JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin.
Cell
PUBLISHED: 08-07-2014
Show Abstract
Hide Abstract
Recent genomic analyses of pathologically defined tumor types identify "within-a-tissue" disease subtypes. However, the extent to which genomic signatures are shared across tissues is still unclear. We performed an integrative analysis using five genome-wide platforms and one proteomic platform on 3,527 specimens from 12 cancer types, revealing a unified classification into 11 major subtypes. Five subtypes were nearly identical to their tissue-of-origin counterparts, but several distinct cancer types were found to converge into common subtypes. Lung squamous, head and neck, and a subset of bladder cancers coalesced into one subtype typified by TP53 alterations, TP63 amplifications, and high expression of immune and proliferation pathway genes. Of note, bladder cancers split into three pan-cancer subtypes. The multiplatform classification, while correlated with tissue-of-origin, provides independent information for predicting clinical outcomes. All data sets are available for data-mining from a unified resource to support further biological discoveries and insights into novel therapeutic strategies.
Related JoVE Video
Vitamin d receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy.
Cell
PUBLISHED: 07-01-2014
Show Abstract
Hide Abstract
The poor clinical outcome in pancreatic ductal adenocarcinoma (PDA) is attributed to intrinsic chemoresistance and a growth-permissive tumor microenvironment. Conversion of quiescent to activated pancreatic stellate cells (PSCs) drives the severe stromal reaction that characterizes PDA. Here, we reveal that the vitamin D receptor (VDR) is expressed in stroma from human pancreatic tumors and that treatment with the VDR ligand calcipotriol markedly reduced markers of inflammation and fibrosis in pancreatitis and human tumor stroma. We show that VDR acts as a master transcriptional regulator of PSCs to reprise the quiescent state, resulting in induced stromal remodeling, increased intratumoral gemcitabine, reduced tumor volume, and a 57% increase in survival compared to chemotherapy alone. This work describes a molecular strategy through which transcriptional reprogramming of tumor stroma enables chemotherapeutic response and suggests vitamin D priming as an adjunct in PDA therapy. PAPERFLICK:
Related JoVE Video
Mapping the molecular determinants of BRAF oncogene dependence in human lung cancer.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-03-2014
Show Abstract
Hide Abstract
Oncogenic mutations in the BRAF kinase occur in 6-8% of nonsmall cell lung cancers (NSCLCs), accounting for more than 90,000 deaths annually worldwide. The biological and clinical relevance of these BRAF mutations in NSCLC is incompletely understood. Here we demonstrate that human NSCLC cells with BRAF(V600E), but not other BRAF mutations, initially are sensitive to BRAF-inhibitor treatment. However, these BRAF(V600E) NSCLC cells rapidly acquire resistance to BRAF inhibition through at least one of two discrete molecular mechanisms: (i) loss of full-length BRAF(V600E) coupled with expression of an aberrant form of BRAF(V600E) that retains RAF pathway dependence or (ii) constitutive autocrine EGF receptor (EGFR) signaling driven by c-Jun-mediated EGFR ligand expression. BRAF(V600E) cells with EGFR-driven resistance are characterized by hyperphosphorylated protein kinase AKT, a biomarker we validated in BRAF inhibitor-resistant NSCLC clinical specimens. These data reveal the multifaceted molecular mechanisms by which NSCLCs establish and regulate BRAF oncogene dependence, provide insights into BRAF-EGFR signaling crosstalk, and uncover mechanism-based strategies to optimize clinical responses to BRAF oncogene inhibition.
Related JoVE Video
RADIA: RNA and DNA Integrated Analysis for Somatic Mutation Detection.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The detection of somatic single nucleotide variants is a crucial component to the characterization of the cancer genome. Mutation calling algorithms thus far have focused on comparing the normal and tumor genomes from the same individual. In recent years, it has become routine for projects like The Cancer Genome Atlas (TCGA) to also sequence the tumor RNA. Here we present RADIA (RNA and DNA Integrated Analysis), a novel computational method combining the patient-matched normal and tumor DNA with the tumor RNA to detect somatic mutations. The inclusion of the RNA increases the power to detect somatic mutations, especially at low DNA allelic frequencies. By integrating an individual's DNA and RNA, we are able to detect mutations that would otherwise be missed by traditional algorithms that examine only the DNA. We demonstrate high sensitivity (84%) and very high precision (98% and 99%) for RADIA in patient data from endometrial carcinoma and lung adenocarcinoma from TCGA. Mutations with both high DNA and RNA read support have the highest validation rate of over 99%. We also introduce a simulation package that spikes in artificial mutations to patient data, rather than simulating sequencing data from a reference genome. We evaluate sensitivity on the simulation data and demonstrate our ability to rescue back mutations at low DNA allelic frequencies by including the RNA. Finally, we highlight mutations in important cancer genes that were rescued due to the incorporation of the RNA.
