JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Amino- and carboxyl-terminal domains of Filamin-A interact with CRMP1 to mediate Sema3A signalling.
Nat Commun
PUBLISHED: 09-19-2014
Show Abstract
Hide Abstract
Reorganization of the actin cytoskeleton is an early cellular response to various extracellular signals. Sema3A, a repulsive axon guidance molecule, induces the reorganization of actin cytoskeleton in the growth cones. Collapsin response mediator protein 1 (CRMP1) mediates the intracellular Sema3A signalling through its Ser522 phosphorylation. Here we show that UNC-33, CRMP1 C. elegans homologue, interacts with FLN-1, an actin-binding Filamin-A orthologue. In nematodes, this interaction participates in the projection of DD/VD motor neurons. CRMP1 binds both the actin-binding domain and the last immunoglobulin-like repeat of Filamin-A. The alanine mutants of Filamin-A or CRMP1 in their interacting residues suppress the Sema3A repulsion in neurons. Conversely, a phosphor-mimicking mutant CRMP1(Ser522Asp) enhances the Sema3A response. Atomic-force microscopy analysis reveals that the V-shaped Filamin-A changes to a condensed form with CRMP1(Ser522Asp). CRMP1(Ser522Asp) weakens the F-actin gelation crosslinked by Filamin-A. Thus, phosphorylated CRMP1 may remove Filamin-A from the actin cytoskeleton to facilitate its remodelling.
Related JoVE Video
The cardiovascular actions of DOPA mediated by the gene product of ocular albinism 1.
J. Pharmacol. Sci.
PUBLISHED: 09-04-2014
Show Abstract
Hide Abstract
l-3,4-Dihydroxyphenylalanine (DOPA) is the metabolic precursor of dopamine, and the single most effective agent in the treatment of Parkinson's disease. One problem with DOPA therapy for Parkinson's disease is its cardiovascular side effects including hypotension and syncope, the underlying mechanisms of which are largely unknown. We proposed that DOPA is a neurotransmitter in the central nervous system, but specific receptors for DOPA had not been identified. Recently, the gene product of ocular albinism 1 (OA1) was shown to possess DOPA-binding activity. It was unknown, however, whether or not OA1 is responsible for the actions of DOPA itself. Immunohistochemical examination revealed that OA1 was expressed in the nucleus tractus solitarii (NTS). OA1-positive cells adjacent to tyrosine hydroxylase-positive cell bodies and nerve fibers were detected in the depressor sites of the NTS. OA1 knockdown using oa1-specific shRNA-adenovirus vectors in the NTS reduced the expression levels of OA1 in the NTS. The prior injection of the shRNA against OA1 suppressed the depressor and bradycardic responses to DOPA but not to glutamate in the NTS of anesthetized rats. Thus OA-1 is a functional receptor of DOPA in the NTS, which warrants reexamination of the mechanisms for the therapeutic and untoward actions of DOPA.
Related JoVE Video
Localization of ocular albinism-1 gene product GPR143 in the rat central nervous system.
Neurosci. Res.
PUBLISHED: 08-07-2014
Show Abstract
Hide Abstract
l-3,4-Dihydroxyphenylalanine (DOPA) has been believed to be a precursor of dopamine, and itself being an inert amino acid. Previously, we have proposed DOPA as a neurotransmitter candidate in the central nervous system (CNS). Recent findings have suggested DOPA as an endogenous agonist of a G-protein coupled receptor, ocular albinism 1 gene product (OA1), which is highly expressed in the retinal pigmental epithelium. However, whether OA1 functions as a receptor for DOPA in vivo, and whether this receptor-ligand interaction is responsible for a wide variety of DOPA actions have not been determined yet. To gain insight into the functional implication of OA1, we perform immunohistochemical examination with anti-OA1 antibody to localize OA1 in the adult rat brain. We observed OA1 immunoreactive cells in the hippocampus, cerebral cortex, cerebellum cortex, striatum, substantia nigra, hypothalamic median eminence and supraoptic nucleus, nucleus tractus solitarii and caudal ventrolateral medulla and rostral ventrolateral medulla, medial habenular nucleus and olfactory bulb. This study reveals, for the first time, the unique distribution pattern of OA1-immunoreactive neurons and/or cells in the rat CNS.
Related JoVE Video
Changes in the composition of the extracellular matrix accumulated by mesenchymal stem cells during in vitro expansion.
Anim. Sci. J.
