JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The Discovery of a Highly Selective 5,6,7,8-Tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one SIRT2 Inhibitor that is Neuroprotective in an in vitro Parkinson's Disease Model.
ChemMedChem
PUBLISHED: 10-07-2014
Show Abstract
Hide Abstract
Sirtuins, NAD(+) -dependent histone deacetylases (HDACs), have recently emerged as potential therapeutic targets for the treatment of a variety of diseases. The discovery of potent and isoform-selective inhibitors of this enzyme family should provide chemical tools to help determine the roles of these targets and validate their therapeutic value. Herein, we report the discovery of a novel class of highly selective SIRT2 inhibitors, identified by pharmacophore screening. We report the identification and validation of 3-((2-methoxynaphthalen-1-yl)methyl)-7-((pyridin-3-ylmethyl)amino)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one (ICL-SIRT078), a substrate-competitive SIRT2 inhibitor with a Ki value of 0.62±0.15??M and more than 50-fold selectivity against SIRT1, 3 and?5. Treatment of MCF-7 breast cancer cells with ICL-SIRT078 results in hyperacetylation of ?-tubulin, an established SIRT2 biomarker, at doses comparable with the biochemical IC50 data, while suppressing MCF-7 proliferation at higher concentrations. In concordance with the recent reports that suggest SIRT2 inhibition is a potential strategy for the treatment of Parkinson's disease, we find that compound ICL-SIRT078 has a significant neuroprotective effect in a lactacystin-induced model of Parkinsonian neuronal cell death in the N27 cell line. These results encourage further investigation into the effects of ICL-SIRT078, or an optimised derivative thereof, as a candidate neuroprotective agent in in vivo models of Parkinson's disease.
Related JoVE Video
FOXM1: An emerging master regulator of DNA damage response and genotoxic agent resistance.
Biochim. Biophys. Acta
PUBLISHED: 07-01-2014
Show Abstract
Hide Abstract
FOXM1 is a transcription factor required for a wide spectrum of essential biological functions, including DNA damage repair, cell proliferation, cell cycle progression, cell renewal, cell differentiation and tissue homeostasis. Recent evidence suggests that FOXM1 also has a role in many aspects of the DNA damage response. Accordingly, FOXM1 drives the transcription of genes for DNA damage sensors, mediators, signal transducers and effectors. As a result of these functions, it plays an integral part in maintaining the integrity of the genome and so is key to the propagation of accurate genetic information to the next generation. Preserving the genetic code is a vital means of suppressing cancer and other genetic diseases. Conversely, FOXM1 is also a potent oncogenic factor that is essential for cancer initiation, progression and drug resistance. An enhanced FOXM1 DNA damage repair gene expression network can confer resistance to genotoxic agents. Developing a thorough understanding of the regulation and function of FOXM1 in DNA damage response will improve the diagnosis and treatment of diseases including cancer, neurodegenerative conditions and immunodeficiency disorders. It will also benefit cancer patients with acquired genotoxic agent resistance.
Related JoVE Video
A novel small molecule aurora kinase inhibitor attenuates breast tumor-initiating cells and overcomes drug resistance.
Mol. Cancer Ther.
PUBLISHED: 06-04-2014
Show Abstract
Hide Abstract
Chemoresistance is a major cause of cancer treatment failure. Tumor-initiating cells (TIC) have attracted a considerable amount of attention due to their role in chemoresistance and tumor recurrence. Here, we evaluated the small molecule Aurora kinase inhibitor AKI603 as a novel agent against TICs in breast cancer. AKI603 significantly inhibited Aurora-A (AurA) kinase and induced cell-cycle arrest. In addition, the intragastric administration of AKI603 reduced xenograft tumor growth. Interestingly, we found that breast cancer cells that were resistant to epirubicin expressed a high level of activated AurA and also have a high CD24(Low)/CD44(High) TIC population. The inhibition of AurA kinase by AKI603 abolished the epirubicin-induced enrichment of TICs. Moreover, AKI603 suppressed the capacity of cells to form mammosphere and also suppressed the expression of self-renewal genes (?-catenin, c-Myc, Sox2, and Oct4). Thus, our work suggests the potential clinical use of the small molecule Aurora kinase inhibitor AKI603 to overcome drug resistance induced by conventional chemotherapeutics in breast cancer.
Related JoVE Video
FOXM1: A key oncofoetal transcription factor in health and disease.
Semin. Cancer Biol.
PUBLISHED: 05-30-2014
Show Abstract
Hide Abstract
Forkhead Box M1 (FOXM1) is a bona fide oncofoetal transcription factor, which orchestrates complex temporal and spatial gene expression throughout embryonic and foetal development as well as during adult tissue homeostasis and repair. Controlled FOXM1 expression and activity provides a balanced transcriptional programme to ensure proper growth and maturation during embryogenesis and foetal development as well as to manage appropriate homeostasis and repair of adult tissues. Conversely, deregulated FOXM1 upregulation likely affects cell migration, invasion, angiogenesis, stem cell renewal, DNA damage repair and cellular senescence, which impact tumour initiation, progression, metastasis, angiogenesis and drug resistance. A thorough understanding of the regulation and role of FOXM1 in health and in cancer should contribute to the development of better diagnostics and treatments for cancer as well as congenital disorders and other developmental diseases.
Related JoVE Video
Cellular senescence and aging: the role of B-MYB.
Aging Cell
PUBLISHED: 05-22-2014
Show Abstract
Hide Abstract
Cellular senescence is a stable cell cycle arrest, caused by insults, such as: telomere erosion, oncogene activation, irradiation, DNA damage, oxidative stress, and viral infection. Extrinsic stimuli such as cell culture stress can also trigger this growth arrest. Senescence is thought to have evolved as an example of antagonistic pleiotropy, as it acts as a tumor suppressor mechanism during the reproductive age, but can promote organismal aging by disrupting tissue renewal, repair, and regeneration later in life. The mechanisms underlying the senescence growth arrest are broadly considered to involve p16(INK4A) -pRB and p53-p21(CIP1/WAF1/SDI1) tumor suppressor pathways; but it is not known what makes the senescence arrest stable and what the critical downstream targets are, as they are likely to be key to the establishment and maintenance of the senescent state. MYB-related protein B (B-MYB/MYBL2), a member of the myeloblastosis family of transcription factors, has recently emerged as a potential candidate for regulating entry into senescence. Here, we review the evidence which indicates that loss of B-MYB expression has an important role in causing senescence growth arrest. We discuss how B-MYB acts, as the gatekeeper, to coordinate transit through the cell cycle, in conjunction with the multivulval class B (MuvB) complex and FOXM1 transcription factors. We also evaluate the evidence connecting B-MYB to the mTOR nutrient signaling pathway and suggest that inhibition of this pathway leading to an extension of healthspan may involve activation of B-MYB.
Related JoVE Video
Expression profiling and significance of VEGF-A, VEGFR2, VEGFR3 and related proteins in endometrial carcinoma.
Cytokine
PUBLISHED: 03-26-2014
Show Abstract
Hide Abstract
Angiogenesis plays a key role in the progression of various tumors, including endometrial carcinomas. Several cytokines and their associated receptors are shown to be involved, particularly VEGF-A with VEGFR1, -2 and -3.
Related JoVE Video
IKK? restoration via EZH2 suppression induces nasopharyngeal carcinoma differentiation.
Nat Commun
PUBLISHED: 03-14-2014
Show Abstract
Hide Abstract
Lack of cellular differentiation is a key feature of nasopharyngeal carcinoma (NPC), but it also presents as a unique opportunity for intervention by differentiation therapy. Here using RNA-seq profiling analysis and functional assays, we demonstrate that reduced IKK? expression is responsible for the undifferentiated phenotype of NPC. Conversely, overexpression of IKK? induces differentiation and reduces tumorigenicity of NPC cells without activating NF-?B signalling. Importantly, we describe a mechanism whereby EZH2 directs IKK? transcriptional repression via H3K27 histone methylation on the IKK? promoter. The differentiation agent, retinoic acid, increases IKK? expression by suppressing EZH2-mediated H3K27 histone methylation, resulting in enhanced differentiation of NPC cells. In agreement, an inverse correlation between IKK? (low) and EZH2 (high) expression is associated with a lack of differentiation in NPC patient samples. Collectively, these findings demonstrate a role for IKK? in NPC differentiation and reveal an epigenetic mechanism for IKK? regulation, unveiling a new avenue for differentiation therapy.
Related JoVE Video
Forkhead box proteins: tuning forks for transcriptional harmony.
Nat. Rev. Cancer
PUBLISHED: 06-25-2013
Show Abstract
Hide Abstract
Forkhead box (FOX) proteins are multifaceted transcription factors that are responsible for fine-tuning the spatial and temporal expression of a broad range of genes both during development and in adult tissues. This function is engrained in their ability to integrate a multitude of cellular and environmental signals and to act with remarkable fidelity. Several key members of the FOXA, FOXC, FOXM, FOXO and FOXP subfamilies are strongly implicated in cancer, driving initiation, maintenance, progression and drug resistance. The functional complexities of FOX proteins are coming to light and have established these transcription factors as possible therapeutic targets and putative biomarkers for specific cancers.