Related JoVE Video
Single-molecule superresolution imaging allows quantitative analysis of RAF multimer formation and signaling.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-24-2013
Show Abstract
Hide Abstract
The RAF serine/threonine kinases regulate cell growth through the MAPK pathway, and are targeted by small-molecule RAF inhibitors (RAFis) in human cancer. It is now apparent that protein multimers play an important role in RAF activation and tumor response to RAFis. However, the exact stoichiometry and cellular location of these multimers remain unclear because of the lack of technologies to visualize them. In the present work, we demonstrate that photoactivated localization microscopy (PALM), in combination with quantitative spatial analysis, provides sufficient resolution to directly visualize protein multimers in cells. Quantitative PALM imaging showed that CRAF exists predominantly as cytoplasmic monomers under resting conditions but forms dimers as well as trimers and tetramers at the cell membrane in the presence of active RAS. In contrast, N-terminal truncated CRAF (CatC) lacking autoinhibitory domains forms constitutive dimers and occasional tetramers in the cytoplasm, whereas a CatC mutant with a disrupted CRAF-CRAF dimer interface does not. Finally, artificially forcing CRAF to the membrane by fusion to a RAS CAAX motif induces multimer formation but activates RAF/MAPK only if the dimer interface is intact. Together, these quantitative results directly confirm the existence of RAF dimers and potentially higher-order multimers and their involvement in cell signaling, and showed that RAF multimer formation can result from multiple mechanisms and is a critical but not sufficient step for RAF activation.
Related JoVE Video
The Cancer Genome Atlas Pan-Cancer analysis project.
Nat. Genet.
PUBLISHED: 09-28-2013
Show Abstract
Hide Abstract
The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile.
Related JoVE Video
Mutationally activated PIK3CA(H1047R) cooperates with BRAF(V600E) to promote lung cancer progression.
Cancer Res.
PUBLISHED: 09-09-2013
Show Abstract
Hide Abstract
Adenocarcinoma of the lung, a leading cause of cancer death, frequently displays mutational activation of the KRAS proto-oncogene but, unlike lung cancers expressing mutated EGFR, ROS1, or ALK, there is no pathway-targeted therapy for patients with KRAS-mutated lung cancer. In preclinical models, expression of oncogenic KRAS(G12D) in the lung epithelium of adult mice initiates development of lung adenocarcinoma through activation of downstream signaling pathways. In contrast, mutationally activated BRAF(V600E), a KRAS effector, fails to initiate lung carcinogenesis despite highly efficient induction of benign lung tumorigenesis. To test if phosphoinositide 3-kinase (PI3K)-? (PIK3CA), another KRAS effector, might cooperate with oncogenic BRAF(V600E) to promote lung cancer progression, we used mice carrying a conditional allele of Pik3ca that allows conversion of the wild-type catalytic subunit of PIK3CA to mutationally activated PIK3CA(H1047R). Although expression of PIK3CA(H1047R) in the lung epithelium, either alone or in combination with PTEN silencing, was without phenotype, concomitant expression of BRAF(V600E) and PIK3CA(H1047R) led to dramatically decreased tumor latency and increased tumor burden compared with BRAF(V600E) alone. Most notably, coexpression of BRAF(V600E) and PIK3CA(H1047R) elicited lung adenocarcinomas in a manner reminiscent of the effects of KRAS(G12D). These data emphasize a role for PI3K signaling, not in lung tumor initiation per se, but in both the rate of tumor growth and the propensity of benign lung tumors to progress to a malignant phenotype. Finally, biologic and biochemical analysis of BRAF(V600E)/PIK3CA(H1047R)-expressing mouse lung cancer cells revealed mechanistic clues about cooperative regulation of the cell-division cycle and apoptosis by these oncogenes.