PUBLISHED: 02-26-2014
Show Abstract
Hide Abstract
One of the approaches to preserve the properties of mesenchymal stem cells (MSCs) during in vitro expansion is to use cell culture substrates. MSCs are known to generate the extracellular matrix (ECM) proper to preserve their proliferative capacity in vitro, but extensive expansion is considered to deprive MSCs of the capacity to prepare such ECM. In order to examine the features of ECM proper that is required to preserve the proliferative capacity of MSCs, we analyzed the changes in the composition of ECM accumulated by MSCs during in vitro expansion. Biochemical and immunological analysis showed that collagen and laminin content decreased during expansion. Immunofluorescence and ultrastructural analyses showed that the ECM structure changed from a dynamic fibrous, porous and steric structure to a static, crammed, and planar one. The results of Western blotting analysis suggested loose intermolecular association in ECM molecules accumulated by extensively proliferated MSCs. The ECM prepared by extensively proliferated MSCs was less effective to recover their proliferative capacity than that prepared by less proliferated cells. Our results suggest that a cell culture substrate to expand MSCs requires abundance in collagen and basement membrane components, and steric, porous and fibrous structure in which ECM molecules are tightly associated.
Related JoVE Video
Plexin-A4-dependent retrograde semaphorin 3A signalling regulates the dendritic localization of GluA2-containing AMPA receptors.
Nat Commun
PUBLISHED: 02-11-2014
Show Abstract
Hide Abstract
The dendritic targeting of neurotransmitter receptors is vital for dendritic development and function. However, how such localization is established remains unclear. Here we show that semaphorin 3A (Sema3A) signalling at the axonal growth cone is propagated towards the cell body by retrograde axonal transport and drives AMPA receptor GluA2 to the distal dendrites, which regulates dendritic development. Sema3A enhances glutamate receptor interacting protein 1-dependent localization of GluA2 in dendrites, which is blocked by knockdown of cytoplasmic dynein heavy chain. PlexinA (PlexA), a receptor component for Sema3A, interacts with GluA2 at the immunoglobulin-like Plexin-transcription-factor domain (PlexA-IPT) in somatodendritic regions. Overexpression of PlexA-IPT suppresses dendritic localization of GluA2 and induces aproximal bifurcation phenotype in the apical dendrites of CA1 hippocampal neurons. Thus, we propose a control mechanism by which retrograde Sema3A signalling regulates the glutamate receptor localization through trafficking of cis-interacting PlexA with GluA2 along dendrites.
Related JoVE Video
Amyloid-?25-35 induces impairment of cognitive function and long-term potentiation through phosphorylation of collapsin response mediator protein 2.
Neurosci. Res.
PUBLISHED: 06-12-2013
Show Abstract
Hide Abstract
Alzheimers disease (AD) is characterized by amyloid-? (A?) protein and tau deposition in the brain. Numerous studies have reported a central role of A? in the development of AD, but the pathogenesis is not well understood. Collapsin response mediator protein 2 (CRMP2), an intracellular protein mediating a repulsive axon guidance molecule, Semaphorin3A, is also accumulated in neurofibrillary tangles in AD brains. To gain insight into the role of CRMP2 phosphorylation in AD pathogenesis, we investigated the effects of A? neurotoxicity in CRMP2 phosphorylation-deficient knock-in (crmp2(ki/ki)) mice, in which the serine residue at 522 was replaced with alanine. Intracerebroventricular (i.c.v.) injection of A?25-35 peptide, a neurotoxic fragment of A? protein, to wild-type (wt) mice increased hippocampal phosphorylation of CRMP2. Behavioral assessment revealed that i.c.v. injection of A?25-35 peptide caused impairment of novel object recognition in wt mice, while the same peptide did not in crmp2(ki/ki) mice. In electrophysiological recording, wt and crmp2(ki/ki) mice have similar input-output basal synaptic transmission and paired-pulse ratios. However, long-term potentiation was impaired in hippocampal slices of A?25-35 peptide-treated wt but not those of crmp2(ki/ki). Our findings indicate that CRMP2 phosphorylation is required for A?-induced impairment of cognitive memory and synaptic plasticity.
Related JoVE Video
Contrasting effect of perlecan on adipogenic and osteogenic differentiation of mesenchymal stem cells in vitro.
Anim. Sci. J.
