JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Oxidative stress markers in the neocortex of drug-resistant epilepsy patients submitted to epilepsy surgery.
Epilepsy Res.
PUBLISHED: 02-19-2013
Show Abstract
Hide Abstract
While there is solid experimental evidence of brain oxidative stress in animal models of epilepsy, it has not been thoroughly verified in epileptic human brain. Our purpose was to determine and to compare oxidative stress markers in the neocortex of epileptic and non-epileptic humans, with the final objective of confirming oxidative stress phenomena in human epileptic brain.
Related JoVE Video
Eicosanoid levels in the neocortex of drug-resistant epileptic patients submitted to epilepsy surgery.
Epilepsy Res.
PUBLISHED: 07-26-2011
Show Abstract
Hide Abstract
There is an increasing body of evidence implicating eicosanoids (arachidonic acid metabolites) in the experimental generation of epileptic seizures and the development of epilepsy. Our purpose was to measure the synthesis of eicosanoids from the cyclooxygenase and lipoxygenase pathways in human brain neocortex tissue samples obtained from epileptic patients, and to compare them with non-epileptic control subjects. Epileptic neocortex specimens demonstrated a significant increase (P<0.001) in the levels of three eicosanoids derived from the cyclooxygenase pathway: Prostaglandin E(2) (PGE(2)), Thromboxane A(2) (TXA(2)), and Prostacyclin (PGI(2)), compared to controls. In the epileptic samples the level of TXA(2) was twice as much the levels of PGI(2), while in the control samples the levels of PGI(2) were slightly higher than TXA(2). Conversely, there were no detectable levels of eicosanoids derived from the lipoxygenase pathway: Leukotriene B(4) (LTB(4)) and Leukotriene C(4) (LTC(4)). The lack of leukotrienes synthesis illustrates that COX pathway is dominant in neocortex of epileptic patients. Our human data are consistent with the results obtained in experimental animal models of epilepsy. The important increase in PGE(2) and TXA(2) suggests that selective inhibition of prostanoid synthesis or blockage of prostanoid receptors might provide novel antiepileptic strategies in human epilepsy.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.