Related JoVE Video
Role and regulation of the forkhead transcription factors FOXO3a and FOXM1 in carcinogenesis and drug resistance.
Chin J Cancer
PUBLISHED: 05-27-2013
Show Abstract
Hide Abstract
The FOXO3a and FOXM1 forkhead transcription factors are key players in cancer initiation, progression, and drug resistance. Recent research shows that FOXM1 is a direct transcriptional target of FOXO3a, a vital downstream effector of the PI3K-AKT-FOXO signaling cascade. In addition, FOXM1 and FOXO3a also antagonize each others activity by competitively binding to the same target genes, which are involved in chemotherapeutic drug sensitivity and resistance. Understanding the role and regulation of the FOXO-FOXM1 axis will provide insight into chemotherapeutic drug action and resistance in patients, and help to identify novel therapeutic approaches as well as diagnostic and predictive biomarkers.
Related JoVE Video
SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer.
Carcinogenesis
PUBLISHED: 03-20-2013
Show Abstract
Hide Abstract
In this study, we report the identification of a novel role of SIRT6 in both epirubicin and paclitaxel resistance in breast cancer. We found that SIRT6 protein levels are elevated in paclitaxel- and epirubicin-resistant MCF-7 cells compared with the parental sensitive cells. SIRT6 knockout and depletion sensitized cells to both paclitaxel and epirubicin treatment, whereas SIRT6 ectopic overexpression led to increased resistance to paclitaxel and epirubicin. Moreover, our data suggest that SIRT6 could be mediating epirubicin resistance through enhancing the DNA repair response to epirubicin-induced DNA damage. Clonogenic assays also revealed that mouse embryonic fibroblasts (MEFs) lacking SIRT6 have decreased long-term viability in response to epirubicin. The tumour suppressor FOXO3a increases its levels of acetylation in MEFs depleted of SIRT6, whereas its induction by epirubicin is attenuated in breast cancer cells overexpressing SIRT6. Further cell viability studies demonstrate that deletion of FOXO1/3/4 in MEFs can confer sensitivity to both paclitaxel and epirubicin, suggesting that SIRT6 reduces paclitaxel and epirubicin sensitivity, at least in part, through modulating FOXO acetylation and expression. Consistently, immunohistochemical analysis of 118 breast cancer patient samples revealed that high SIRT6 nuclear staining is significantly associated with poorer overall survival (P = 0.018; Kaplan-Meier analysis). Multivariate Cox analysis demonstrated that nuclear SIRT6 staining remained associated with death after correcting for tumour stage and lymph-node involvement (P = 0.033). Collectively, our data suggest that SIRT6 has a role in paclitaxel and epirubicin sensitivity via targeting FOXO proteins and that SIRT6 could be a useful biomarker and therapeutic target for paclitaxel- and epirubicin-resistant cancer.
Related JoVE Video
Phosphorylation of FOXO3a on Ser-7 by p38 promotes its nuclear localization in response to doxorubicin.
J. Biol. Chem.
PUBLISHED: 11-29-2011
Show Abstract
Hide Abstract
FOXO3a is a forkhead transcription factor that regulates a multitude of important cellular processes, including proliferation, apoptosis, differentiation, and metabolism. Doxorubicin treatment of MCF-7 breast carcinoma cells results in FOXO3a nuclear relocation and the induction of the stress-activated kinase p38 MAPK. Here, we studied the potential regulation of FOXO3a by p38 in response to doxorubicin. Co-immunoprecipitation studies in MCF-7 cells demonstrated a direct interaction between p38 and FOXO3a. We also showed that p38 can bind and phosphorylate a recombinant FOXO3a directly in vitro. HPLC-coupled phosphopeptide mapping and mass spectrometric analyses identified serine 7 as a major site for p38 phosphorylation. Using a phosphorylated Ser-7 FOXO3a antibody, we demonstrated that FOXO3a is phosphorylated on Ser-7 in response to doxorubicin. Immunofluorescence staining studies showed that upon doxorubicin treatment, the wild-type FOXO3a relocalized to the nucleus, whereas the phosphorylation-defective FOXO3a (Ala-7) mutant remained largely in the cytoplasm. Treatment with SB202190 also inhibits the doxorubicin-induced FOXO3a Ser-7 phosphorylation and nuclear accumulation in MCF-7 cells. In addition, doxorubicin caused the nuclear translocation of FOXO3a in wild-type but not p38-depleted mouse fibroblasts. Together, our results suggest that p38 phosphorylation of FOXO3a on Ser-7 is essential for its nuclear relocalization in response to doxorubicin.
Related JoVE Video
iASPP and chemoresistance in ovarian cancers: effects on paclitaxel-mediated mitotic catastrophe.
Clin. Cancer Res.
PUBLISHED: 09-16-2011
Show Abstract
Hide Abstract
iASPP is a specific regulator of p53-mediated apoptosis. Herein, we provided the first report on the expression profile of iASPP in ovarian epithelial tumor and its effect on paclitaxel chemosensitivity.
Related JoVE Video
Mechanisms of endometrial progesterone resistance.
Mol. Cell. Endocrinol.
PUBLISHED: 09-12-2011
Show Abstract
Hide Abstract
Throughout the reproductive years, the rise and fall in ovarian hormones elicit in the endometrium waves of cell proliferation, differentiation, recruitment of inflammatory cells, apoptosis, tissue breakdown and regeneration. The activated progesterone receptor, a member of the superfamily of ligand-dependent transcription factors, is the master regulator of this intense tissue remodelling process in the uterus. Its activity is tightly regulated by interaction with cell-specific transcription factors and coregulators as well as by specific posttranslational modifications that respond dynamically to a variety of environmental and inflammatory signals. Endometriosis, a chronic inflammatory disorder, disrupts coordinated progesterone responses throughout the reproductive tract, including in the endometrium. This phenomenon is increasingly referred to as progesterone resistance. Emerging evidence suggests that progesterone resistance in endometriosis is not just a consequence of perturbed progesterone signal transduction caused by chronic inflammation but associated with epigenetic chromatin changes that determine the intrinsic responsiveness of endometrial cells to differentiation cues.
Related JoVE Video
FOXM1: From cancer initiation to progression and treatment.
Biochim. Biophys. Acta
PUBLISHED: 08-08-2011
Show Abstract
Hide Abstract
The Forkhead box protein M1 (FOXM1) transcription factor is a regulator of myriad biological processes, including cell proliferation, cell cycle progression, cell differentiation, DNA damage repair, tissue homeostasis, angiogenesis and apoptosis. Elevated FOXM1 expression is found in cancers of the liver, prostate, brain, breast, lung, colon, pancreas, skin, cervix, ovary, mouth, blood and nervous system, suggesting it has an integral role in tumorigenesis. Recent research findings also place FOXM1 at the centre of cancer progression and drug sensitivity. In this review the involvement of FOXM1 in various aspects of cancer, in particular its role and regulation within the context of cancer initiation, progression, and cancer drug response, will be summarised and discussed.
Related JoVE Video
ATM and p53 regulate FOXM1 expression via E2F in breast cancer epirubicin treatment and resistance.
Mol. Cancer Ther.
PUBLISHED: 04-25-2011
Show Abstract
Hide Abstract
In this report, we investigated the role and regulation of forkhead box M1 (FOXM1) in breast cancer and epirubicin resistance. We generated epirubicin-resistant MCF-7 breast carcinoma (MCF-7-EPI(R)) cells and found FOXM1 protein levels to be higher in MCF-7-EPI(R) than in MCF-7 cells and that FOXM1 expression is downregulated by epirubicin in MCF-7 but not in MCF-7-EPI(R) cells. We also established that there is a loss of p53 function in MCF-7-EPI(R) cells and that epirubicin represses FOXM1 expression at transcription and gene promoter levels through activation of p53 and repression of E2F activity in MCF-7 cells. Using p53(-/-) mouse embryo fibroblasts, we showed that p53 is important for epirubicin sensitivity. Moreover, transient promoter transfection assays showed that epirubicin and its cellular effectors p53 and E2F1 modulate FOXM1 transcription through an E2F-binding site located within the proximal promoter region. Chromatin immunoprecipitation analysis also revealed that epirubicin treatment increases pRB (retinoblastoma protein) and decreases E2F1 recruitment to the FOXM1 promoter region containing the E2F site. We also found ataxia-telangiectasia mutated (ATM) protein and mRNA to be overexpressed in the resistant MCF-7-EPI(R) cells compared with MCF-7 cells and that epirubicin could activate ATM to promote E2F activity and FOXM1 expression. Furthermore, inhibition of ATM in U2OS cells with caffeine or depletion of ATM in MCF-7-EPI(R) with short interfering RNAs can resensitize these resistant cells to epirubicin, resulting in downregulation of E2F1 and FOXM1 expression and cell death. In summary, our data show that ATM and p53 coordinately regulate FOXM1 via E2F to modulate epirubicin response and resistance in breast cancer.