PUBLISHED: 03-07-2013
Show Abstract
Hide Abstract
Perlecan, a basement membrane component, shows diverse functions in different organs and tissues. However, the role of perlecan in differentiation of mesenchymal stem cells (MSCs) has been barely investigated. In this study, we examined the effect of perlecan on adipogenic and osteogenic differentiation of MSCs?in vitro by adding extrinsic perlecan to culture media or blocking the function of intrinsic perlecan expressed into culture media by differentiating MSCs. Extrinsic perlecan suppressed adipogenic differentiation; however, it promoted osteogenic differentiation. These functions were further confirmed by a study of blocking intrinsic perlecan. Perlecan treated with heparitinase-I also showed the suppressive effect on adipogenic differentiation. In contrast, the promotive effect on osteogenic differentiation was found to be heparan sulfate-dependent. Intrinsic perlecan was suggested to be effective at the late stage of adipogenic differentiation by a study of perlecan-blocking performed at distinct periods, but was suggested to be effective at the early stage of osteogenic differentiation. Our results showed perlecan has contrasting effect on adipogenic and osteogenic differentiation of MSCs due to its diverse actions. Based on these outcomes, we recognized that employing extrinsic perlecan or blocking intrinsic perlecan is effective for regulating adipogenic and osteogenic differentiation of MSCs by restricting its direction.
Related JoVE Video
Collapsin response mediator protein 2 is involved in regulating breast cancer progression.
Breast Cancer
PUBLISHED: 01-21-2013
Show Abstract
Hide Abstract
BACKGROUND: Altered expression of collapsin response mediator proteins (CRMPs) has been reported in several malignant tumors, including downregulation of CRMP1 in lung cancer and upregulation of CRMP2 in colorectal cancer. This study aimed to investigate the relationship between CRMP expression and clinicopathological characteristics in patients with breast cancer. METHODS: Twenty-two breast cancer and four normal breast tissues were used to assess CRMP mRNA expression. The average expression level of each CRMP (CRMP1-5) mRNA was analyzed in a subset of breast cancer specimens and compared with that in normal breast tissue by real-time quantitative reverse-transcription polymerase chain reaction. Furthermore, 173 breast cancer specimens and matching normal breast controls were used for immunohistochemistry based on the tissue microarray technique. Levels of CRMP2 and phosphorylated CRMP2 protein were assessed, and possible correlations between the clinicopathological characteristics were evaluated. RESULTS: The expression of CRMP2 mRNA was significantly decreased in breast cancer tissues, while that of the other CRMPs was similar between normal and breast cancer tissues. Immunohistochemistry revealed that CRMP2 protein expression was also decreased in breast cancer tissues (P < 0.001). Phosphorylated CRMP2 was observed in the nuclei of breast cancer cells but not in normal mammary cells (P < 0.001). Furthermore, nuclear phosphorylated CRMP2 expression was increased in proportion to the histological grade and triple-negative subtype. CONCLUSIONS: Reduced CRMP2 expression and elevated expression of nuclear phosphorylated CRMP2 may be associated with breast cancer progression.
Related JoVE Video
Decreased semaphorin3A expression correlates with disease activity and histological features of rheumatoid arthritis.
BMC Musculoskelet Disord
PUBLISHED: 01-12-2013
Show Abstract
Hide Abstract
Rheumatoid arthritis (RA) is an autoimmune disease of which the pathogenetic mechanisms are not fully understood. Semaphorin3A (Sema3A) has an immune regulatory role. Neuropilin1 (NRP1), the primary receptor for Sema3A, is also a receptor for vascular endothelial growth factor 165 (VEGF 165). It has been shown that Sema3A competitively antagonizes VEGF 165 signaling. This study investigated whether Sema3A is expressed in synovial tissues, and is associated with disease activity and the histological features of synovial tissues from RA patients.
Related JoVE Video
A seven-transmembrane receptor that mediates avoidance response to dihydrocaffeic acid, a water-soluble repellent in Caenorhabditis elegans.
J. Neurosci.
PUBLISHED: 11-18-2011
Show Abstract
Hide Abstract
The ability to detect harmful chemicals rapidly is essential for the survival of all animals. In Caenorhabditis elegans (C. elegans), repellents trigger an avoidance response, causing animals to move away from repellents. Dihydrocaffeic acid (DHCA) is a water-soluble repellent and nonflavonoid catecholic compound that can be found in plant products. Using a Xenopus laevis (X. laevis) oocyte expression system, we identified a candidate dihydrocaffeic acid receptor (DCAR), DCAR-1. DCAR-1 is a novel seven-transmembrane protein that is expressed in the ASH avoidance sensory neurons of C. elegans. dcar-1 mutant animals are defective in avoidance response to DHCA, and cell-specific expression of dcar-1 in the ASH neurons of dcar-1 mutant animals rescued the defect in avoidance response to DHCA. Our findings identify DCAR-1 as the first seven-transmembrane receptor required for avoidance of a water-soluble repellent, DHCA, in C. elegans.
