JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Screening for E3-Ubiquitin ligase inhibitors: challenges and opportunities.
Oncotarget
PUBLISHED: 09-20-2014
Show Abstract
Hide Abstract
The ubiquitin proteasome system (UPS) plays a role in the regulation of most cellular pathways, and its deregulation has been implicated in a wide range of human pathologies that include cancer, neurodegenerative and immunological disorders and viral infections. Targeting the UPS by small molecular regulators thus provides an opportunity for the development of therapeutics for the treatment of several diseases. The proteasome inhibitor Bortezomib was approved for treatment of hematologic malignancies by the FDA in 2003, becoming the first drug targeting the ubiquitin proteasome system in the clinic. Development of drugs targeting specific components of the ubiquitin proteasome system, however, has lagged behind, mainly due to the complexity of the ubiquitination reaction and its outcomes. However, significant advances have been made in recent years in understanding the molecular nature of the ubiquitination system and the vast variety of cellular signals that it produces. Additionally, improvement of screening methods, both in vitro and in silico, have led to the discovery of a number of compounds targeting components of the ubiquitin proteasome system, and some of these have now entered clinical trials. Here, we discuss the current state of drug discovery targeting E3 ligases and the opportunities and challenges that it provides.
Related JoVE Video
Metabolic effect of TAp63?: enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense.
Oncotarget
PUBLISHED: 09-18-2014
Show Abstract
Hide Abstract
TAp63? is a member of the p53 family, which plays a central role in epithelial cancers. Recently, a role has emerged for p53 family members in cancer metabolic modulation. In order to assess whether TAp63? plays a role in cancer metabolism, we exploited p53-null osteosarcoma Tet-On Saos-2 cells, in which the expression of TAp63? was dependent on doxycycline supplementation to the medium. Metabolomics labeling experiments were performed by incubating the cells in 13C-glucose or 13C15N-glutamine-labeled culture media, as to monitor metabolic fluxes upon induced expression of TAp63?. Induced expression of TAp63? resulted in cell cycle arrest at the G1 phase. From a metabolic standpoint, expression of Tap63? promoted glycolysis and the pentose phosphate pathway, which was uncoupled from nucleotide biosynthesis, albeit prevented oxidative stress in the form of oxidized glutathione. Double 13C-glucose and 13C15N-glutamine metabolic labeling confirmed that induced expression of TAp63? corresponded to a decreased flux of pyruvate to the Krebs cycle and decreased utilization of glutamine for catabolic purposes in the TCA cycle. Results were not conclusive in relation to anabolic utilization of labeled glutamine, since it is unclear to what extent the observed minor TAp63?-dependent increases of glutamine-derived labeling in palmitate could be tied to increased rates of reductive carboxylation and de novo synthesis of fatty acids. Finally, bioinformatics elaborations highlighted a link between patient survival rates and the co-expression of p63 and rate limiting enzymes of the pentose phosphate pathway, G6PD and PGD.
Related JoVE Video
p63 transcriptionally regulates the expression of matrix metallopeptidase 13.
Oncotarget
PUBLISHED: 03-25-2014
Show Abstract
Hide Abstract
p63 is a transcriptional factor belonging to p53 family of genes. Beside the role in cancer, partially shared with p53 and the other member p73, p63 also plays exclusive roles in development and homeostasis of ectodermal/epidermal-related organs. Here we show that p63 transcriptionally controls the expression of the matrix metallopeptidase 13 (MMP13). p63 binds a p53-like responsive element in the human promoter of MMP13, thus promoting the activation of its transcription. The catalytic activity of MMP13 is required in high invasion capacity of metastatic cancer cells, however, although p63 and MMP13 expression correlates in cancer patients, their co-expression does not predict cancer patient survival. Our results demonstrate that p63 directly controls MMP13 expression.
Related JoVE Video
Large scale integration of drug-target information reveals poly-pharmacological drug action mechanisms in tumor cell line growth inhibition assays.
Oncotarget
PUBLISHED: 02-21-2014
Show Abstract
Hide Abstract
Understanding therapeutic mechanisms of drug anticancer cytotoxicity represents a key challenge in preclinical testing. Here we have performed a meta-analysis of publicly available tumor cell line growth inhibition assays (~ 70 assays from 6 independent experimental groups covering ~ 500 000 molecules) with the primary goal of understanding molecular therapeutic mechanisms of cancer cytotoxicity. To implement this we have collected currently available information on protein targets for molecules that were tested in the assays. We used a statistical methodology to identify protein targets overrepresented among molecules exhibiting cancer cytotoxicity with the particular focus of identifying overrepresented patterns consisting of several proteins (i.e. proteins "A" and "B" and "C"). Our analysis demonstrates that targeting individual proteins can result in a significant increase (up to 50-fold) of the observed odds for a molecule to be an efficient inhibitor of tumour cell line growth. However, further insight into potential molecular mechanisms reveals a multi-target mode of action: targeting a pattern of several proteins drastically increases the observed odds (up to 500-fold) for a molecule to be tumour cytotoxic. In contrast, molecules targeting only one protein but not targeting an additional set of proteins tend to be nontoxic. Our findings support a poly-pharmacology drug discovery paradigm, demonstrating that anticancer cytotoxicity is a product, in most cases, of multi-target mode of drug action.