Related JoVE Video
ER?1 represses FOXM1 expression through targeting ER? to control cell proliferation in breast cancer.
Am. J. Pathol.
PUBLISHED: 04-12-2011
Show Abstract
Hide Abstract
In this study, we investigated the effects of ectopic estrogen receptor (ER)?1 expression in breast cancer cell lines and nude mice xenografts and observed that ER?1 expression suppresses tumor growth and represses FOXM1 mRNA and protein expression in ER?-positive but not ER?-negative breast cancer cells. Furthermore, a significant inverse correlation exists between ER?1 and FOXM1 expression at both protein and mRNA transcript levels in ER?-positive breast cancer patient samples. Ectopic ER?1 expression resulted in decreased FOXM1 protein and mRNA expression only in ER?-positive but not ER?-negative breast carcinoma cell lines, suggesting that ER?1 represses ER?-dependent FOXM1 transcription. Reporter gene assays showed that ER?1 represses FOXM1 transcription through an estrogen-response element located within the proximal promoter region that is also targeted by ER?. The direct binding of ER?1 to the FOXM1 promoter was confirmed by chromatin immunoprecipitation analysis, which also showed that ectopic expression of ER?1 displaces ER? from the endogenous FOXM1 promoter. Forced expression of ER?1 promoted growth suppression in MCF-7 cells, but the anti-proliferative effects of ER?1 could be overridden by overexpression of FOXM1, indicating that FOXM1 is an important downstream target of ER?1 signaling. Together, these findings define a key anti-proliferative role for ER?1 in breast cancer development through negatively regulating FOXM1 expression.
Related JoVE Video
FOXO transcription factors and their role in disorders of the female reproductive tract.
Curr Drug Targets
PUBLISHED: 03-30-2011
Show Abstract
Hide Abstract
All fundamental reproductive events in the human ovary and uterus, including ovulation, implantation and menstruation, are dependent upon profound tissue remodelling, characterized by cyclical waves of cell proliferation, differentiation, recruitment of inflammatory cells, apoptosis, tissue breakdown and regeneration. Although the rise and fall in ovarian hormones, estradiol and progesterone, orchestrate these reproductive events, FOXO transcription factors, an evolutionary conserved subfamily of forkhead transcription factors, have emerged major downstream effector molecules, capable of integrating hormonal cues with a variety of stress, growth factor and cytokine signal transduction pathways. The ability of FOXOs to regulate seemingly opposing cellular responses, ranging from cell cycle arrest and oxidative stress responses to differentiation and apoptosis, renders these transcription factors indispensable for cyclic tissue remodelling in the reproductive tract. Aberrant expression or perturbed activity of FOXO transcription factors are increasingly linked to prevalent reproductive disorders, such as endometriosis, endometrial cancer, primary ovarian insufficiency and pregnancy failure, which in turn highlights their potential as therapeutic targets.
Related JoVE Video
FOXO and FOXM1 in cancer: the FOXO-FOXM1 axis shapes the outcome of cancer chemotherapy.
Curr Drug Targets
PUBLISHED: 03-30-2011
Show Abstract
Hide Abstract
FOXO transcription factors, functioning downstream of the PI3K-PTEN-AKT (PKB) signalling cascade, are essential for cell proliferation, differentiation, DNA damage repair, and apoptosis. Recent research indicates that the related transcription factor FOXM1 is a direct target of repression by FOXO proteins. Inactivation of FOXO or overexpression of FOXM1 is associated with tumorigenesis and cancer progression. In addition, the cytostatic and cytotoxic effects of a diverse spectrum of anti-cancer drugs, such as paclitaxel, doxorubicin, lapatinib, gefitinib, imatinib, and cisplatin, are mediated through the activation of FOXO3a and/or the inhibition of its target FOXM1. Paradoxically, FOXO proteins also contribute to drug resistance by driving the expression of genes important for drug efflux as well as DNA repair and cell survival pathways in drug resistant cancers. Given its pivotal roles of in drug sensitivity as well as resistance, targeting the FOXO-FOXM1 axis could be a viable strategy for treatment of cancer and for overcoming drug resistance. Studying the expression profiles of the components of the FOXO-FOXM1 axis, and their cofactors, in cancer patients might also help to predict and monitor their clinical response to chemotherapy. A better understanding of the mechanism by which FOXO and FOXM1 are regulated, as well as their roles in drug sensitivity and resistance, may render these proteins crucial prognostic markers and therapeutic targets for breast cancer and other malignancies.
Related JoVE Video
The diversity of sex steroid action: the role of micro-RNAs and FOXO transcription factors in cycling endometrium and cancer.
J. Endocrinol.
PUBLISHED: 03-07-2011
Show Abstract
Hide Abstract
The rise and fall in ovarian oestrogen and progesterone production orchestrates a series of events that are indispensable for reproduction, including ovulation, implantation, decidualisation and menstruation. In the uterus, these events involve extensive tissue remodelling, characterised by waves of endometrial cell proliferation, differentiation, recruitment of inflammatory cells, apoptosis, tissue breakdown, menstruation and regeneration. The ability of ovarian hormones to trigger such diverse physiological responses is foremost dependent upon interaction of activated steroid receptors with specific transcription factors, such as Forkhead box class O (FOXO) proteins, involved in cell fate decisions. Furthermore, micro-RNAs (miRNAs), small non-coding RNAs that function as posttranscriptional regulators of gene expression, have emerged as a major regulator system of steroid hormone responses in the female reproductive tract. Consequently, increasing evidence shows that deregulated uterine miRNA expression underpins a spectrum of common reproductive disorders, ranging from implantation failure to endometriosis. Furthermore, by targeting FOXO transcription factors and other key regulators of tissue homeostasis, oncogenic endometrial miRNAs promote tumourigenesis and cancer progression.
Related JoVE Video
FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ.
Chemphyschem
PUBLISHED: 02-17-2011
Show Abstract
Hide Abstract
A fluorescence lifetime imaging (FLIM) technology platform intended to read out changes in Förster resonance energy transfer (FRET) efficiency is presented for the study of protein interactions across the drug-discovery pipeline. FLIM provides a robust, inherently ratiometric imaging modality for drug discovery that could allow the same sensor constructs to be translated from automated cell-based assays through small transparent organisms such as zebrafish to mammals. To this end, an automated FLIM multiwell-plate reader is described for high content analysis of fixed and live cells, tomographic FLIM in zebrafish and FLIM FRET of live cells via confocal endomicroscopy. For cell-based assays, an exemplar application reading out protein aggregation using FLIM FRET is presented, and the potential for multiple simultaneous FLIM (FRET) readouts in microscopy is illustrated.
Related JoVE Video
Rapid temporal control of Foxp3 protein degradation by sirtuin-1.
PLoS ONE
PUBLISHED: 01-25-2011
Show Abstract
Hide Abstract
Maintenance of Foxp3 protein expression in regulatory T cells (Treg) is crucial for a balanced immune response. We have previously demonstrated that Foxp3 protein stability can be regulated through acetylation, however the specific mechanisms underlying this observation remain unclear. Here we demonstrate that SIRT1 a member of the lysine deacetylase Sirtuin (SIRT) family, but not the related SIRTs 2-7, co-localize with Foxp3 in the nucleus. Ectopic expression of SIRT1, but not SIRTs 2-7 results in decreased Foxp3 acetylation, while conversely inhibition of endogenous SIRT activity increased Foxp3 acetylation. We show that SIRT1 inhibition decreases Foxp3 poly-ubiquitination, thereby increasing Foxp3 protein levels. Co-transfection of SIRT1 with Foxp3 results in increased Foxp3 proteasomal degradation, while SIRT inhibition increases FOXP3 transcriptional activity in human Treg. Taken together, these data support a central role for SIRT1 in the regulation of Foxp3 protein levels and thereby in regulation of Treg suppressive capacity. Pharmacological modulation of SIRT1 activity in Treg may therefore provide a novel therapeutic strategy for controlling immune responses.
Related JoVE Video
NADPH oxidase-derived reactive oxygen species mediate decidualization of human endometrial stromal cells in response to cyclic AMP signaling.