Related JoVE Video
Semaphorin 4D, a lymphocyte semaphorin, enhances tumor cell motility through binding its receptor, plexinB1, in pancreatic cancer.
Cancer Sci.
PUBLISHED: 09-13-2011
Show Abstract
Hide Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor, for which the development of new biomarkers and therapeutic targets has become critical. The main cause of poor prognosis in PDAC patients is the high invasive and metastatic potential of the cancer. In the present study, we report a new signaling pathway that was found to mediate the enhanced tumor cell motility in pancreatic cancer. Semaphorin 4D (Sema4D) is a ligand known to be expressed on different cell types, and has been reported to be involved in the regulation of immune functions, epithelial morphogenesis, and tumor growth and metastasis. In this study, we revealed for the first time that the cancer tissue cells expressing Sema4D in PDAC are tumor-infiltrating lymphocytes. The overexpression of Sema4D and of its receptor, plexinB1, was found to be significantly correlated with clinical factors, such as lymph node metastasis, distant metastasis, and poor prognosis in patients with PDAC. Through in vitro analysis, we demonstrated that Sema4D can potentiate the invasiveness of pancreatic cancer cells and we identified the downstream molecules. The binding of Sema4D to plexinB1 induced small GTPase Ras homolog gene family, member A activation and resulted in the phosphorylation of MAPK and Akt. In addition, in terms of potential therapeutic application, we clearly demonstrated that the enhanced-cell invasiveness induced by Sema4D could be inhibited by knockdown of plexinB1, suggesting that blockade of plexinB1 might diminish the invasive potential of pancreatic cancer cells. Our findings provide new insight into possible prognostic biomarkers and therapeutic targets in PDAC patients.
Related JoVE Video
Intranasal administration of semaphorin-3A alleviates sneezing and nasal rubbing in a murine model of allergic rhinitis.
J. Pharmacol. Sci.
PUBLISHED: 08-18-2011
Show Abstract
Hide Abstract
Sneezing and persistent itching of the nasal mucosa are distressing symptoms of allergic rhinitis (AR). Recent studies have revealed that hyperinnervation of sensory neurons in the nasal turbinate is one of the underlying causes of sneezing and itching. Since Semaphorin-3A (Sema3A) has been previously shown to restrict innervation of sensory neurons, it is presumed that reduced Sema3A expression in the nasal mucosa might contribute to the hypersensitivity. Analysis of the mouse model of ovalbumin-sensitized AR demonstrated a decreased expression of Sema3A in the nasal epithelium, which was accompanied by an increased nerve fiber density in the lamina propria of the turbinate. In rescue experiments, intranasal administration of recombinant Sema3A in the AR model mice alleviated sneezing and nasal rubbing symptoms. In addition, histological examinations also revealed that nerve fiber density was decreased in the lamina propria of the Sema3A-treated nasal turbinate. These results suggest that the nasal hypersensitivity of AR may be attributed to reduction of Sema3A expression and intranasal administration of Sema3A may provide a novel approach to alleviate the allergic symptoms for AR treatment.
Related JoVE Video
Cartilage acidic protein-1B (LOTUS), an endogenous Nogo receptor antagonist for axon tract formation.
Science
PUBLISHED: 08-06-2011
Show Abstract
Hide Abstract
Neural circuitry formation depends on the molecular control of axonal projection during development. By screening with fluorophore-assisted light inactivation in the developing mouse brain, we identified cartilage acidic protein-1B as a key molecule for lateral olfactory tract (LOT) formation and named it LOT usher substance (LOTUS). We further identified Nogo receptor-1 (NgR1) as a LOTUS-binding protein. NgR1 is a receptor of myelin-derived axon growth inhibitors, such as Nogo, which prevent neural regeneration in the adult. LOTUS suppressed Nogo-NgR1 binding and Nogo-induced growth cone collapse. A defasciculated LOT was present in lotus-deficient mice but not in mice lacking both lotus- and ngr1. These findings suggest that endogenous antagonism of NgR1 by LOTUS is crucial for normal LOT formation.
Related JoVE Video
Thioredoxin mediates oxidation-dependent phosphorylation of CRMP2 and growth cone collapse.
