JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Effects of the insect growth regulator, novaluron on immature alfalfa leafcutting bees, Megachile rotundata.
J. Insect Sci.
PUBLISHED: 05-05-2011
Show Abstract
Hide Abstract
Alfalfa leafcutting bees, Megachile rotundata F. (Hymenoptera: Megachilidae), are the most common pollinators of alfalfa in the Pacific Northwest. Reports from users of M. rotundata in Idaho, Utah and Colorado have indicated exceptionally poor bee return from fields treated with novaluron to control Lygus spp. Our goal was to evaluate novaluron toxicity to immature M. rotundata using two different possible mechanisms of exposure. One goal was to assess immature mortality via treating nectar-pollen provisions and adults with novaluron. Immature M. rotundata mortality in all novaluron provision dosing treatments was significantly higher than the water or blank controls, providing evidence that novaluron is toxic to progeny in nest cells. The mean cumulative frequency showed that more eggs and 1st-2nd instars died compared to older instars. Female M. rotundata nested similarly in field cages during the field cage experiment; however, there was greater immature mortality in cages where females were fed sugar-water + novaluron compared to sugar-water only. Although females provided adequate provisions, there was a low percentage of egg hatch and larval development when females ingested novaluron before mating and nesting. Novaluron was also present in egg provision of bees collecting resources from novaluron-sprayed plants. At least 84% of progeny died when the females were allowed to mate and nest 24 hours after a novaluron application. Novaluron could be contributing to poor bee return in alfalfa grown for seed. Timely insecticide applications to suppress Lygus spp. is an important consideration to improve ongoing bee health.
Related JoVE Video
Probability of cost-effective management of soybean aphid (Hemiptera: Aphididae) in North America.
J. Econ. Entomol.
PUBLISHED: 11-27-2009
Show Abstract
Hide Abstract
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is one of the most damaging pests of soybean, Glycine max (L.) Merrill, in the midwestern United States and Canada. We compared three soybean aphid management techniques in three midwestern states (Iowa, Michigan, and Minnesota) for a 3-yr period (2005-2007). Management techniques included an untreated control, an insecticidal seed treatment, an insecticide fungicide tank-mix applied at flowering (i.e., a prophylactic treatment), and an integrated pest management (IPM) treatment (i.e., an insecticide applied based on a weekly scouting and an economic threshold). In 2005 and 2007, multiple locations experienced aphid population levels that exceeded the economic threshold, resulting in the application of the IPM treatment. Regardless of the timing of the application, all insecticide treatments reduced aphid populations compared with the untreated, and all treatments protected yield as compared with the untreated. Treatment efficacy and cost data were combined to compute the probability of a positive economic return. The IPM treatment had the highest probability of cost effectiveness, compared with the prophylactic tank-mix of fungicide and insecticide. The probability of surpassing the gain threshold was highest in the IPM treatment, regardless of the scouting cost assigned to the treatment (ranging from $0.00 to $19.76/ha). Our study further confirms that a single insecticide application can enhance the profitability of soybean production at risk of a soybean aphid outbreak if used within an IPM based system.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.