Endocrinology
PUBLISHED: 12-15-2010
Show Abstract
Hide Abstract
Differentiation of human endometrial stromal cells into specialized decidual cells is critical for embryo implantation and survival of the conceptus. Initiation of this differentiation process is strictly dependent on elevated cAMP levels, but the signal intermediates that control the expression of decidual marker genes, such as prolactin (PRL) and IGFBP1, remain poorly characterized. Here we show that cAMP-dependent decidualization can be attenuated or enhanced upon treatment of primary cultures with a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor (diphenylen iodonium) or activator (apocynin), respectively. Time-course analysis demonstrated that cAMP enhances endogenous reactive oxygen species production, apparent after 12 h of stimulation, which coincides with a dramatic increase in decidual PRL and IGFBP1 expression. Knockdown of the Rho GTPase RAC1, which disables activation of the NADPH oxidase homologs NADPH oxidase (NOX)-1, NOX-2, and NOX-3, had no effect on PRL or IGFBP1 expression. In contrast, silencing of NOX-4, or its cofactor p22(PHOX), inhibited the expression of both decidual markers. Finally, we show that the NOX-4/p22(PHOX) complex regulates the DNA-binding activity of CCAAT/enhancer binding protein-?, a key regulator of human endometrial stromal cell differentiation. Thus, NOX-4 activation and reactive oxygen species signaling play an integral role in initiating the endometrial decidual response in preparation of pregnancy.
Related JoVE Video
Interplay between SIRT proteins and tumour suppressor transcription factors in chemotherapeutic resistance of cancer.
Drug Resist. Updat.
PUBLISHED: 11-25-2010
Show Abstract
Hide Abstract
Sirtuins, commonly referred to as SIRTs, are a family of seven mammalian NAD+-dependent deacetylases implicated in the regulation of critical biological processes, including metabolism, cell division, differentiation, survival, and senescence. These diverse functions reflect the ability of SIRTs to target and modify a broad spectrum of protein substrates, including cytoskeletal proteins, signalling components, transcription factors, and histones. SIRTs are also implicated in tumorigenesis as well as in the response of the tumour to chemotherapy. In particular, SIRT1 has been found to be overexpressed in many drug resistant cancers. Emerging evidence suggests that the role of SIRTs in drug resistance may be foremost related to their ability to target and modulate the activity of tumour suppressors, including p53, p73, E2F1, and FOXO3a. In other words, while SIRT-dependent deacetylation of transcription factors is normally used to fine-tune gene expression, this function is hijacked by cancer cells to evade proliferative arrest and cell death in response to chemotherapy. Consequently, interventions predicated on disrupting the interactions between tumour suppressors and SIRTs may be effective in circumventing or reversing drug resistance in cancer.
Related JoVE Video
Sense and sensitivity: FOXO and ROS in cancer development and treatment.
Antioxid. Redox Signal.
PUBLISHED: 10-20-2010
Show Abstract
Hide Abstract
Forkhead box O (FOXO) transcription factors are at the center of an emerging paradigm that links longevity, cell fate, and tumor development. Key to these processes is the ability of FOXO to regulate, and be regulated by, oxidative stress. Perturbation of the mechanisms that tightly couple reactive oxygen species (ROS) production, oxidative stress signaling, and FOXO activity to the subsequent cellular response is a pivotal step in cancer development and progression. Consequently, the ROS-FOXO pathway is a major therapeutic target in cancer, not only as it mediates the cellular response to chemotherapy, but also because it underpins drug resistance. As the intimate and reciprocal relation between FOXO and ROS is being unravelled, new opportunities arise to develop more-effective cancer treatments that circumvent resistance to the conventional cytotoxic drugs.
Related JoVE Video
Butyrate-rich colonic microenvironment is a relevant selection factor for metabolically adapted tumor cells.
J. Biol. Chem.
PUBLISHED: 10-06-2010
Show Abstract
Hide Abstract
The short chain fatty acid (SCFA) butyrate is a product of colonic fermentation of dietary fibers. It is the main source of energy for normal colonocytes, but cannot be metabolized by most tumor cells. Butyrate also functions as a histone deacetylase (HDAC) inhibitor to control cell proliferation and apoptosis. In consequence, butyrate and its derived drugs are used in cancer therapy. Here we show that aggressive tumor cells that retain the capacity of metabolizing butyrate are positively selected in their microenvironment. In the mouse xenograft model, butyrate-preselected human colon cancer cells gave rise to subcutaneous tumors that grew faster and were more angiogenic than those derived from untreated cells. Similarly, butyrate-preselected cells demonstrated a significant increase in rates of homing to the lung after intravenous injection. Our data showed that butyrate regulates the expression of VEGF and its receptor KDR at the transcriptional level potentially through FoxM1, resulting in the generation of a functional VEGF:KDR autocrine growth loop. Cells selected by chronic exposure to butyrate express higher levels of MMP2, MMP9, ?2 and ?3 integrins, and lower levels of E-cadherin, a marker for epithelial to mesenchymal transition. The orthotopic model of colon cancer showed that cells preselected by butyrate are able to colonize the animals locally and at distant organs, whereas control cells can only generate a local tumor in the cecum. Together our data shows that a butyrate-rich microenvironment may select for tumor cells that are able to metabolize butyrate, which are also phenotypically more aggressive.
Related JoVE Video
The biological effects of C/EBPalpha in K562 cells depend on the potency of the N-terminal regulatory region, not on specificity of the DNA binding domain.
J. Biol. Chem.
PUBLISHED: 07-20-2010
Show Abstract
Hide Abstract
The transcription factor C/EBP? is more potent than C/EBP? in inducing granulocitic differentiation and inhibiting BCR/ABL-expressing cells. We took a "domain swapping" approach to assess biological effects, modulation of gene expression, and binding to C/EBP?-regulated promoters by wild-type and chimeric C/EBP?/C/EBP? proteins. Wild-type and N-C/EBP?+ C/EBP?-DBD induced transcription of the granulocyte-colony stimulating factor receptor (G-CSFR) gene, promoted differentiation, and suppressed proliferation of K562 cells vigorously; instead, wild-type C/EBP? and N-C/EBP?+C/EBP?-DBD had modest effects, although they bound the G-CSFR promoter like wild-type C/EBP? and N-C/EBP?+C/EBP?-DBD. Chimeric proteins consisting of the TAD of VP16 and the DBD of C/EBP? or C/EBP? inhibited proliferation and induced differentiation of K562 cells as effectively as wild-type C/EBP?. Gene expression profiles induced by C/EBP? resembled those modulated by N-C/EBP?+C/EBP?-DBD, whereas C/EBP? induced a pattern similar to that of N-C/EBP?+C/EBP?-DBD. C/EBP? activation induced changes in the expression of more cell cycle- and apoptosis-related genes than the other proteins and enhanced Imatinib-induced apoptosis of K562 cells. Expression of FOXO3a, a novel C/EBP?-regulated gene, was required for apoptosis but not for differentiation induction or proliferation inhibition of K562 cells.
Related JoVE Video
Overexpression of proto-oncogene FBI-1 activates membrane type 1-matrix metalloproteinase in association with adverse outcome in ovarian cancers.
Mol. Cancer
PUBLISHED: 07-02-2010
Show Abstract
Hide Abstract
FBI-1 (factor that binds to the inducer of short transcripts of human immunodeficiency virus-1) is a member of the POK (POZ and Kruppel) family of transcription factors and play important roles in cellular differentiation and oncogenesis. Recent evidence suggests that FBI-1 is expressed at high levels in a subset of human lymphomas and some epithelial solid tumors. However, the function of FBI-1 in human ovarian cancers remains elusive.
Related JoVE Video
Constitutively nuclear FOXO3a localization predicts poor survival and promotes Akt phosphorylation in breast cancer.
PLoS ONE
PUBLISHED: 05-06-2010
Show Abstract
Hide Abstract
The PI3K-Akt signal pathway plays a key role in tumorigenesis and the development of drug-resistance. Cytotoxic chemotherapy resistance is linked to limited therapeutic options and poor prognosis.
Related JoVE Video
SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2.
Mol. Cancer Ther.
PUBLISHED: 04-06-2010
Show Abstract
Hide Abstract
SIRT proteins play an important role in the survival and drug resistance of tumor cells, especially during chemotherapy. In this study, we investigated the potency, specificity, and cellular targets of three SIRT inhibitors, Sirtinol, Salermide, and EX527. Cell proliferative and cell cycle analyses showed that Sirtinol and Salermide, but not EX527, were effective in inducing cell death at concentrations of 50 micromol/L or over in MCF-7 cells. Instead, EX527 caused cell cycle arrest at G(1) at comparable concentrations. In vitro SIRT assays using a p53 peptide substrate showed that all three compounds are potent SIRT1/2 inhibitors, with EX527 having the highest inhibitory activity for SIRT1. Computational docking analysis showed that Sirtinol and Salermide have high degrees of selectivity for SIRT1/2, whereas EX527 has high specificity for SIRT1 but not SIRT2. Consistently, Sirtinol and Salermide, but not EX527, treatment resulted in the in vivo acetylation of the SIRT1/2 target p53 and SIRT2 target tubulin in MCF-7 cells, suggesting that EX527 is ineffective in inhibiting SIRT2 and that p53 mediates the cytotoxic function of Sirtinol and Salermide. Studies using breast carcinoma cell lines and p53-deficient mouse fibroblasts confirmed that p53 is essential for the Sirtinol and Salermide-induced apoptosis. Further, we showed using small interfering RNA that silencing both SIRTs, but not SIRT1 and SIRT2 individually, can induce cell death in MCF-7 cells. Together, our results identify the specificity and cellular targets of these novel inhibitors and suggest that SIRT inhibitors require combined targeting of both SIRT1 and SIRT2 to induce p53 acetylation and cell death. Mol Cancer Ther; 9(4); 844-55. (c)2010 AACR.