Sci Signal
PUBLISHED: 04-28-2011
Show Abstract
Hide Abstract
Semaphorin3A (Sema3A) is a repulsive guidance molecule for axons, which acts by inducing growth cone collapse through phosphorylation of CRMP2 (collapsin response mediator protein 2). Here, we show a role for CRMP2 oxidation and thioredoxin (TRX) in the regulation of CRMP2 phosphorylation and growth cone collapse. Sema3A stimulation generated hydrogen peroxide (H2O2) through MICAL (molecule interacting with CasL) and oxidized CRMP2, enabling it to form a disulfide-linked homodimer through cysteine-504. Oxidized CRMP2 then formed a transient disulfide-linked complex with TRX, which stimulated CRMP2 phosphorylation by glycogen synthase kinase-3, leading to growth cone collapse. We also reconstituted oxidation-dependent phosphorylation of CRMP2 in vitro, using a limited set of purified proteins. Our results not only clarify the importance of H2O2 and CRMP2 oxidation in Sema3A-induced growth cone collapse but also indicate an unappreciated role for TRX in linking CRMP2 oxidation to phosphorylation.
Related JoVE Video
CRMP5 (collapsin response mediator protein 5) regulates dendritic development and synaptic plasticity in the cerebellar Purkinje cells.
J. Neurosci.
PUBLISHED: 02-04-2011
Show Abstract
Hide Abstract
Collapsin response mediator protein 5 (CRMP5) is one of the CRMP members that expresses abundantly in the developing brain. To examine the in vivo function of CRMP5, we generated crmp5-deficient (crmp5(-/-)) mice. Anti-calbindin immunofluorescence studies of crmp5(-/-) mice revealed aberrant dendrite morphology; specifically, a decrease in the size of soma and diameter of primary dendrite of the cerebellar Purkinje cells at postnatal day 21 (P21) and P28, but not at P14. Coincidentally, CRMP5 is detected in Purkinje cells at P21 and P28 from crmp5(+/-) mice. In cerebellar slices of crmp5(-/-) mice, the induction of long-term depression of excitatory synaptic transmission between parallel fibers and Purkinje cells was deficient. Given that brain-derived neurotrophic factor (BDNF) plays major roles in dendritic development, we tried to elucidate the possible roles of CRMP5 in BDNF signaling. The effect of BDNF to induce dendritic branching was markedly attenuated in cultured crmp5(-/-) neurons. Furthermore, CRMP5 was tyrosine phosphorylated when coexpressed with neurotrophic tyrosine kinase receptor type 2 (TrkB), a receptor for BDNF, in HEK293T cells. These findings suggest that CRMP5 is involved in the development, maintenance and synaptic plasticity of Purkinje cells.
Related JoVE Video
Increased proximal bifurcation of CA1 pyramidal apical dendrites in sema3A mutant mice.
J. Comp. Neurol.
PUBLISHED: 08-06-2009
Show Abstract
Hide Abstract
Semaphorin-3A (Sema3A) is an attractive guidance molecule for cortical apical dendrites. To elucidate the role of Sema3A in hippocampal dendritic formation, we examined the Sema3A expression pattern in the perinatal hippocampal formation and analyzed hippocampal dendrites of the brains from young adult sema3A mutant mice. Sema3A protein was predominantly expressed in the hippocampal plate and the inner marginal zone at the initial period of apical dendritic growth. Neuropilin-1 and plexin-A, the receptor components for Sema3A, were also localized in the same regions. The Golgi impregnation method revealed that in wildtype mice more than 90% of hippocampal CA1 pyramidal neurons extended a single trunk or apical trunks bifurcated in stratum radiatum. Seven percent of the pyramidal neurons showed proximal bifurcation of apical trunks in stratum pyramidale or at the border of the stratum pyramidale and stratum radiatum. In sema3A mutant mice, proximally bifurcated apical dendrites were increased to 32%, while the single apical dendritic pyramidal neurons were decreased. We designate this phenotype in sema3A mutant mice as "proximal bifurcation." In the dissociated culture system, approximately half of the hippocampal neurons from wildtype mice resembled pyramidal neurons, which possess a long, thick, and tapered dendrite. In contrast, only 30% of the neurons from sema3A mutants exhibited pyramidal-like morphology. Proximal bifurcation of CA1 pyramidal neurons was also increased in the mutant mice of p35, an activator of cyclin-dependent kinase 5 (Cdk5). Thus, Sema3A may facilitate the initial growth of CA1 apical dendrites via the activation of p35/Cdk5, which may in turn signal hippocampal development.
Related JoVE Video
Semaphorin3A signaling mediated by Fyn-dependent tyrosine phosphorylation of collapsin response mediator protein 2 at tyrosine 32.
