JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
A small molecule that binds and inhibits the ETV1 transcription factor oncoprotein.
Mol. Cancer Ther.
PUBLISHED: 04-15-2014
Show Abstract
Hide Abstract
Members of the ETS transcription factor family have been implicated in several cancers, where they are often dysregulated by genomic derangement. ETS variant 1 (ETV1) is an ETS factor gene that undergoes chromosomal translocation in prostate cancers and Ewing sarcomas, amplification in melanomas, and lineage dysregulation in gastrointestinal stromal tumors. Pharmacologic perturbation of ETV1 would be appealing in these cancers; however, oncogenic transcription factors are often deemed "undruggable" by conventional methods. Here, we used small-molecule microarray screens to identify and characterize drug-like compounds that modulate the biologic function of ETV1. We identified the 1,3,5-triazine small molecule BRD32048 as a top candidate ETV1 perturbagen. BRD32048 binds ETV1 directly, modulating both ETV1-mediated transcriptional activity and invasion of ETV1-driven cancer cells. Moreover, BRD32048 inhibits p300-dependent acetylation of ETV1, thereby promoting its degradation. These results point to a new avenue for pharmacologic ETV1 inhibition and may inform a general means to discover small molecule perturbagens of transcription factor oncoproteins.
Related JoVE Video
Amyloid-? forms fibrils by nucleated conformational conversion of oligomers.
Nat. Chem. Biol.
PUBLISHED: 05-05-2011
Show Abstract
Hide Abstract
Amyloid-? amyloidogenesis is reported to occur via a nucleated polymerization mechanism. If this is true, the energetically unfavorable oligomeric nucleus should be very hard to detect. However, many laboratories have detected early nonfibrillar amyloid-? oligomers without observing amyloid fibrils, suggesting that a mechanistic revision may be needed. Here we introduce Cys-Cys-amyloid-?(1-40), which cannot bind to the latent fluorophore FlAsH as a monomer, but can bind FlAsH as an nonfibrillar oligomer or as a fibril, rendering the conjugates fluorescent. Through FlAsH monitoring of Cys-Cys-amyloid-?(1-40) aggregation, we found that amyloid-?(1-40) rapidly and efficiently forms spherical oligomers in vitro (85% yield) that are kinetically competent to slowly convert to amyloid fibrils by a nucleated conformational conversion mechanism. This methodology was used to show that plasmalogen ethanolamine vesicles eliminate the proteotoxicity-associated oligomerization phase of amyloid-? amyloidogenesis while allowing fibril formation, rationalizing how low concentrations of plasmalogen ethanolamine in the brain are epidemiologically linked to Alzheimers disease.
Related JoVE Video
Protein native-state stabilization by placing aromatic side chains in N-glycosylated reverse turns.
Science
PUBLISHED: 02-05-2011
Show Abstract
Hide Abstract
N-glycosylation of eukaryotic proteins helps them fold and traverse the cellular secretory pathway and can increase their stability, although the molecular basis for stabilization is poorly understood. Glycosylation of proteins at naïve sites (ones that normally are not glycosylated) could be useful for therapeutic and research applications but currently results in unpredictable changes to protein stability. We show that placing a phenylalanine residue two or three positions before a glycosylated asparagine in distinct reverse turns facilitates stabilizing interactions between the aromatic side chain and the first N-acetylglucosamine of the glycan. Glycosylating this portable structural module, an enhanced aromatic sequon, in three different proteins stabilizes their native states by -0.7 to -2.0 kilocalories per mole and increases cellular glycosylation efficiency.
Related JoVE Video
The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-09-2009
Show Abstract
Hide Abstract
The folding energetics of the mono-N-glycosylated adhesion domain of the human immune cell receptor cluster of differentiation 2 (hCD2ad) were studied systematically to understand the influence of the N-glycan on the folding energy landscape. Fully elaborated N-glycan structures accelerate folding by 4-fold and stabilize the beta-sandwich structure by 3.1 kcal/mol, relative to the nonglycosylated protein. The N-glycans first saccharide unit accounts for the entire acceleration of folding and for 2/3 of the native state stabilization. The remaining third of the stabilization is derived from the next 2 saccharide units. Thus, the conserved N-linked triose core, ManGlcNAc(2), improves both the kinetics and the thermodynamics of protein folding. The native state stabilization and decreased activation barrier for folding conferred by N-glycosylation provide a powerful and potentially general mechanism for enhancing folding in the secretory pathway.
Related JoVE Video
N-glycosylation of enhanced aromatic sequons to increase glycoprotein stability.
Biopolymers
Show Abstract
Hide Abstract
N-glycosylation can increase the rate of protein folding, enhance thermodynamic stability, and slow protein unfolding; however, the molecular basis for these effects is incompletely understood. Without clear engineering guidelines, attempts to use N-glycosylation as an approach for stabilizing proteins have resulted in unpredictable energetic consequences. Here, we review the recent development of three "enhanced aromatic sequons," which appear to facilitate stabilizing native-state interactions between Phe, Asn-GlcNAc and Thr when placed in an appropriate reverse turn context. It has proven to be straightforward to engineer a stabilizing enhanced aromatic sequon into glycosylation-naïve proteins that have not evolved to optimize specific protein-carbohydrate interactions. Incorporating these enhanced aromatic sequons into appropriate reverse turn types within proteins should enhance the well-known pharmacokinetic benefits of N-glycosylation-based stabilization by lowering the population of protease-susceptible unfolded and aggregation-prone misfolded states, thereby making such proteins more useful in research and pharmaceutical applications.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.