Related JoVE Video
Sustained spindle-assembly checkpoint response requires de novo transcription and translation of cyclin B1.
PLoS ONE
PUBLISHED: 03-05-2010
Show Abstract
Hide Abstract
Microtubule-targeting drugs induce mitotic delay at pro-metaphase by preventing the spindle assembly checkpoint to be satisfied. However, especially after prolonged treatments, cells can escape this arrest in a process called mitotic slippage. The mechanisms underlying the spindle assembly checkpoint and slippage are not fully understood. It has been generally accepted that during mitosis there is a temporary shutdown of high-energy-consuming processes, such as transcription and translation. However, the synthesis of specific proteins is maintained or up-regulated since protein synthesis is necessary for entry into and progression through mitosis.
Related JoVE Video
Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis.
Haematologica
PUBLISHED: 02-23-2010
Show Abstract
Hide Abstract
Residual chronic myeloid leukemia disease following imatinib treatment has been attributed to the presence of quiescent leukemic stem cells intrinsically resistant to imatinib. Mesenchymal stromal cells in the bone marrow may favor the persistence and progression of leukemia by preserving the proliferation and self-renewal capacities of the malignant progenitor cells.
Related JoVE Video
FOXM1 confers acquired cisplatin resistance in breast cancer cells.
Mol. Cancer Res.
PUBLISHED: 01-12-2010
Show Abstract
Hide Abstract
The transcription factor Forkhead box M1 (FOXM1) is a key regulator of cell proliferation and is overexpressed in many forms of primary cancers, leading to uncontrolled cell division and genomic instability. To address the role of FOXM1 in chemoresistance, we generated a cisplatin-resistant breast cancer cell line (MCF-7-CIS(R)), which had an elevated level of FOXM1 protein and mRNA expression relative to the parental MCF-7 cells. A close correlation was observed between FOXM1 and the expression of its proposed downstream targets that are involved in DNA repair; breast cancer-associated gene 2 (BRCA2) and X-ray cross-complementing group 1 (XRCC1) were expressed at higher levels in the resistant cell lines compared with the sensitive MCF-7 cells. Moreover, cisplatin treatment induced DNA damage repair in MCF-7-CIS(R) and not in MCF-7 cells. Furthermore, the expression of a constitutively active FOXM1 (DeltaN-FOXM1) in MCF-7 cells alone was sufficient to confer cisplatin resistance. Crucially, the impairment of DNA damage repair pathways through the small interfering RNA knockdown inhibition of either FOXM1 or BRCA2/XRCC1 showed that only the silencing of FOXM1 could significantly reduce the rate of proliferation in response to cisplatin treatment in the resistant cells. This suggests that the targeting of FOXM1 is a viable strategy in circumventing acquired cisplatin resistance. Consistently, the FOXM1 inhibitor thiostrepton also showed efficacy in causing cell death and proliferative arrest in the cisplatin-resistant cells through the downregulation of FOXM1 expression. Taken together, we have identified a novel mechanism of acquired cisplatin resistance in breast cancer cells through the induction of FOXM1.
Related JoVE Video
The human papillomavirus type 16 E5 oncoprotein synergizes with EGF-receptor signaling to enhance cell cycle progression and the down-regulation of p27(Kip1).
Virology
PUBLISHED: 01-07-2010
Show Abstract
Hide Abstract
E5 oncoprotein activity from high risk human papillomaviruses (HPVs) is associated with growth factor receptor signaling, but the function of this protein is not well understood. In this study, we investigated the role of HPV-16 E5 on the cell cycle progression during EGF-stimulation. Wild-type and NIH 3T3 cells over-expressing human EGF-receptor were transfected with HPV-16 E5 gene and the cell cycle progression was characterized. This analysis showed that the E5-expressing cells increased DNA synthesis (S-phase) by around 40%. Cell cycle protein analysis of E5-expressing cells showed a reduction in the half-life of p27(Kip1) protein as compared to control cells (18.4 vs. 12.7 h), an effect that was enhanced in EGF-stimulated cells (12.8 vs. 3.6 h). Blockage of EGF-receptor activity abrogated E5 signals as well as p27(Kip1) down-regulation. These results suggest that E5 and the EGF-receptor cooperate to enhance cell cycle entry and progression through regulating p27(Kip1) expression at protein level.
Related JoVE Video
Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer.
Cancer Res.
PUBLISHED: 12-22-2009
Show Abstract
Hide Abstract
Endometrial cancer is the most common malignancy of the lower female reproductive tract. The tumor suppressor FOXO1 is downregulated in endometrial cancer compared with normal endometrium but the underlying mechanisms are not well understood. Using microRNA (miR) target prediction algorithms, we identified several miRs that potentially bind the 3-untranslated region of FOXO1 transcripts. Expression profiling of normal and malignant endometrial samples by quantitative real-time PCR and Northern blot analysis revealed an inverse correlation between the levels of FOXO1 protein and the abundance of several of the in silico-predicted miRs, suggesting that loss of FOXO1 expression in endometrial cancer may be mediated by miRs. To determine the role of candidate miRs, we used the endometrial cancer cell lines HEC-1B and Ishikawa, which express FOXO1 at high and low levels, respectively. Expression of miR-9, miR-27, miR-96, miR-153, miR-182, miR-183, or miR-186, but not miR-29a, miR-128, miR-152, or miR-486 mimetics in HEC-1B cells was sufficient to significantly reduce the abundance of FOXO1. Conversely, FOXO1 expression was efficiently restored in the Ishikawa cell line upon simultaneous inhibition of miR-9, miR-27, miR-96, miR-153, miR-183, and miR-186. Moreover, induction of FOXO1 in Ishikawa cells by miR inhibitors was accompanied by G1 cell cycle arrest and cell death, and was attenuated by the small interfering RNA-mediated downregulation of FOXO1 expression. Our findings identify several miRs overexpressed in endometrial cancer that function in concert to repress FOXO1 expression. Further, aberrant miR expression results in deregulated cell cycle control and impaired apoptotic responses, and thus, may be central to endometrial tumorigenesis.
Related JoVE Video
Silencing of the JNK pathway maintains progesterone receptor activity in decidualizing human endometrial stromal cells exposed to oxidative stress signals.
FASEB J.
PUBLISHED: 12-21-2009
Show Abstract
Hide Abstract
Survival of the conceptus is dependent on continuous progesterone signaling in the maternal decidua but how this is achieved under conditions of oxidative stress that characterize early pregnancy is unknown. Using primary cultures, we show that modest levels of reactive oxygen species (ROS) increase sumoylation in human endometrial stromal cells (HESCs), leading to enhanced modification and transcriptional inhibition of the progesterone receptor (PR). The ability of ROS to induce a sustained hypersumoylation response, or interfere with PR activity, was lost upon differentiation of HESCs into decidual cells. Hypersumoylation in response to modest levels of ROS requires activation of the JNK pathway. Although ROS-dependent JNK signaling is disabled on decidualization, the cells continue to mount a transcriptional response, albeit distinct from that observed in undifferentiated HESCs. We further show that attenuated JNK signaling in decidual cells is a direct consequence of altered expression of key pathway modulators, including induction of MAP kinase phosphatase 1 (MKP1). Overexpression of MKP1 dampens JNK signaling, prevents hypersumoylation, and maintains PR activity in undifferentiated HESCs exposed to ROS. Thus, JNK silencing uncouples ROS signaling from the SUMO conjugation pathway and maintains progesterone responses and cellular homeostasis in decidual cells under oxidative stress conditions imposed by pregnancy.
Related JoVE Video
The expression of IL-8 and IL-8 receptors in pancreatic adenocarcinomas and pancreatic neuroendocrine tumours.
Cytokine
PUBLISHED: 09-14-2009
Show Abstract
Hide Abstract
Inflammatory mediators influence tumour progression. IL-8 has been shown to have pro-angiogenic, mitogenic and motogenic effects and several studies have demonstrated the expression of IL-8 by various human pancreatic cancer cell lines.
Related JoVE Video
The novel molecule 2-[5-(2-chloroethyl)-2-acetoxy-benzyl]-4-(2-chloroethyl)-phenyl acetate inhibits phosphoinositide 3-kinase/Akt/mammalian target of rapamycin signalling through JNK activation in cancer cells.
FEBS J.