Related JoVE Video
Subtype-specific MEK-PI3 kinase feedback as a therapeutic target in pancreatic adenocarcinoma.
Mol. Cancer Ther.
PUBLISHED: 08-05-2013
Show Abstract
Hide Abstract
Mutations in the KRAS oncogene are dominant features in pancreatic ductal adenocarcinoma (PDA). Because KRAS itself is considered "undruggable," targeting pathways downstream of KRAS are being explored as a rational therapeutic strategy. We investigated the consequences of MAP-ERK kinase (MEK) inhibition in a large PDA cell line panel. Inhibition of MEK activated phosphoinositide 3-kinase in an EGF receptor (EGFR)-dependent fashion and combinations of MEK and EGFR inhibitors synergistically induced apoptosis. This combinatorial effect was observed in the epithelial but not mesenchymal subtype of PDA. RNA expression analysis revealed predictors of susceptibility to the combination, including E-cadherin, HER3, and the miR200-family of microRNAs, whereas expression of the transcription factor ZEB1 was associated with resistance to the drug combination. Knockdown of HER3 in epithelial-type and ZEB1 in mesenchymal-type PDA cell lines resulted in sensitization to the combination of MEK and EGFR inhibitors. Thus, our findings suggest a new, subtype-specific, and personalized therapeutic strategy for pancreatic cancer.
Related JoVE Video
A colorectal cancer classification system that associates cellular phenotype and responses to therapy.
Nat. Med.
PUBLISHED: 03-22-2013
Show Abstract
Hide Abstract
Colorectal cancer (CRC) is a major cause of cancer mortality. Whereas some patients respond well to therapy, others do not, and thus more precise, individualized treatment strategies are needed. To that end, we analyzed gene expression profiles from 1,290 CRC tumors using consensus-based unsupervised clustering. The resultant clusters were then associated with therapeutic response data to the epidermal growth factor receptor-targeted drug cetuximab in 80 patients. The results of these studies define six clinically relevant CRC subtypes. Each subtype shares similarities to distinct cell types within the normal colon crypt and shows differing degrees of stemness and Wnt signaling. Subtype-specific gene signatures are proposed to identify these subtypes. Three subtypes have markedly better disease-free survival (DFS) after surgical resection, suggesting these patients might be spared from the adverse effects of chemotherapy when they have localized disease. One of these three subtypes, identified by filamin A expression, does not respond to cetuximab but may respond to cMET receptor tyrosine kinase inhibitors in the metastatic setting. Two other subtypes, with poor and intermediate DFS, associate with improved response to the chemotherapy regimen FOLFIRI in adjuvant or metastatic settings. Development of clinically deployable assays for these subtypes and of subtype-specific therapies may contribute to more effective management of this challenging disease.
Related JoVE Video
Modeling precision treatment of breast cancer.
Genome Biol.
PUBLISHED: 03-01-2013
Show Abstract
Hide Abstract
First-generation molecular profiles for human breast cancers have enabled the identification of features that can predict therapeutic response; however, little is known about how the various data types can best be combined to yield optimal predictors. Collections of breast cancer cell lines mirror many aspects of breast cancer molecular pathobiology, and measurements of their omic and biological therapeutic responses are well-suited for development of strategies to identify the most predictive molecular feature sets.
Related JoVE Video
A robust prognostic signature for hormone-positive node-negative breast cancer.
Genome Med
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Systemic chemotherapy in the adjuvant setting can cure breast cancer in some patients that would otherwise recur with incurable, metastatic disease. However, since only a fraction of patients would have recurrence after surgery alone, the challenge is to stratify high-risk patients (who stand to benefit from systemic chemotherapy) from low-risk patients (who can safely be spared treatment related toxicities and costs).