Related JoVE Video
MicroRNAs in human skin ageing.
Ageing Res. Rev.
PUBLISHED: 02-17-2014
Show Abstract
Hide Abstract
The skin protects humans from the surrounding environment. Tissues undergo continuous renewal throughout an individual's lifetime; however, there is a decline in the regenerative potential of tissue with age. The accumulation of senescent cells over time probably reduces tissue regenerative capacity and contributes to the physiological ageing of the tissue itself. The mechanisms that govern ageing remain unclear and are under intense investigation, and insight could be gained by studying the mechanisms involved in cellular senescence. In vitro, keratinocytes and dermal fibroblasts undergo senescence in response to multiple cellular stresses, including the overproduction of reactive oxygen species and the shortening of telomeres, or simply by reaching the end of their replicative potential (i.e., reaching replicative senescence). Recent findings demonstrate that microRNAs play key roles in regulating the balance between a cell's proliferative capacity and replicative senescence. Here, we will focus on the molecular mechanisms regulated by senescence-associated microRNAs and their validated targets in both keratinocytes and dermal fibroblasts.
Related JoVE Video
HACE1 reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-10-2014
Show Abstract
Hide Abstract
Oxidative stress plays a key role in late onset diseases including cancer and neurodegenerative diseases such as Huntington disease. Therefore, uncovering regulators of the antioxidant stress responses is important for understanding the course of these diseases. Indeed, the nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of the cellular antioxidative stress response, is deregulated in both cancer and neurodegeneration. Similar to NRF2, the tumor suppressor Homologous to the E6-AP Carboxyl Terminus (HECT) domain and Ankyrin repeat containing E3 ubiquitin-protein ligase 1 (HACE1) plays a protective role against stress-induced tumorigenesis in mice, but its roles in the antioxidative stress response or its involvement in neurodegeneration have not been investigated. To this end we examined Hace1 WT and KO mice and found that Hace1 KO animals exhibited increased oxidative stress in brain and that the antioxidative stress response was impaired. Moreover, HACE1 was found to be essential for optimal NRF2 activation in cells challenged with oxidative stress, as HACE1 depletion resulted in reduced NRF2 activity, stability, and protein synthesis, leading to lower tolerance against oxidative stress triggers. Strikingly, we found a reduction of HACE1 levels in the striatum of Huntington disease patients, implicating HACE1 in the pathology of Huntington disease. Moreover, ectopic expression of HACE1 in striatal neuronal progenitor cells provided protection against mutant Huntingtin-induced redox imbalance and hypersensitivity to oxidative stress, by augmenting NRF2 functions. These findings reveal that the tumor suppressor HACE1 plays a role in the NRF2 antioxidative stress response pathway and in neurodegeneration.
Related JoVE Video
TAp73 is required for spermatogenesis and the maintenance of male fertility.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 01-21-2014
Show Abstract
Hide Abstract
The generation of viable sperm proceeds through a series of coordinated steps, including germ cell self-renewal, meiotic recombination, and terminal differentiation into functional spermatozoa. The p53 family of transcription factors, including p53, p63, and p73, are critical for many physiological processes, including female fertility, but little is known about their functions in spermatogenesis. Here, we report that deficiency of the TAp73 isoform, but not p53 or ?Np73, results in male infertility because of severe impairment of spermatogenesis. Mice lacking TAp73 exhibited increased DNA damage and cell death in spermatogonia, disorganized apical ectoplasmic specialization, malformed spermatids, and marked hyperspermia. We demonstrated that TAp73 regulates the mRNA levels of crucial genes involved in germ stem/progenitor cells (CDKN2B), spermatid maturation/spermiogenesis (metalloproteinase and serine proteinase inhibitors), and steroidogenesis (CYP21A2 and progesterone receptor). These alterations of testicular histology and gene expression patterns were specific to TAp73 null mice and not features of mice lacking p53. Our work provides previously unidentified in vivo evidence that TAp73 has a unique role in spermatogenesis that ensures the maintenance of mitotic cells and normal spermiogenesis. These results may have implications for the diagnosis and management of human male infertility.
Related JoVE Video
Serine and glycine metabolism in cancer.
Trends Biochem. Sci.
