JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
pH-Mediated Potentiation of Aminoglycosides Kills Bacterial Persisters and Eradicates In Vivo Biofilms.
J. Infect. Dis.
PUBLISHED: 05-15-2014
Show Abstract
Hide Abstract
Limitations in treatment of biofilm-associated bacterial infections are often due to subpopulation of persistent bacteria (persisters) tolerant to high concentrations of antibiotics. Based on the increased aminoglycoside efficiency under alkaline conditions, we studied the combination of gentamicin and the clinically compatible basic amino acid L-arginine against planktonic and biofilm bacteria both in vitro and in vivo.
Related JoVE Video
Crystal structure of Saccharomyces cerevisiae mitochondrial GatFAB reveals a novel subunit assembly in tRNA-dependent amidotransferases.
Nucleic Acids Res.
PUBLISHED: 04-01-2014
Show Abstract
Hide Abstract
Yeast mitochondrial Gln-mtRNAGln is synthesized by the transamidation of mischarged Glu-mtRNAGln by a non-canonical heterotrimeric tRNA-dependent amidotransferase (AdT). The GatA and GatB subunits of the yeast AdT (GatFAB) are well conserved among bacteria and eukaryota, but the GatF subunit is a fungi-specific ortholog of the GatC subunit found in all other known heterotrimeric AdTs (GatCAB). Here we report the crystal structure of yeast mitochondrial GatFAB at 2.0 Å resolution. The C-terminal region of GatF encircles the GatA-GatB interface in the same manner as GatC, but the N-terminal extension domain (NTD) of GatF forms several additional hydrophobic and hydrophilic interactions with GatA. NTD-deletion mutants displayed growth defects, but retained the ability to respire. Truncation of the NTD in purified mutants reduced glutaminase and transamidase activities when glutamine was used as the ammonia donor, but increased transamidase activity relative to the full-length enzyme when the donor was ammonium chloride. Our structure-based functional analyses suggest the NTD is a trans-acting scaffolding peptide for the GatA glutaminase active site. The positive surface charge and novel fold of the GatF-GatA interface, shown in this first crystal structure of an organellar AdT, stand in contrast with the more conventional, negatively charged bacterial AdTs described previously.
Related JoVE Video
Gln-tRNAGln synthesis in a dynamic transamidosome from Helicobacter pylori, where GluRS2 hydrolyzes excess Glu-tRNAGln.
Nucleic Acids Res.
PUBLISHED: 08-03-2011
Show Abstract
Hide Abstract
In many bacteria and archaea, an ancestral pathway is used where asparagine and glutamine are formed from their acidic precursors while covalently linked to tRNA(Asn) and tRNA(Gln), respectively. Stable complexes formed by the enzymes of these indirect tRNA aminoacylation pathways are found in several thermophilic organisms, and are called transamidosomes. We describe here a transamidosome forming Gln-tRNA(Gln) in Helicobacter pylori, an ?-proteobacterium pathogenic for humans; this transamidosome displays novel properties that may be characteristic of mesophilic organisms. This ternary complex containing the non-canonical GluRS2 specific for Glu-tRNA(Gln) formation, the tRNA-dependent amidotransferase GatCAB and tRNA(Gln) was characterized by dynamic light scattering. Moreover, we observed by interferometry a weak interaction between GluRS2 and GatCAB (K(D) = 40 ± 5 µM). The kinetics of Glu-tRNA(Gln) and Gln-tRNA(Gln) formation indicate that conformational shifts inside the transamidosome allow the tRNA(Gln) acceptor stem to interact alternately with GluRS2 and GatCAB despite their common identity elements. The integrity of this dynamic transamidosome depends on a critical concentration of tRNA(Gln), above which it dissociates into separate GatCAB/tRNA(Gln) and GluRS2/tRNA(Gln) complexes. Ester bond protection assays show that both enzymes display a good affinity for tRNA(Gln) regardless of its aminoacylation state, and support a mechanism where GluRS2 can hydrolyze excess Glu-tRNA(Gln), ensuring faithful decoding of Gln codons.
Related JoVE Video
Crystal structure of a transfer-ribonucleoprotein particle that promotes asparagine formation.
EMBO J.
