JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Diversity and distribution of arbuscular mycorrhizal fungi along altitudinal gradients in Mount Taibai of the Qinling Mountains.
Can. J. Microbiol.
PUBLISHED: 11-13-2014
Show Abstract
Hide Abstract
Elevational patterns of plant and animal diversity have been studied for centuries; however, the effects of land elevation on arbuscular mycorrhizal (AM) fungal diversity remains unclear. We examined AM fungal diversity and distribution along 19 elevation belts in Mount Taibai of the Qinling Mountains, with the aim to assess the altitudinal diversity patterns. In total, 63 AM fungal taxa belonging to 12 genera were discovered. Mycorrhizal colonization rates on roots; AM fungal spore density; and fungal species richness, evenness, and diversity had different patterns in terms of the changes of elevation. Root colonization followed a cubical parabolic pattern, with a peak and a foot at an elevation of about 2000 and 3000 m above sea level, respectively. Species richness decreased monotonically from the lowest to the highest elevations. Spore density and ?-diversity exhibited a unimodal pattern and peaked at an elevation of 2107 and 1350 m, respectively. Species evenness increased monotonically at an elevation of between 1050 and 2250 m. ?-Diversity also presented a basically incremental pattern along altitudinal gradients. Our findings suggest that elevation changes were the main factor governing the patterns of AM fungal diversity.
Related JoVE Video
Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings.
Environ Sci Pollut Res Int
PUBLISHED: 05-16-2014
Show Abstract
Hide Abstract
Nanofertilizers may be more effective than regular fertilizers in improving plant nutrition, enhancing nutrition use efficiency, and protecting plants from environmental stress. A hydroponic pot experiment was conducted to study the role of foliar application with 2.5 mM nano-silicon in alleviating Cd stress in rice seedlings (Oryza sativa L. cv Youyou 128) grown in solution added with or without 20 ?M CdCl2. The results showed that Cd treatment decreased the growth and the contents of Mg, Fe, Zn, chlorophyll a, and glutathione (GSH), accompanied by a significant increase in Cd accumulation. However, foliar application with nano-Si improved the growth, Mg, Fe, and Zn nutrition, and the contents of chlorophyll a of the rice seedlings under Cd stress and decreased Cd accumulation and translocation of Cd from root to shoot. Cd treatment produced oxidative stress to rice seedlings indicated by a higher lipid peroxidation level (as malondialdehyde (MDA)) and higher activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and a lower GSH content. However, those nano-Si-treated plants had lower MDA but higher GSH content and different antioxidant enzyme activities, indicating a higher Cd tolerance in them. The results suggested that nano-Si application alleviated Cd toxicity in rice by decreasing Cd accumulation, Cd partitioning in shoot and MDA level and by increasing content of some mineral elements (Mg, Fe, and Zn) and antioxidant capacity.
Related JoVE Video
Effect of eco-remediation using planted floating bed system on nutrients and heavy metals in urban river water and sediment: a field study in China.
Sci. Total Environ.
PUBLISHED: 03-16-2014
Show Abstract
Hide Abstract
To investigate the effect of the eco-remediation on nutrients and heavy metals in river water and sediment, a field study was carried out in a site of a 2-year eco-remediation mainly using planted floating bed system in an urban river in China. Before remediation, the tested properties of water and sediment in the will-be remediated area were not different from the control area, except higher concentrations of chemical oxygen demand (COD) and total nitrogen (TN) in the river water. After remediation, the remediation area showed effective removal of in-stream nutrients and elevation of dissolved oxygen and transparency. Compared to the control area, the remediation area had higher concentration of nitrate and lower concentrations of COD, ammonium, Mn and hexavalent Cr in the river water after a 2-year remediation. The remediation area also showed higher concentrations of organic carbon, TN, nitrate, sulfate, Fe, Cu, Pb and Zn in the sediment than in the control area. Accordingly, special attention should be paid to the ecological risk of heavy metals in sediments and plants in river eco-remediation projects especially in rivers polluted by heavy metals, although the metals were lower than the level of considerable ecological risk in this study.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.