J. Biol. Chem.
PUBLISHED: 08-03-2009
Show Abstract
Hide Abstract
Collapsin response mediator protein 2 (CRMP2) is an intracellular protein that mediates signaling of Semaphorin3A (Sema3A), a repulsive axon guidance molecule. Fyn, a Src-type tyrosine kinase, is involved in the Sema3A signaling. However, the relationship between CRMP2 and Fyn in this signaling pathway is still unknown. In our research, we demonstrated that Fyn phosphorylated CRMP2 at Tyr(32) residues in HEK293T cells. Immunohistochemical analysis using a phospho-specific antibody at Tyr(32) of CRMP showed that Tyr(32)-phosphorylated CRMP was abundant in the nervous system, including dorsal root ganglion neurons, the molecular and Purkinje cell layer of adult cerebellum, and hippocampal fimbria. Overexpression of a nonphosphorylated mutant (Tyr(32) to Phe(32)) of CRMP2 in dorsal root ganglion neurons interfered with Sema3A-induced growth cone collapse response. These results suggest that Fyn-dependent phosphorylation of CRMP2 at Tyr(32) is involved in Sema3A signaling.
Related JoVE Video
Protein tyrosine phosphatase SHP2 is involved in Semaphorin 4D-induced axon repulsion.
Biochem. Biophys. Res. Commun.
PUBLISHED: 05-05-2009
Show Abstract
Hide Abstract
Semaphorin-4D (Sema4D), a member of class 4 membrane-bound Semaphorins, acts as a chemorepellant to the axons of retinal ganglion cells and hippocampal neurons. Plexin-B1, a neuronal Sema4D receptor, associates with either one of receptor tyrosine kinases, c-Met or ErbB2, to mediate Sema4D-signaling. In contrast to this significance, the involvement of protein tyrosine phosphatases in Semaphorin-signaling remains unknown. We here show that Src homology 2-containing protein-tyrosine phosphatase 2 (SHP2) participates in Sema4D-signaling. SHP2 was localized in the growth cones of chick embryonic retinal ganglion neurons. Phenylarsine oxide, a protein tyrosine phosphatase inhibitor, suppressed Sema4D-induced contractile response in COS-7 cells expressing Plexin-B1. Ectopic expression of a phosphatase-inactive mutant of SHP2 in the retinal ganglion cells attenuated Sema4D-induced growth cone collapse response. A SHP1/2 specific inhibitor, 8-hydroxy-7-(6-sulfonaphthalen-2-yl)diazenyl-quinoline-5-sulfonic acid (NSC-87877), also suppressed this collapse response. These results suggest that SHP2-mediated tyrosine dephosphorylation is an important step in Sema4D-induced axon repulsion.
Related JoVE Video
Regulation of neurite outgrowth mediated by localized phosphorylation of protein translational factor eEF2 in growth cones.
Dev Neurobiol
Show Abstract
Hide Abstract
Nerve growth cones contain mRNA and its translational machinery and thereby synthesize protein locally. The regulatory mechanisms in the growth cone, however, remain largely unknown. We previously found that the calcium entry-induced increase of phosphorylation of eukaryotic elongation factor-2 (eEF2), a key component of mRNA translation, within growth cones showed growth arrest of neurites. Because dephosphorylated eEF2 and phosphorylated eEF2 are known to promote and inhibit mRNA translation, respectively, the data led to the hypothesis that eEF2-mediating mRNA translation may regulate neurite outgrowth. Here, we validated the hypothesis by using a chromophore-assisted light inactivation (CALI) technique to examine the roles of localized eEF2 and eEF2 kinase (EF2K), a specific calcium calmodulin-dependent enzyme for eEF2 phosphorylation, in advancing growth cones of cultured chick dorsal root ganglion (DRG) neurons. The phosphorylated eEF2 was weakly distributed in advancing growth cones, whereas eEF2 phosphorylation was increased by extracellular adenosine triphosphate (ATP)-evoked calcium transient through P2 purinoceptors in growth cones and resulted in growth arrest of neurites. The increase of eEF2 phosphorylation within growth cones by inhibition of protein phosphatase 2A known to dephosphorylate eEF2 also showed growth arrest of neurites. CALI of eEF2 within growth cones resulted in retardation of neurite outgrowth, whereas CALI of EF2K enhanced neurite outgrowth temporally. Moreover, CALI of EF2K abolished the ATP-induced retardation of neurite outgrowth. These findings suggest that an eEF2 phosphorylation state localized to the growth cone regulates neurite outgrowth.
