilepsy in humans. To further delineate the role of CNTN2 in patients with epilepsy, we sequenced the coding exons in 189 Caucasian patients with epilepsy. No recessive mutation was detected and heterozygote carriers of rare CNTN2 variants do not seem to be predisposed to epilepsy. Given the severity of the mutation and the proposed function of the gene, we consider this mutation as the most likely cause for cortical myoclonic tremor and epilepsy in this family.
Related JoVE Video
Central serotonin 1A receptor binding in temporal lobe epilepsy: a [carbonyl-(11)C]WAY-100635 PET study.
Epilepsy Behav
PUBLISHED: 05-28-2010
Show Abstract
Hide Abstract
We performed positron emission tomography using [carbonyl-(11)C]WAY-100635, a serotonin 1A (5-HT(1A)) receptor antagonist, in 13 patients with temporal lobe epilepsy (TLE) and in 13 controls. 5-HT(1A) receptor distribution mapping allowed correct lateralization of the epileptogenic temporal lobe in all patients. 5-HT(1A) receptor binding potential (BP(ND)) was significantly reduced in almost all temporal regions of the epileptogenic lobe. Compared with controls, the patients had significantly decreased BP(ND) values in the hippocampus, parahippocampal gyrus, and amygdala. The asymmetry index (AI), which characterizes the interhemispheric asymmetry in BP(ND), was significantly higher in patients than in controls in most regions. Depression scores were not significantly correlated with BP(ND) or AI values. Our data provide further evidence of functional changes in the serotonergic system in TLE. Molecular imaging of the 5-HT(1A) receptor may help to define the in vivo neurochemistry of TLE, and may provide a valuable tool in the noninvasive presurgical assessment of patients with medically refractory TLE.
Related JoVE Video
[Dementia and pain].
Neuropsychiatr
PUBLISHED: 02-12-2010
Show Abstract
Hide Abstract
Dementia has been associated with disturbed pain processing and an impaired ability to provide self-reported ratings on pain. Patients with cognitive impairment have been shown to receive pain treatment less frequently than cognitively unimpaired individuals. Comorbidity is common in patients with dementia and a major factor contributing to pain. This demonstrates that a structured evaluation and categorisation of pain is mandatory for the treatment of older patients and that care should be taken to note indirect signs of pain. The appropriate scales are available and we propagate their application. Multimodal pain therapy is superior to one-dimensional approaches. A discussion of the effects and interactions of the analgesics presently available for geriatric care forms an integral part of this review.
Related JoVE Video
A novel mutation in the VCP gene (G157R) in a German family with inclusion-body myopathy with Paget disease of bone and frontotemporal dementia.
Muscle Nerve
PUBLISHED: 02-12-2009
Show Abstract
Hide Abstract
Mutations in the valosin-containing protein (VCP) are known to cause autosomal-dominant inclusion-body myopathy with Pagets disease of bone and frontotemporal dementia (IBMPFD). We report a novel missense mutation (G157R) in the N-terminal region of the VCP gene in a German family. Family members presented with mild to moderate proximal muscle weakness, Paget disease of bone, and signs of early cognitive decline, with onset in the fourth decade. Two family members also showed signs of early hearing impairment, which was confirmed to be sensorineural in one person, a symptom not yet described in the context of IBMPFD.
Related JoVE Video
Lack of association between ABCC2 gene variants and treatment response in epilepsy.
Pharmacogenomics
Show Abstract
Hide Abstract
The aim of this study was to replicate a previously reported association between drug resistance in epilepsy patients and the 24C>T variant of the ABCC2 gene that codes for the drug efflux transporter MRP2.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.