PUBLISHED: 06-22-2009
Show Abstract
Hide Abstract
Screening a compound library of compound 48/80 analogues, we identified 2-[5-(2-chloroethyl)-2-acetoxy-benzyl]-4-(2-chloroethyl)-phenyl acetate (E1) as a novel inhibitor of the phosphoinositide 3-kinase/Akt pathway. In order to determine the mechanism of action of E1, we analysed the effect of E1 on components of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway. E1 demonstrated dose-dependent and time-dependent repression of Akt and mTOR activity in prostate and breast cancer cell lines, PC-3 and MCF-7, respectively. Inhibition of Akt and mTOR activity by E1 also coincided with increased c-Jun NH2-terminal kinase (JNK) phosphorylation. However, the mode of action of E1 is different from that of the mTOR inhibitor rapamycin. Proliferation and cell cycle analysis revealed that E1 induced cell cycle arrest and cell death in PC-3 and MCF-7 cells. Moreover, pretreatment of cancer cells with the JNK inhibitor SP600125 abolished the repression of Akt and mTOR activity by E1, indicating that the inhibition of Akt and mTOR by E1 is mediated through JNK activation. Consistently, E1 repressed Akt and mTOR activity in wild-type and p38-null mouse embryonic fibroblasts (MEFs), but not in MEFs lacking JNK1/2, and JNK-null MEFs were less sensitive to the antiproliferative effects of E1. We further showed that E1 can function cooperatively with suboptimal concentrations of paclitaxel to induce cell death in PC-3 and MCF-7 cells. Taken together, these data suggest that E1 induces cancer cell death through the JNK-dependent repression of Akt and mTOR activity and may provide a valuable compound for further development and research.
Related JoVE Video
FoxM1 is a downstream target and marker of HER2 overexpression in breast cancer.
Int. J. Oncol.
PUBLISHED: 06-11-2009
Show Abstract
Hide Abstract
The tyrosine kinase receptor, HER2 is a crucial prognostic marker and therapeutic target for breast cancer; however, the downstream targets and biological effectors of HER2 remain unclear. We investigated the relationship between HER2 and the transcription factor FoxM1 in breast cancer. HER2 and FoxM1 expression levels were compared in breast carcinoma cell lines, paraffin-embedded breast cancer patient samples and at the mRNA level in purified breast epithelial cells. To further examine the relationship between HER2 and FoxM1 expression, we either overexpressed or siRNA-mediated depleted endogenous HER2 in breast cancer cell lines. Additionally, a mammary epithelium-targeted HER2 (neu) transgenic mouse model was also used to assess the effect of HER2 on FoxM1 levels. Furthermore, the effect of the HER2-tyrosine kinase inhibitor lapatinib on FoxM1 in HER2 positive breast cancer cells was investigated. HER2 protein levels directly correlated with FoxM1 expression in both breast carcinoma cell lines and paraffin-embedded breast cancer patient samples. Moreover, in purified breast epithelial cells, overexpression of HER2 was associated with high levels of FoxM1 mRNA, suggesting that the upregulation of FoxM1 expression is at least partially mediated transcriptionally. Furthermore, overexpression or ablation of endogenous HER2 resulted in parallel changes in FoxM1 expression. Critically, mammary epithelium-targeted HER2 mouse tumours also resulted in increased FoxM1 expression, suggesting that HER2 directed FoxM1 expression occurs in vivo and may be a critical downstream effector of HER2-targeting therapies. Indeed, treatment of breast cancer cells with lapatinib reduced FoxM1 expression at protein, mRNA and gene promoter levels. Moreover, analysis of normal and breast cancer patient samples revealed that elevated FoxM1 expression at protein and mRNA levels correlated with breast cancer development, but not significantly with cancer progression and survival. Our results indicate that the HER2 receptor regulates the expression of the FoxM1 transcription factor, which has a role in breast cancer development.
Related JoVE Video
BH3-only protein Bim more critical than Puma in tyrosine kinase inhibitor-induced apoptosis of human leukemic cells and transduced hematopoietic progenitors carrying oncogenic FLT3.
Blood
PUBLISHED: 04-30-2009
Show Abstract
Hide Abstract
Constitutively activating internal tandem duplications (ITD) of FLT3 (FMS-like tyrosine kinase 3) are the most common mutations in acute myeloid leukemia (AML) and correlate with poor prognosis. Receptor tyrosine kinase inhibitors targeting FLT3 have developed as attractive treatment options. Because relapses occur after initial responses, identification of FLT3-ITD-mediated signaling events are important to facilitate novel therapeutic interventions. Here, we have determined the growth-inhibitory and proapoptotic mechanisms of 2 small molecule inhibitors of FLT3, AG1295 or PKC412, in hematopoietic progenitor cells, human leukemic cell lines, and primary AML cells expressing FLT3-ITD. Inactivation of the PI3-kinase pathway, but not of Ras-mitogen-activated protein (MAP) kinase signaling, was essential to elicit cytotoxic responses. Both compounds induced up-regulation of proapoptotic BH3-only proteins Bim and Puma, and subsequent cell death. However, only silencing of Bim, or its direct transcriptional activator FOXO3a, abrogated apoptosis efficiently. Similar findings were made in bone marrow cells from gene-targeted mice lacking Bim and/or Puma infected with FLT3-ITD and treated with inhibitor, where loss of Puma only provided transient protection from apoptosis, but loss of Bim preserved clonal survival upon FLT3-ITD inhibition.
Related JoVE Video
Gefitinib (Iressa) represses FOXM1 expression via FOXO3a in breast cancer.
Mol. Cancer Ther.
PUBLISHED: 03-10-2009
Show Abstract
Hide Abstract
Gefitinib (Iressa) is a specific and effective epidermal growth factor receptor inhibitor. An understanding of the downstream cellular targets of gefitinib will allow the discovery of biomarkers for predicting outcomes and monitoring anti-epidermal growth factor receptor therapies and provide information for overcoming gefitinib resistance. In this study, we investigated the role and regulation of FOXM1 in response to gefitinib treatment in breast cancer. Using the gefitinib-sensitive breast carcinoma cell lines BT474 and SKBR3 as well as the resistant lines MCF-7, MDA-MB-231, and MDA-MB-453, we showed that gefitinib represses the expression of the transcription factor FOXM1 in sensitive, but not resistant, cells. FOXM1 repression by gefitinib is associated with FOXO3a activation and is mediated at the transcriptional level and gene promoter level. These results were verified by immunohistochemical staining of biopsy samples from primary breast cancer patients obtained from a gefitinib neoadjuvant study. We also showed that ectopic expression of an active FOXO3a represses FOXM1 expression, whereas knockdown of FOXO3a expression using small interfering RNA can up-regulate FOXM1 and its downstream targets polo-like kinase, cyclin B1, and CDC25B and rescue sensitive BT474 cells from gefitinib-induced cell proliferative arrest. These results suggest that gefitinib represses FOXM1 expression via FOXO3a in breast cancer. We further showed that overexpression of a wild-type FOXM1 or a constitutively active FOXM1, DeltaN-FOXM1, abrogates the cell death induced by gefitinib, indicating that FOXM1 has a functional role in mediating the gefitinib-induced proliferative arrest and in determining sensitivity to gefitinib. In summary, our study defined FOXM1 as a cellular target and marker of gefitinib activity in breast cancer.
Related JoVE Video
Hes-6, an inhibitor of Hes-1, is regulated by 17beta-estradiol and promotes breast cancer cell proliferation.
Breast Cancer Res.
PUBLISHED: 02-16-2009
Show Abstract
Hide Abstract
Hes-6 is a member of the basic helix-loop-helix (bHLH) family of transcription factors, and its overexpression has been reported in metastatic cancers of different origins. Hes-6 has been described as an inhibitor of Hes-1 during neuronal development, although its function in cancer is not known. In this study, we investigated the function of Hes-6 in breast cancer and tested the hypothesis that Hes-6 enhances breast cancer cell proliferation and is regulated by estrogen.
Related JoVE Video
Studying the subcellular localization and DNA-binding activity of FoxO transcription factors, downstream effectors of PI3K/Akt.
Methods Mol. Biol.
PUBLISHED: 01-24-2009
Show Abstract
Hide Abstract
This chapter describes methods for studying downstream events of the PI3K/Akt signaling cascade, focusing on the FoxO transcription factors. These approaches also represent alternative means for gauging the phosphoinositide-3 kinase/Akt activity. We describe protocols for the fractionation of cytoplasmic and nuclear protein extracts and for studying transcription factor DNA-binding activity in vitro and in vivo.
Related JoVE Video
CD40 and B-cell receptor signalling induce MAPK family members that can either induce or repress Bcl-6 expression.
Mol. Immunol.