Related JoVE Video
GSK3?/axin-1/?-catenin complex is involved in semaphorin3A signaling.
J. Neurosci.
Show Abstract
Hide Abstract
Semaphorin3A (Sema3A) exerts a wide variety of biological functions by regulating reorganization of actin and tubulin cytoskeletal proteins through signaling pathways including sequential phosphorylation of collapsin response mediator protein 1 (CRMP1) and CRMP2 by cyclin-dependent kinase-5 and glycogen synthase kinase-3? (GSK3?). To delineate how GSK3? mediates Sema3A signaling, we here determined the substrates of GSK3? involved. Introduction of either GSK3? mutants, GSK3?-R96A, L128A, or K85M into chick dorsal root ganglion (DRG) neurons suppressed Sema3A-induced growth cone collapse, thereby suggesting that unprimed as well as primed substrates are involved in Sema3A signaling. Axin-1, a key player in Wnt signaling, is an unprimed substrate of GSK3?. The phosphorylation of Axin-1 by GSK3? accelerates the association of Axin-1 with ?-catenin. Immunocytochemical studies revealed that Sema3A induced an increase in the intensity levels of ?-catenin in the DRG growth cones. Axin-1 siRNA knockdown suppressed Sema3A-induced growth cone collapse. The reintroduction of RNAi-resistant Axin-1 (rAxin-1)-wt rescued the responsiveness to Sema3A, while that of nonphosphorylated mutants, rAxin S322A/S326A/S330A and T485A/S490A/S497A, did not. Sema3A also enhanced the colocalization of GSK3?, Axin-1, and ?-catenin in the growth cones. The increase of ?-catenin in the growth cones was suppressed by the siRNA knockdown of Axin-1. Furthermore, either Axin-1 or ?-catenin RNAi knockdown suppressed the internalization of Sema3A. These results suggest that Sema3A induces the formation of GSK3?/Axin-1/?-catenin complex, which regulates signaling cascade of Sema3A via an endocytotic mechanism. This finding should provide clue for understanding of mechanisms of a wide variety of biological functions of Sema3A.
Related JoVE Video
Class 3 semaphorins as a therapeutic target.
Expert Opin. Ther. Targets
Show Abstract
Hide Abstract
The semaphorins were initially described as axon guidance molecules that play important roles in the development of nervous system. Recent studies suggest that semaphorins and their receptors also exert such diverse functions as immune response, control of vascular endothelial cell motility and invasion of many types of cancer cells.
Related JoVE Video
Phosphorylation of CRMP2 is involved in proper bifurcation of the apical dendrite of hippocampal CA1 pyramidal neurons.
Dev Neurobiol
Show Abstract
Hide Abstract
The neural circuit in the hippocampus is important for higher brain functions. Dendrites of CA1 pyramidal neurons mainly receive input from the axons of CA3 pyramidal neurons in this neural circuit. A CA1 pyramidal neuron has a single apical dendrite and multiple basal dendrites. In wild-type mice, most of CA1 pyramidal neurons extend a single trunk, or alternatively, the apical dendrite bifurcates into two daughter trunks at the stratum radiatum layer. We previously reported the proximal bifurcation phenotype in Sema3A-/-, p35-/-, and CRMP4-/- mice. Cdk5/p35 phosphorylates CRMP2 at Ser522, and inhibition of this phosphorylation suppressed Sema3A-induced growth cone collapse. In this study, we analyzed the bifurcation points of the apical dendrites of hippocampal CA1 pyramidal neurons in CRMP2KI/KI mice in which the Cdk5/p35-phosphorylation site Ser522 was mutated into an Ala residue. The proximal bifurcation phenotype was not observed in CRMP2KI/KI mice; however, severe proximal bifurcation of apical dendrites was found in CRMP2KI/KI;CRMP4-/- mice. Cultured hippocampal neurons from CRMP2KI/KI and CRMP2KI/KI;CRMP4-/- embryos showed an increased number of dendritic branching points compared to those from wild-type embryos. Sema3A increased the number of branching points and the total length of dendrites in wild-type hippocampal neurons, but these effects of Sema3A for dendrites were not observed in CRMP2KI/KI and CRMP2KI/KI;CRMP4-/-hippocampal neurons. Binding of CRMP2 to tubulin increased in both CRMP2KI/KI and CRMP2KI/KI:CRMP4-/- brain lysates. These results suggest that CRMP2 and CRMP4 synergistically regulate dendritic development, and CRMP2 phosphorylation is critical for proper bifurcation of apical dendrite of CA1 pyramidal neurons.
