JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads.
J Environ Radioact
PUBLISHED: 02-28-2013
Show Abstract
Hide Abstract
Calcium alginate beads are potential biosorbent for radionuclides removal as they contain carboxyl groups. However, until now limited information is available concerning the uptake behavior of uranium by this polymer gel, especially when sorption equilibrium, kinetics and thermodynamics are concerned. In present work, batch experiments were carried out to study the equilibrium, kinetics and thermodynamics of uranium sorption by calcium alginate beads. The effects of initial solution pH, sorbent amount, initial uranium concentration and temperature on uranium sorption were also investigated. The determined optimal conditions were: initial solution pH of 3.0, added sorbent amount of 40 mg, and uranium sorption capacity increased with increasing initial uranium concentration and temperature. Equilibrium data obtained under different temperatures were fitted better with Langmuir model than Freundlich model, uranium sorption was dominated by a monolayer way. The kinetic data can be well depicted by the pseudo-second-order kinetic model. The activation energy derived from Arrhenius equation was 30.0 kJ/mol and the sorption process had a chemical nature. Thermodynamic constants such as ?H(0), ?S(0) and ?G(0) were also evaluated, results of thermodynamic study showed that the sorption process was endothermic and spontaneous.
Related JoVE Video
Biosorption of uranium by magnetically modified Rhodotorula glutinis.
Enzyme Microb. Technol.
Show Abstract
Hide Abstract
Adsorption of uranium from aqueous solution onto the magnetically modified yeast cell, Rhodotorula glutinis, was investigated in a batch system. Factors influencing sorption such as initial solution pH, biomass dosage, contact time, temperature, initial uranium concentration and other common cations were analyzed. Sorption isotherm, kinetic and thermodynamic studies of uranium on magnetically modified R. glutinis were also carried out. The temperature dependent equilibrium data agreed well with the Langmuir model. Kinetic data obtained at different temperatures were simulated using pseudo-first-order and pseudo-second-order kinetic models, the pseudo-second-order kinetic model was found to describe the data better with correlation coefficients near 1.0. The thermodynamic parameters, ?H°, ?S° and ?G° were calculated from the sorption data gained at different temperatures. These thermodynamic parameters showed that the sorption process was endothermic and spontaneous. All results indicated that magnetically modified R. glutinis can be a potential sorbent for uranium wastewater treatment.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.