JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
In vitro development of engineered muscle using a scaffold based on the pressure-activated microsyringe (PAM) technique.
J Tissue Eng Regen Med
PUBLISHED: 02-20-2014
Show Abstract
Hide Abstract
The development of new human skeletal muscle tissue is an alternative approach to the replacement of tissue after severe damage, for example in the case of traumatic injury, where surgical reconstruction is often needed following major loss of natural tissue. Treatment to date has involved the transfer of muscle tissue from other sites, resulting in a functional loss and volume deficiency of donor sites. Approaches that seek to eliminate these problems include the relatively new solution of skeletal muscle engineering. Here there are two main components to consider: (a) the cells with their regenerative potential; and (b) the polymeric structure onto which cells are seeded and where they must perform their activities. In this paper we describe well-defined two- and three-dimensional polymeric structures able to drive the myoblast process of adhesion, proliferation and differentiation. We examine a series of polymers and protein adhesions with which to functionalize the structures, and cell-seeding methods, with a view to defining the optimal protocol for engineering skeletal muscle tissue. All polymer samples were tested for their mechanical and biological properties, to support the validity of our results in the real context of muscle tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd.
Related JoVE Video
Cyclin D1 induction of Dicer governs microRNA processing and expression in breast cancer.
Nat Commun
PUBLISHED: 06-14-2013
Show Abstract
Hide Abstract
Cyclin D1 encodes the regulatory subunit of a holoenzyme that phosphorylates the pRB protein and promotes G1/S cell-cycle progression and oncogenesis. Dicer is a central regulator of miRNA maturation, encoding an enzyme that cleaves double-stranded RNA or stem-loop-stem RNA into 20-25 nucleotide long small RNA, governing sequence-specific gene silencing and heterochromatin methylation. The mechanism by which the cell cycle directly controls the non-coding genome is poorly understood. Here we show that cyclin D1(-/-) cells are defective in pre-miRNA processing which is restored by cyclin D1a rescue. Cyclin D1 induces Dicer expression in vitro and in vivo. Dicer is transcriptionally targeted by cyclin D1, via a cdk-independent mechanism. Cyclin D1 and Dicer expression significantly correlates in luminal A and basal-like subtypes of human breast cancer. Cyclin D1 and Dicer maintain heterochromatic histone modification (Tri-m-H3K9). Cyclin D1-mediated cellular proliferation and migration is Dicer-dependent. We conclude that cyclin D1 induction of Dicer coordinates microRNA biogenesis.
Related JoVE Video
The nuclear receptor Rev-erb? controls circadian thermogenic plasticity.
Nature
PUBLISHED: 03-15-2013
Show Abstract
Hide Abstract
Circadian oscillation of body temperature is a basic, evolutionarily conserved feature of mammalian biology. In addition, homeostatic pathways allow organisms to protect their core temperatures in response to cold exposure. However, the mechanism responsible for coordinating daily body temperature rhythm and adaptability to environmental challenges is unknown. Here we show that the nuclear receptor Rev-erb? (also known as Nr1d1), a powerful transcriptional repressor, links circadian and thermogenic networks through the regulation of brown adipose tissue (BAT) function. Mice exposed to cold fare considerably better at 05:00 (Zeitgeber time?22) when Rev-erb? is barely expressed than at 17:00 (Zeitgeber time?10) when Rev-erb? is abundant. Deletion of Rev-erb? markedly improves cold tolerance at 17:00, indicating that overcoming Rev-erb?-dependent repression is a fundamental feature of the thermogenic response to cold. Physiological induction of uncoupling protein 1 (Ucp1) by cold temperatures is preceded by rapid downregulation of Rev-erb? in BAT. Rev-erb? represses Ucp1 in a brown-adipose-cell-autonomous manner and BAT Ucp1 levels are high in Rev-erb?-null mice, even at thermoneutrality. Genetic loss of Rev-erb? also abolishes normal rhythms of body temperature and BAT activity. Thus, Rev-erb? acts as a thermogenic focal point required for establishing and maintaining body temperature rhythm in a manner that is adaptable to environmental demands.
Related JoVE Video
Examining the role of cyclin D1 in breast cancer.
Future Oncol
PUBLISHED: 06-17-2011
Show Abstract
Hide Abstract
Cyclin D1 overexpression is found in more than 50% of human breast cancers and causes mammary cancer in transgenic mice. Dysregulation of cyclin D1 gene expression or function contributes to the loss of normal cell cycle control during tumorigenesis. Recent studies have demonstrated that cyclin D1 conducts additional specific functions to regulate gene expression in the context of local chromatin, promote cellular migration and inhibit mitochondrial metabolism. It is anticipated that these additional functions contribute to the pathology associated with dysregulated cyclin D1 abundance. This article discusses evidence that examines the significance of cyclin D1 in breast cancer with emphasis on its role in breast cancer stem cell expansion.
Related JoVE Video
Overexpression of microRNA-206 in the skeletal muscle from myotonic dystrophy type 1 patients.
J Transl Med
PUBLISHED: 05-20-2010
Show Abstract
Hide Abstract
MicroRNAs are highly conserved, noncoding RNAs involved in post-transcriptional gene silencing. They have been shown to participate in a wide range of biological processes, including myogenesis and muscle regeneration. The goal of this study is to test the hypothesis that myo-miRs (myo = muscle + miR = miRNA) expression is altered in muscle from patients affected by myotonic dystrophy type 1 (DM1), the most frequently inherited neuromuscular disease in adults. In order to gain better insights about the role of miRNAs in the DM1 pathogenesis, we have also analyzed the muscular expression of miR-103 and miR-107, which have been identified in silico as attractive candidates for binding to the DMPK mRNA.