Related JoVE Video
Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-17-2011
Show Abstract
Hide Abstract
Squamous cell carcinomas (SCCs) are one of the most frequent forms of human malignancy, but, other than TP53 mutations, few causative somatic aberrations have been identified. We identified NOTCH1 or NOTCH2 mutations in ~75% of cutaneous SCCs and in a lesser fraction of lung SCCs, defining a spectrum for the most prevalent tumor suppressor specific to these epithelial malignancies. Notch receptors normally transduce signals in response to ligands on neighboring cells, regulating metazoan lineage selection and developmental patterning. Our findings therefore illustrate a central role for disruption of microenvironmental communication in cancer progression. NOTCH aberrations include frameshift and nonsense mutations leading to receptor truncations as well as point substitutions in key functional domains that abrogate signaling in cell-based assays. Oncogenic gain-of-function mutations in NOTCH1 commonly occur in human T-cell lymphoblastic leukemia/lymphoma and B-cell chronic lymphocytic leukemia. The bifunctional role of Notch in human cancer thus emphasizes the context dependency of signaling outcomes and suggests that targeted inhibition of the Notch pathway may induce squamous epithelial malignancies.
Related JoVE Video
Subtype and pathway specific responses to anticancer compounds in breast cancer.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-14-2011
Show Abstract
Hide Abstract
Breast cancers are comprised of molecularly distinct subtypes that may respond differently to pathway-targeted therapies now under development. Collections of breast cancer cell lines mirror many of the molecular subtypes and pathways found in tumors, suggesting that treatment of cell lines with candidate therapeutic compounds can guide identification of associations between molecular subtypes, pathways, and drug response. In a test of 77 therapeutic compounds, nearly all drugs showed differential responses across these cell lines, and approximately one third showed subtype-, pathway-, and/or genomic aberration-specific responses. These observations suggest mechanisms of response and resistance and may inform efforts to develop molecular assays that predict clinical response.
Related JoVE Video
Related JoVE Video
Temporal dissection of tumorigenesis in primary cancers.
Cancer Discov
PUBLISHED: 06-29-2011
Show Abstract
Hide Abstract
Timely intervention for cancer requires knowledge of its earliest genetic aberrations. Sequencing of tumors and their metastases reveals numerous abnormalities occurring late in progression. A means to temporally order aberrations in a single cancer, rather than inferring them from serially acquired samples, would define changes preceding even clinically evident disease. We integrate DNA sequence and copy number information to reconstruct the order of abnormalities as individual tumors evolve for 2 separate cancer types. We detect vast, unreported expansion of simple mutations sharply demarcated by recombinative loss of the second copy of TP53 in cutaneous squamous cell carcinomas (cSCC) and serous ovarian adenocarcinomas, in the former surpassing 50 mutations per megabase. In cSCCs, we also report diverse secondary mutations in known and novel oncogenic pathways, illustrating how such expanded mutagenesis directly promotes malignant progression. These results reframe paradigms in which TP53 mutation is required later, to bypass senescence induced by driver oncogenes.
Related JoVE Video
Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy.
Nat. Med.
PUBLISHED: 03-04-2011
Show Abstract
Hide Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal disease. Overall survival is typically 6 months from diagnosis. Numerous phase 3 trials of agents effective in other malignancies have failed to benefit unselected PDA populations, although patients do occasionally respond. Studies in other solid tumors have shown that heterogeneity in response is determined, in part, by molecular differences between tumors. Furthermore, treatment outcomes are improved by targeting drugs to tumor subtypes in which they are selectively effective, with breast and lung cancers providing recent examples. Identification of PDA molecular subtypes has been frustrated by a paucity of tumor specimens available for study. We have overcome this problem by combined analysis of transcriptional profiles of primary PDA samples from several studies, along with human and mouse PDA cell lines. We define three PDA subtypes: classical, quasimesenchymal and exocrine-like, and we present evidence for clinical outcome and therapeutic response differences between them. We further define gene signatures for these subtypes that may have utility in stratifying patients for treatment and present preclinical model systems that may be used to identify new subtype specific therapies.
Related JoVE Video
Blinded by the light: molecular imaging in pancreatic adenocarcinoma.
Clin. Cancer Res.
PUBLISHED: 11-24-2010
Show Abstract
Hide Abstract
The early detection and optimal perisurgical management of pancreatic adenocarcinoma are paramount goals in our quest to increase cure rates in this lethal malignancy. Molecular imaging techniques may be the conduit through which new genomic and proteomic discoveries about this disease are brought to the clinic.
Related JoVE Video
Histology, anatomy, or geography? Exome sequencing begins to delineate somatic mutational differences in esophageal cancer.