PUBLISHED: 04-14-2010
Show Abstract
Hide Abstract
Four out of the 22 aminoacyl-tRNAs (aa-tRNAs) are systematically or alternatively synthesized by an indirect, two-step route requiring an initial mischarging of the tRNA followed by tRNA-dependent conversion of the non-cognate amino acid. During tRNA-dependent asparagine formation, tRNA(Asn) promotes assembly of a ribonucleoprotein particle called transamidosome that allows channelling of the aa-tRNA from non-discriminating aspartyl-tRNA synthetase active site to the GatCAB amidotransferase site. The crystal structure of the Thermus thermophilus transamidosome determined at 3 A resolution reveals a particle formed by two GatCABs, two dimeric ND-AspRSs and four tRNAs(Asn) molecules. In the complex, only two tRNAs are bound in a functional state, whereas the two other ones act as an RNA scaffold enabling release of the asparaginyl-tRNA(Asn) without dissociation of the complex. We propose that the crystal structure represents a transient state of the transamidation reaction. The transamidosome constitutes a transfer-ribonucleoprotein particle in which tRNAs serve the function of both substrate and structural foundation for a large molecular machine.
Related JoVE Video
A tRNA-independent mechanism for transamidosome assembly promotes aminoacyl-tRNA transamidation.
J. Biol. Chem.
Show Abstract
Hide Abstract
Many bacteria lack genes encoding asparaginyl- and/or glutaminyl-tRNA synthetase and consequently rely on an indirect path for the synthesis of both Asn-tRNA(Asn) and Gln-tRNA(Gln). In some bacteria such as Thermus thermophilus, efficient delivery of misacylated tRNA to the downstream amidotransferase (AdT) is ensured by formation of a stable, tRNA-dependent macromolecular complex called the Asn-transamidosome. This complex enables direct delivery of Asp-tRNA(Asn) from the non-discriminating aspartyl-tRNA synthetase to AdT, where it is converted into Asn-tRNA(Asn). Previous characterization of the analogous Helicobacter pylori Asn-transamidosome revealed that it is dynamic and cannot be stably isolated, suggesting the possibility of an alternative mechanism to facilitate assembly of a stable complex. We have identified a novel protein partner called Hp0100 as a component of a stable, tRNA-independent H. pylori Asn-transamidosome; this complex contains a non-discriminating aspartyl-tRNA synthetase, AdT, and Hp0100 but does not require tRNA(Asn) for assembly. Hp0100 also enhances the capacity of AdT to convert Asp-tRNA(Asn) into Asn-tRNA(Asn) by ?35-fold. Our results demonstrate that bacteria have adopted multiple divergent methods for transamidosome assembly and function.
Related JoVE Video
Protein analysis by dynamic light scattering: methods and techniques for students.
Biochem Mol Biol Educ
Show Abstract
Hide Abstract
Dynamic light scattering (DLS) analyses are routinely used in biology laboratories to detect aggregates in macromolecular solutions, to determine the size of proteins, nucleic acids, and complexes or to monitor the binding of ligands. This article is written for graduate and undergraduate students with access to DLS and for faculty members who wish to incorporate DLS into a lab activity, a practical course or research. It reviews the basic concepts of light scattering measurements and addresses four critical aspects of the analysis and interpretation of DLS results. To ensure reproducible quantitative data, attention should be paid to controlling the preparation and handling of proteins or assemblies because variations in the state of aggregation, induced by minor changes in experimental condition or technique, might compromise DLS results and affect protein activity. Variables like temperature, solvent viscosity, and inter-particle interactions may also influence particle size determination. Every point is illustrated by case studies, including a commercially available albumin, a small RNA virus isolated from plants, as well as four soluble proteins and a ribonucleoprotein assembly purified and characterized by students in the frame of their master degree.
Related JoVE Video
The asparagine-transamidosome from Helicobacter pylori: a dual-kinetic mode in non-discriminating aspartyl-tRNA synthetase safeguards the genetic code.
Nucleic Acids Res.
Show Abstract
Hide Abstract
Helicobacter pylori catalyzes Asn-tRNA(Asn) formation by use of the indirect pathway that involves charging of Asp onto tRNA(Asn) by a non-discriminating aspartyl-tRNA synthetase (ND-AspRS), followed by conversion of the mischarged Asp into Asn by the GatCAB amidotransferase. We show that the partners of asparaginylation assemble into a dynamic Asn-transamidosome, which uses a different strategy than the Gln-transamidosome to prevent the release of the mischarged aminoacyl-tRNA intermediate. The complex is described by gel-filtration, dynamic light scattering and kinetic measurements. Two strategies for asparaginylation are shown: (i) tRNA(Asn) binds GatCAB first, allowing aminoacylation and immediate transamidation once ND-AspRS joins the complex; (ii) tRNA(Asn) is bound by ND-AspRS which releases the Asp-tRNA(Asn) product much slower than the cognate Asp-tRNA(Asp); this kinetic peculiarity allows GatCAB to bind and transamidate Asp-tRNA(Asn) before its release by the ND-AspRS. These results are discussed in the context of the interrelation between the Asn and Gln-transamidosomes which use the same GatCAB in H. pylori, and shed light on a kinetic mechanism that ensures faithful codon reassignment for Asn.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.