Related JoVE Video
Collapsin response mediator protein 4 expression is associated with liver metastasis and poor survival in pancreatic cancer.
Ann. Surg. Oncol.
Show Abstract
Hide Abstract
Pancreatic cancer is an aggressive malignancy with one of the worst mortality rates of all cancers. Recently, collapsin response mediator proteins (CRMPs) were reported to be associated with proliferation, apoptosis, differentiation, and invasion in several cancers. However, CRMP expression and their role in pancreatic cancer have not been investigated. This study aimed to clarify the clinical significance of CRMPs in pancreatic cancer.
Related JoVE Video
Decreased expression of semaphorin-3A, a neurite-collapsing factor, is associated with itch in psoriatic skin.
Acta Derm. Venereol.
Show Abstract
Hide Abstract
Pruritus is a common symptom of psoriasis, which affects quality of life. This symptom accompanies the hyper-innervation of sensory C-fibres in psoriatic lesions. Two extracellular molecules, nerve growth factor (NGF) and semaphorin-3A, regulate C-fibre extension. In this study, the expression levels of these 2 molecules in biopsy specimens from psoriatic and healthy skin were quantified by immunohistochemistry and quantitative reverse-transcription PCR. Semaphorin-3A expression was lower in the psoriatic samples compared with the healthy samples, whereas NGF was higher. C-fibre innervation in the epidermis was also increased in psoriatic skin. Semaphorin-3A mRNA expression was negatively correlated with itch intensity and severity of psoriasis. We propose that decreased semaphorin-3A and increased NGF expression levels may trigger the outgrowth of C-fibres, leading to pruritus.
Related JoVE Video
Oral administration of collagen tripeptide improves dryness and pruritus in the acetone-induced dry skin model.
J. Dermatol. Sci.
Show Abstract
Hide Abstract
Dry skin causes pruritus and discomfort in patients with xerosis and atopic dermatitis. General treatment for skin dryness involves the topical application of an emollient. However, more effective, simpler therapies are desired. Collagen tripeptide (CTP) is a highly purified, non-antigenic, low-allergenic collagen fraction that is known to have various biological effects.
Related JoVE Video
The carboxyl-terminal region of Crtac1B/LOTUS acts as a functional domain in endogenous antagonism to Nogo receptor-1.
Biochem. Biophys. Res. Commun.
Show Abstract
Hide Abstract
Myelin-derived axon growth inhibitors, such as Nogo, bind to Nogo receptor-1 (NgR1) and thereby limit the action of axonal regeneration after injury in the adult central nervous system. Recently, we have found that cartilage acidic protein-1B (Crtac1B)/lateral olfactory tract usher substance (LOTUS) binds to NgR1 and functions as an endogenous NgR1 antagonist. To examine the functional domain of LOTUS in the antagonism to NgR1, analysis using the deletion mutants of LOTUS was performed and revealed that the carboxyl-terminal region (UA/EC domain) of LOTUS bound to NgR1. The UA/EC fragment of LOTUS overexpressed together with NgR1 in COS7 cells abolished the binding of Nogo66 to NgR1. Overexpression of the UA/EC fragment in cultured chick dorsal root ganglion neurons suppressed Nogo66-induced growth cone collapse. These findings suggest that the UA/EC region is a functional domain of LOTUS serving for an antagonistic action to NgR1.
Related JoVE Video
Phosphorylation of CRMP2 (collapsin response mediator protein 2) is involved in proper dendritic field organization.
J. Neurosci.
Show Abstract
Hide Abstract
Collapsin response mediator proteins (CRMPs) are intracellular proteins that mediate signals for several extracellular molecules, such as Semaphorin3A and neurotrophins. The phosphorylation of CRMP1 and CRMP2 by Cdk5 at Ser522 is involved in axonal guidance and spine development. Here, we found that the Ser522-phosphorylated CRMP1 and/or CRMP2 are enriched in the dendrites of cultured cortical neurons and P7 cortical section. To determine the physiological role of CRMPs in dendritic development, we generated CRMP2 knock-in mutant mice (crmp2ki/ki) in which the Ser residue at 522 was replaced with Ala. Strikingly, the cortical basal dendrites of double mutant crmp2ki/ki and crmp1-/- mice exhibited severe abnormal dendritic patterning, which we defined as "curling phenotype." These findings demonstrate that the function of CRMP1 and CRMP2 synergistically control dendritic projection, and the phosphorylation of CRMP2 at Ser522 is essential for proper dendritic field organization in vivo.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.