PUBLISHED: 01-05-2009
Show Abstract
Hide Abstract
Bcl-6 is essential for germinal centre development and normal antibody responses, and has major roles in controlling B-cell proliferation and differentiation. Bcl-6 expression is tightly controlled, but neither the nature of all the regulatory signals nor their interactions are known. Bcl-6 expression is induced in Bcr-Abl expressing lymphoid cell lines by the tyrosine kinase inhibitor, imatinib. We show that p38 MAPK mediates induction of Bcl-6 following inhibition of Bcr-Abl by imatinib. Next we analyze p38 function in a germinal centre B-cell line, Ramos. p38 is phosphorylated under basal conditions, and studies with p38 inhibitors show that it induces Bcl-6 expression. Membrane bound CD40 ligand activates p38 but also other MAPK pathways that strongly repress Bcl-6 and the overall effect is reduction in Bcl-6 expression. Surprisingly soluble CD40 ligand induces Bcl-6 by activating p38 without activating the repressive pathways. Hence different types of CD40 signalling are associated with varying effects on Bcl-6 expression. Transcription reporter assays demonstrate p38 responsive sequences at about 4.5 kb from the transcription start site. Immunocytochemistry of tonsil sections show phosphorylated p38 in a minor population of germinal centre B-cells. We demonstrate for the first time that p38 induces Bcl-6 transcription, but increased protein expression occurs only when the strong pathways repressing Bcl-6 are not activated.
Related JoVE Video
FOXO transcription factors: from cell fate decisions to regulation of human female reproduction.
Adv. Exp. Med. Biol.
PUBLISHED: 01-01-2009
Show Abstract
Hide Abstract
All key reproductive events in the human ovary and uterus, including follicle activation, ovulation, implantation, decidualization, luteolysis and menstruation, are dependent upon profound tissue remodelling, characterised by cyclical waves of cell proliferation, differentiation, apoptosis, tissue breakdown and regeneration. FOXO transcription factors, an evolutionarily conserved subfamily of the forkhead transcription factors, have emerged as master regulators of cell fate decision capable of integrating avariety of stress, growth factor and cytokine signaling pathways with the transcription machinery. The ability of FOXOs to regulate seemingly opposing cellular responses, ranging from cell cycle arrest and oxidative stress responses to differentiation and apoptosis, renders these transcription factors indispensable for cyclic tissue remodelling in female reproduction. Conversely, perturbations in the expression or activity of FOXO transcription factors are increasingly linked to common reproductive disorders, such as pregnancy loss, endometriosis, endometrial cancer and primary ovarian insufficiency.
Related JoVE Video
Role of the forkhead transcription factor FOXO-FOXM1 axis in cancer and drug resistance.
Front Med
Show Abstract
Hide Abstract
The forkhead transcription factors FOXO and FOXM1 have pivotal roles in tumorigenesis and in mediating chemotherapy sensitivity and resistance. Recent research shows that the forkhead transcription factor FOXM1 is a direct transcriptional target repressed by the forkhead protein FOXO3a, a vital downstream effector of the PI3K-AKT-FOXO signaling pathway. Intriguingly, FOXM1 and FOXO3a also compete for binding to the same gene targets, which have a role in chemotherapeutic drug action and sensitivity. An understanding of the role and regulation of the FOXO-FOXM1 axis will impact directly on our knowledge of chemotherapeutic drug action and resistance in patients, and provide new insights into the design of novel therapeutic strategy and reliable biomarkers for prediction of drug sensitivity.
Related JoVE Video
A specific role for phosphoinositide 3-kinase and AKT in osteoblasts?
Front Endocrinol (Lausanne)
Show Abstract
Hide Abstract
The phosphoinositide 3-kinase and AKT (protein kinase B) signaling pathway (PI3K/AKT) plays a central role in the control of cell survival, growth, and proliferation throughout the body. With regard to bone, and particularly in osteoblasts, there is an increasing amount of evidence that the many signaling molecules exert some of their bone-specific effects in part via selectively activating some of the generic effects of the PI3K/AKT pathway in osteoblasts. There is further data demonstrating that PI3K/AKT has the capacity to specifically cross-talk with other signaling pathways and transcriptional networks controlling bone cells development in order to fine-tune the osteoblast phenotype. There is also evidence that perturbations in the PI3K/AKT pathway may well be responsible for certain bone pathologies. In this review, we discuss some of these findings and suggest that the PI3K/AKT pathway is a central nexus in the extensive network of extracellular signaling pathways that control the osteoblast.
Related JoVE Video
The p38 MAPK-MK2 axis regulates E2F1 and FOXM1 expression after epirubicin treatment.
Mol. Cancer Res.
Show Abstract
Hide Abstract
E2F1 is responsible for the regulation of FOXM1 expression, which plays a key role in epirubicin resistance. Here, we examined the role and regulation of E2F1 in response to epirubicin in cancer cells. We first showed that E2F1 plays a key role in promoting FOXM1 expression, cell survival, and epirubicin resistance as its depletion by siRNA attenuated FOXM1 induction and cell viability in response to epirubicin. We also found that the p38-MAPK activity mirrors the expression patterns of E2F1 and FOXM1 in both epirubicin-sensitive and -resistant MCF-7 breast cancer cells, suggesting that p38 has a role in regulating E2F1 expression and epirubicin resistance. Consistently, studies using pharmacologic inhibitors, siRNA knockdown, and knockout mouse embryonic fibroblasts (MEF) revealed that p38 mediates the E2F1 induction by epirubicin and that the induction of E2F1 by p38 is, in turn, mediated through its downstream kinase MK2 [mitogen-activated protein kinase (MAPK)-activated protein kinase 2; MAPKAPK2]. In agreement, in vitro phosphorylation assays showed that MK2 can directly phosphorylate E2F1 at Ser-364. Transfection assays also showed that E2F1 phosphorylation at Ser-364 participates in its induction by epirubicin but also suggests that other phosphorylation events are also involved. In addition, the p38-MK2 axis can also limit c-jun-NH(2)-kinase (JNK) induction by epirubicin and, notably, JNK represses FOXM1 expression. Collectively, these findings underscore the importance of p38-MK2 signaling in the control of E2F1 and FOXM1 expression as well as epirubicin sensitivity.
Related JoVE Video
Rac1 signalling modulates a STAT5/BCL-6 transcriptional switch on cell-cycle-associated target gene promoters.
Nucleic Acids Res.
Show Abstract
Hide Abstract
Gene expression depends on binding of transcriptional regulators to gene promoters, a process controlled by signalling pathways. The transcriptional repressor B-cell lymphoma (BCL)-6 downregulates genes involved in cell-cycle progression and becomes inactivated following phosphorylation by the Rac1 GTPase-activated protein kinase PAK1. Interestingly, the DNA motifs recognized by BCL-6 and signal transducers and activators of transcription 5 (STAT5) are similar. Because STAT5 stimulation in epithelial cells can also be triggered by Rac1 signalling, we asked whether both factors have opposing roles in transcriptional regulation and whether Rac1 signalling may coordinate a transcription factor switch. We used chromatin immunoprecipitation to show that active Rac1 promotes release of the repressor BCL-6 while increasing binding of STAT5A to a BCL-6-regulated reporter gene. We further show in colorectal cell lines that the endogenous activation status of the Rac1/PAK1 pathway correlated with the phosphorylation status of BCL-6 and STAT5A. Three cellular genes (cyclin D2, p15(INK4B), small ubiquitin-like modifier 1) were identified to be inversely regulated by BCL-6 and STAT5A and responded to Rac1 signalling with increased expression and corresponding changes in promoter occupancy. Together, our data show that Rac1 signalling controls a group of target genes that are repressed by BCL-6 and activated by STAT5A, providing novel insights into the modulation of gene transcription by GTPase signalling.
Related JoVE Video
The expression of interleukin-8 and interleukin-8 receptors in endometrial carcinoma.
Cytokine
Show Abstract
Hide Abstract
Interleukin-8 (IL-8) is a pro-inflammatory cytokine which exerts its effects via binding to 2 receptors, CXCR1 and CXCR2 and is known to promote angiogenesis, mitogenesis and motogenesis in cancer. IL-8 is over expressed in endometrial carcinoma, but the expression of CXCR1 and CXCR2 in endometrial carcinoma has not been previously investigated. The aim of this study was to determine the expression of IL-8 receptors in endometrial carcinoma. The expression of CXCR1 and CXCR2 was studied in endometrial carcinomas and normal endometrium by immunohistochemistry in 101 tumours. IL-8 and IL-8 receptor expression was also studied by Real-time quantitative PCR (RT-qPCR) in 17 tumours in comparison to normal endometrium. The expression profile was correlated to the clinico-pathological features of the tumours. Immunohistochemistry showed CXCR1 and CXCR2 were expressed in all cases of endometrial carcinoma, with CXCR1 showing stronger expression. There was a statistically significant correlation between CXCR2 staining intensity and tumour grade (P=0.012) and disease free survival (P=0.015) independently. On RT-qPCR, 14/17, 15/17 and 16/17 tumours showed significant increase in IL-8, CXCR1 and CXCR2 expression levels in comparison to normal endometrium, with median fold increase of 42-fold, 51-fold and 27-fold, respectively. This is the first report of the expression of IL-8 receptors in endometrial carcinoma and the results show an association between IL-8 and IL-8 receptors and the pathogenesis of endometrial carcinoma, and represent potential prognostic biomarkers and therapeutic targets.