Related JoVE Video
Inhibition of mitochondrial fission favours mutant over wild-type mitochondrial DNA.
Hum. Mol. Genet.
PUBLISHED: 06-27-2009
Show Abstract
Hide Abstract
Biased segregation of mitochondrial DNA variants has been widely documented, but little was known about its molecular basis. We set out to test the hypothesis that altering the balance between mitochondrial fusion and fission could influence the segregation of mutant and wild-type mtDNA variants, because it would modify the number of organelles per cell. Therefore human cells heteroplasmic for the pathological A3243G mitochondrial DNA mutation were transfected with constructs designed to silence Drp1 or hFis1, whose gene products are required for mitochondrial fission. Drp1 and hFis1 gene silencing were both associated with increased levels of mutant mitochondrial DNA. Thus, the extent of the mitochondrial reticular network appears to be an important factor in determining mutant load. The fact that the level of mutant and wild-type mitochondrial DNA can be manipulated by altering the expression of nuclear encoded factors involved in mitochondrial fission suggests new interventions for mitochondrial DNA disorders.
Related JoVE Video
Development and characterization of polyspecific anti-mitochondrion antibodies for proteomics studies on in toto tissue homogenates.
Electrophoresis
PUBLISHED: 04-22-2009
Show Abstract
Hide Abstract
We describe the characterization of polyclonal antibodies directed against the whole mitochondrial subproteome, as obtained by hyperimmunization of rabbits with an organelle fraction purified from human skeletal muscle and lysed by sonication. After 2-DE separations with either blue native electrophoresis or IPG as first dimension and blotting, the polyspecific antibodies detect 113 proteins in human muscle mitochondria, representative of all major biochemical pathways and oxidative phosphorylation (OXPHOS) complexes, and cross-react with 28 proteins in rat heart mitochondria. Using as sample cryosections of human muscle biopsies lysed in urea/thiourea/CHAPS, the mitochondrial subproteome can be detected against the background of contractile proteins. When comparing with controls samples from mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes patients, immunoblotting shows in the latter a drastic reduction for the subunits of OXPHOS complex I as well as an increase of several enzymes, including ATP synthase. This finding is the first evidence at the proteomic level of massive up-regulation in a number of metabolic pathways by which the affected tissues try to compensate for the deficit in the OXPHOS machinery.
Related JoVE Video
Autophagy is required to maintain muscle mass.
Cell Metab.
PUBLISHED: 03-29-2009
Show Abstract
Hide Abstract
The ubiquitin-proteasome and autophagy-lysosome pathways are the two major routes for protein and organelle clearance. In skeletal muscle, both systems are under FoxO regulation and their excessive activation induces severe muscle loss. Although altered autophagy has been observed in various myopathies, the specific role of autophagy in skeletal muscle has not been determined by loss-of-function approaches. Here, we report that muscle-specific deletion of a crucial autophagy gene, Atg7, resulted in profound muscle atrophy and age-dependent decrease in force. Atg7 null muscles showed accumulation of abnormal mitochondria, sarcoplasmic reticulum distension, disorganization of sarcomere, and formation of aberrant concentric membranous structures. Autophagy inhibition exacerbated muscle loss during denervation and fasting. Thus, autophagy flux is important to preserve muscle mass and to maintain myofiber integrity. Our results suggest that inhibition/alteration of autophagy can contribute to myofiber degeneration and weakness in muscle disorders characterized by accumulation of abnormal mitochondria and inclusions.
Related JoVE Video
Cyclins and cell cycle control in cancer and disease.
Genes Cancer
Show Abstract
Hide Abstract
Cyclin D1 overexpression is found in more than 50% of human breast cancers and causes mammary cancer in transgenic mice. Dysregulation of cyclin D1 gene expression or function contributes to the loss of normal cell cycle control during tumorigenesis. Recent studies have demonstrated that cyclin D1 conducts additional specific functions to regulate gene expression in the context of local chromatin, promote cellular migration, and promote chromosomal instability. It is anticipated that these additional functions contribute to the pathology associated with dysregulated cyclin D1 abundance. This article discusses evidence that examines the functional roles that cyclin D1 may play in cancer with an emphasis on other cyclin family members that also may contribute to cancer and disease in a similar fashion.
Related JoVE Video
ChIP sequencing of cyclin D1 reveals a transcriptional role in chromosomal instability in mice.
J. Clin. Invest.
Show Abstract
Hide Abstract
Chromosomal instability (CIN) in tumors is characterized by chromosomal abnormalities and an altered gene expression signature; however, the mechanism of CIN is poorly understood. CCND1 (which encodes cyclin D1) is overexpressed in human malignancies and has been shown to play a direct role in transcriptional regulation. Here, we used genome-wide ChIP sequencing and found that the DNA-bound form of cyclin D1 occupied the regulatory region of genes governing chromosomal integrity and mitochondrial biogenesis. Adding cyclin D1 back to Ccnd1(-/-) mouse embryonic fibroblasts resulted in CIN gene regulatory region occupancy by the DNA-bound form of cyclin D1 and induction of CIN gene expression. Furthermore, increased chromosomal aberrations, aneuploidy, and centrosome abnormalities were observed in the cyclin D1-rescued cells by spectral karyotyping and immunofluorescence. To assess cyclin D1 effects in vivo, we generated transgenic mice with acute and continuous mammary gland-targeted cyclin D1 expression. These transgenic mice presented with increased tumor prevalence and signature CIN gene profiles. Additionally, interrogation of gene expression from 2,254 human breast tumors revealed that cyclin D1 expression correlated with CIN in luminal B breast cancer. These data suggest that cyclin D1 contributes to CIN and tumorigenesis by directly regulating a transcriptional program that governs chromosomal stability.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.