Cancer Discov
Show Abstract
Hide Abstract
Esophageal carcinoma is composed of squamous cell and adenocarcinoma types, each with geographically distinct incidence. The earliest exome sequences in this disease begin to illuminate the genetic demarcations of these anatomically related cancers.
Related JoVE Video
What are we learning from the cancer genome?
Nat Rev Clin Oncol
Show Abstract
Hide Abstract
Massively parallel approaches to nucleic acid sequencing have matured from proof-of-concept to commercial products during the past 5 years. These technologies are now widely accessible, increasingly affordable, and have already exerted a transformative influence on the study of human cancer. Here, we review new features of cancer genomes that are being revealed by large-scale applications of these technologies. We focus on those insights most likely to affect future clinical practice. Foremost among these lessons, we summarize the formidable genetic heterogeneity within given cancer types that is appreciable with higher resolution profiling and larger sample sets. We discuss the inherent challenges of defining driving genomic events in a given cancer genome amidst thousands of other somatic events. Finally, we explore the organizational, regulatory and societal challenges impeding precision cancer medicine based on genomic profiling from assuming its place as standard-of-care.
Related JoVE Video
PARADIGM-SHIFT predicts the function of mutations in multiple cancers using pathway impact analysis.
Bioinformatics
Show Abstract
Hide Abstract
A current challenge in understanding cancer processes is to pinpoint which mutations influence the onset and progression of disease. Toward this goal, we describe a method called PARADIGM-SHIFT that can predict whether a mutational event is neutral, gain-or loss-of-function in a tumor sample. The method uses a belief-propagation algorithm to infer gene activity from gene expression and copy number data in the context of a set of pathway interactions.
Related JoVE Video
A central role for RAF?MEK?ERK signaling in the genesis of pancreatic ductal adenocarcinoma.
Cancer Discov
Show Abstract
Hide Abstract
KRAS mutation is a hallmark of pancreatic ductal adenocarcinoma (PDA) but remains an intractable pharmacologic target. Consequently, defining RAS effector pathway(s) required for PDA initiation and maintenance is critical to improve treatment of this disease. Here, we show that expression of BRAF(V600E), but not PIK3CA(H1047R), in the mouse pancreas leads to pancreatic intraepithelial neoplasia (PanIN) lesions. Moreover, concomitant expression of BRAF(V600E) and TP53(R270H) result in lethal PDA. We tested pharmacologic inhibitors of RAS effectors against multiple human PDA cell lines. Mitogen-activated protein (MAP)/extracellular signal-regulated (ERK) kinase (MEK) inhibition was highly effective both in vivo and in vitro and was synergistic with AKT inhibition in most cell lines tested. We show that RAF?MEK?ERK signaling is central to the initiation and maintenance of PDA and to rational combination strategies in this disease. These results emphasize the value of leveraging multiple complementary experimental systems to prioritize pathways for effective intervention strategies in PDA.
Related JoVE Video
A DNA hypermethylation module for the stem/progenitor cell signature of cancer.
Genome Res.
Show Abstract
Hide Abstract
Many DNA-hypermethylated cancer genes are occupied by the Polycomb (PcG) repressor complex in embryonic stem cells (ESCs). Their prevalence in the full spectrum of cancers, the exact context of chromatin involved, and their status in adult cell renewal systems are unknown. Using a genome-wide analysis, we demonstrate that ~75% of hypermethylated genes are marked by PcG in the context of bivalent chromatin in both ESCs and adult stem/progenitor cells. A large number of these genes are key developmental regulators, and a subset, which we call the "DNA hypermethylation module," comprises a portion of the PcG target genes that are down-regulated in cancer. Genes with bivalent chromatin have a low, poised gene transcription state that has been shown to maintain stemness and self-renewal in normal stem cells. However, when DNA-hypermethylated in tumors, we find that these genes are further repressed. We also show that the methylation status of these genes can cluster important subtypes of colon and breast cancers. By evaluating the subsets of genes that are methylated in different cancers with consideration of their chromatin status in ESCs, we provide evidence that DNA hypermethylation preferentially targets the subset of PcG genes that are developmental regulators, and this may contribute to the stem-like state of cancer. Additionally, the capacity for global methylation profiling to cluster tumors by phenotype may have important implications for further refining tumor behavior patterns that may ultimately aid therapeutic interventions.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.