Related JoVE Video
The OPCML tumor suppressor functions as a cell surface repressor-adaptor, negatively regulating receptor tyrosine kinases in epithelial ovarian cancer.
Cancer Discov
Show Abstract
Hide Abstract
Epithelial ovarian cancer is the leading cause of death from gynecologic malignancy, and its molecular basis is poorly understood. We previously demonstrated that opioid binding protein cell adhesion molecule (OPCML) was frequently epigenetically inactivated in epithelial ovarian cancers, with tumor suppressor function in vitro and in vivo. Here, we further show the clinical relevance of OPCML and demonstrate that OPCML functions by a novel mechanism in epithelial ovarian cancer cell lines and normal ovarian surface epithelial cells by regulating a specific repertoire of receptor tyrosine kinases: EPHA2, FGFR1, FGFR3, HER2, and HER4. OPCML negatively regulates receptor tyrosine kinases by binding their extracellular domains, altering trafficking via nonclathrin-dependent endocytosis, and promoting their degradation via a polyubiquitination-associated proteasomal mechanism leading to signaling and growth inhibition. Exogenous recombinant OPCML domain 1-3 protein inhibited the cell growth of epithelial ovarian cancers cell in vitro and in vivo in 2 murine ovarian cancer intraperitoneal models that used an identical mechanism. These findings demonstrate a novel mechanism of OPCML-mediated tumor suppression and provide a proof-of-concept for recombinant OPCML protein therapy in epithelial ovarian cancers.
Related JoVE Video
Binding of FoxM1 to G2/M gene promoters is dependent upon B-Myb.
Biochim. Biophys. Acta
Show Abstract
Hide Abstract
The promoters of genes which regulate entry into and progress through mitosis are typically induced maximally in G2 by transcription factors that include B-Myb and FoxM1. As FoxM1 gene transcription is a target of B-Myb, we investigated in this study how these transcription factors functionally interact to regulate these G2/M genes. Using a 3T3 cell line containing floxed B-myb alleles (B-myb(F/F)) that could be conditionally deleted by Cre recombinase, we confirmed that B-myb knockout caused both decreased mRNA expression of several G2/M genes, including FoxM1, and delayed entry into mitosis. Although FoxM1 protein expression was actually unaffected by B-myb knockout when quiescent B-myb(F/F) 3T3 cells re-entered the cell cycle upon serum-stimulation, chromatin immunoprecipitation revealed that FoxM1 binding to G2/M promoters was substantially reduced. FoxM1 transcriptional activity requires sequential phosphorylation by Cyclin-dependent kinases and Plk1, which are B-Myb target genes, and we found that phosphorylation at Plk1-specific sites was somewhat reduced upon B-myb knockout. Neither this effect nor nuclear accumulation of FoxM1, which was unaffected by B-myb knockout, was sufficient to account for the dependence on B-Myb for FoxM1 promoter binding, however. More significantly, assays using paired Birc5 (survivin) promoter-luciferase reporters with either wild-type or mutated Myb binding sites showed that FoxM1 was unable to bind and activate the promoter in the absence of B-Myb binding. Our data suggest that B-Myb is required as a pioneer factor to enable FoxM1 binding to G2/M gene promoters and explains how these transcription factors may collaborate to induce mitosis.
Related JoVE Video
The transcription factor encyclopedia.
Dimas Yusuf, Stefanie L Butland, Magdalena I Swanson, Eugene Bolotin, Amy Ticoll, Warren A Cheung, Xiao Yu Cindy Zhang, Christopher T D Dickman, Debra L Fulton, Jonathan S Lim, Jake M Schnabl, Oscar H P Ramos, Mireille Vasseur-Cognet, Charles N de Leeuw, Elizabeth M Simpson, Gerhart U Ryffel, Eric W-F Lam, Ralf Kist, Miranda S C Wilson, Raquel Marco-Ferreres, Jan J Brosens, Leonardo L Beccari, Paola Bovolenta, Bérénice A Benayoun, Lara J Monteiro, Helma D C Schwenen, Lars Grontved, Elizabeth Wederell, Susanne Mandrup, Reiner A Veitia, Harini Chakravarthy, Pamela A Hoodless, M Michela Mancarelli, Bruce E Torbett, Alison H Banham, Sekhar P Reddy, Rebecca L Cullum, Michaela Liedtke, Mario P Tschan, Michelle Vaz, Angie Rizzino, Mariastella Zannini, Seth Frietze, Peggy J Farnham, Astrid Eijkelenboom, Philip J Brown, David Laperriere, Dominique Leprince, Tiziana de Cristofaro, Kelly L Prince, Marrit Putker, Luis del Peso, Gieri Camenisch, Roland H Wenger, Michal Mikula, Marieke Rozendaal, Sylvie Mader, Jerzy Ostrowski, Simon J Rhodes, Capucine Van Rechem, Gaylor Boulay, Sam W Z Olechnowicz, Mary B Breslin, Michael S Lan, Kyster K Nanan, Michael Wegner, Juan Hou, Rachel D Mullen, Stephanie C Colvin, Peter John Noy, Carol F Webb, Matthew E Witek, Scott Ferrell, Juliet M Daniel, Jason Park, Scott A Waldman, Daniel J Peet, Michael Taggart, Padma-Sheela Jayaraman, Julien J Karrich, Bianca Blom, Farhad Vesuna, Henriette O'Geen, Yunfu Sun, Richard M Gronostajski, Mark W Woodcroft, Margaret R Hough, Edwin Chen, G Nicholas Europe-Finner, Magdalena Karolczak-Bayatti, Jarrod Bailey, Oliver Hankinson, Venu Raman, David P LeBrun, Shyam Biswal, Christopher J Harvey, Jason P DeBruyne, John B Hogenesch, Robert F Hevner, Christophe Héligon, Xin M Luo, Marissa Cathleen Blank, Kathleen Joyce Millen, David S Sharlin, Douglas Forrest, Karin Dahlman-Wright, Chunyan Zhao, Yuriko Mishima, Satrajit Sinha, Rumela Chakrabarti, Elodie Portales-Casamar, Frances M Sladek, Philip H Bradley, Wyeth W Wasserman.
Genome Biol.
Show Abstract
Hide Abstract
Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.
Related JoVE Video
A deficiency in nucleoside salvage impairs murine lymphocyte development, homeostasis, and survival.
J. Immunol.
Show Abstract
Hide Abstract
The homeostasis of the immune system is tightly controlled by both cell-extrinsic and -intrinsic mechanisms. These regulators, not all known to date, drive cells in and out of quiescence when and where required to allow the immune system to function. In this article, we describe a deficiency in deoxycytidine kinase (DCK), one of the major enzymes of the nucleoside salvage pathway, which affects peripheral T cell homeostatic proliferation and survival. As a result of an N-ethyl-N-nitrosourea-induced mutation in the last ? helix of DCK, a functionally null protein has been generated in the mouse and affects the composition of the hematopoietic system. Both B and T lymphocyte development is impaired, leading to a state of chronic lymphopenia and to a significant increase in the number of myeloid cells and erythrocytes. In the periphery, we found that mutant lymphocytes adopt a CD44(high)CD62L(low) memory phenotype, with high levels of proliferation and apoptosis. These phenotypes are notably the result of a cell-extrinsic-driven lymphopenia-induced proliferation as wild-type cells transferred into DCK-deficient recipients adopt the same profile. In addition, DCK also regulates lymphocyte quiescence in a cell-intrinsic manner. These data establish dCK as a new regulator of hematopoietic integrity and lymphocyte quiescence and survival.
Related JoVE Video
The Discovery of Novel 10,11-Dihydro-5H-dibenz[b,f]azepine SIRT2 Inhibitors.
Medchemcomm
Show Abstract
Hide Abstract
Isoform selective inhibitors of the sirtuins (NAD(+)-dependent histone deacetylases) should enable an in depth study of the molecular biology underpinning these targets and how they are deregulated in diseases such as cancer and neurodegeneration. Herein, we present the discovery of structurally novel SIRT2 inhibitors. Hit molecule 8 was discovered through the chemical synthesis and biological characterization of a small-molecule compound library based around the 10,11-dihydro-5H-dibenz[b,f]azepine scaffold. In vitro screening assays revealed compound 8 to have an IC50 of 18 ?M against SIRT2 and to exhibit more than 30-fold selectivity compared to SIRT1. Cellular assays, performed on MCF-7 cells, confirmed the in vitro selectivity and showed hit 8 to have antiproliferative activity at a concentration of 30 ?M. Computational studies were performed to predict the SIRT2 binding mode and to rationalise the observed selectivity.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.