PUBLISHED: 01-16-2014
Show Abstract
Hide Abstract
Serine and glycine are biosynthetically linked, and together provide the essential precursors for the synthesis of proteins, nucleic acids, and lipids that are crucial to cancer cell growth. Moreover, serine/glycine biosynthesis also affects cellular antioxidative capacity, thus supporting tumour homeostasis. A crucial contribution of serine/glycine to cellular metabolism is through the glycine cleavage system, which refuels one-carbon metabolism; a complex cyclic metabolic network based on chemical reactions of folate compounds. The importance of serine/glycine metabolism is further highlighted by genetic and functional evidence indicating that hyperactivation of the serine/glycine biosynthetic pathway drives oncogenesis. Recent developments in our understanding of these pathways provide novel translational opportunities for drug development, dietary intervention, and biomarker identification of human cancers.
Related JoVE Video
How the TP53 family proteins TP63 and TP73 contribute to tumorigenesis: regulators and effectors.
Hum. Mutat.
PUBLISHED: 01-12-2014
Show Abstract
Hide Abstract
In mammals, the p53 family comprises two additional members, p63 and p73 (hereafter referred to as TP53, TP63, and TP73, respectively). The usage of two alternative promoters produces protein variants either with (transactivating [TA] isoforms) or without (?N isoforms) the N-terminal transactivation domain (TAD). In general, the TA proteins exert TP53-like tumor-suppressive activities through their ability to activate a common set of target genes. The ?N proteins can act as dominant-negative inhibitors of the transcriptionally active family members. Additionally, they possess intrinsic-specific biological activities due to the presence of alternative TADs, and as a result of engaging a different set of regulators. This review summarizes the current understanding of upstream regulators and downstream effectors of the TP53 family proteins, with particular emphasis on those that are relevant for their role in tumorigenesis. Furthermore, we highlight the existence of networks and cross-talks among the TP53 family members, their modulators, as well as the transcriptional targets.
Related JoVE Video
Anti-oxidative stress response genes: bioinformatic analysis of their expression and relevance in multiple cancers.
Oncotarget
PUBLISHED: 12-18-2013
Show Abstract
Hide Abstract
Cells mount a transcriptional anti-oxidative stress (AOS) response program to scavenge reactive oxygen species (ROS) that arise from chemical, physical, and metabolic challenges. This protective program has been shown to reduce carcinogenesis triggered by chemical and physical insults. However, it is also hijacked by established cancers to thrive and proliferate within the hostile tumor microenvironment and to gain resistance against chemo- and radiotherapies. Therefore, targeting the AOS response proteins that are exploited by cancer cells is an attractive therapeutic strategy. In order to identify the AOS genes that are suspected to support cancer progression and resistance, we analyzed the expression patterns of 285 genes annotated for being involved in oxidative stress in 994 tumors and 353 normal tissues. Thereby we identified a signature of 116 genes that are highly overexpressed in multiple carcinomas while being only minimally expressed in normal tissues. To establish which of these genes are more likely to functionally drive cancer resistance and progression, we further identified those whose overexpression correlates with negative patient outcome in breast and lung carcinoma. Gene-set enrichment, GO, network, and pathway analyses revealed that members of the thioredoxin and glutathione pathways are prominent components of this oncogenic signature and that activation of these pathways is common feature of many cancer entities. Interestingly, a large fraction of these AOS genes are downstream targets of the transcription factors NRF2, NF-kappaB and FOXM1, and relay on NADPH for their enzymatic activities highlighting promising drug targets. We discuss these findings and propose therapeutic strategies that may be applied to overcome cancer resistance.
Related JoVE Video
Lysine-specific modifications of p53: a matter of life and death?
Oncotarget
PUBLISHED: 12-04-2013
Show Abstract
Hide Abstract
Post-translational modifications provide a fine-tuned control of protein function(s) in the cell. The well-known tumour suppressor p53 is subject to many post-translational modifications, which alter its activity, localization and stability, thus ultimately modulating its response to various forms of genotoxic stress. In this review, we focus on the role of recently discovered lysine-specific modifications of p53, methylation and acetylation in particular, and their effects on p53 activity in damaged cells. We also discuss a possibility of mutual influence of covalent modifications in the p53 and histone proteins located in the vicinity of p53 binding sites in chromatin and propose important ramifications stemming from this hypothesis.
Related JoVE Video
TAp73 knockout mice show morphological and functional nervous system defects associated with loss of p75 neurotrophin receptor.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 11-04-2013
Show Abstract
Hide Abstract
Total and N-terminal isoform selective p73 knockout mice show a variety of central nervous system defects. Here we show that TAp73 is a transcriptional activator of p75 neurotrophin receptor (p75(NTR)) and that p75(NTR) mRNA and protein levels are strongly reduced in the central and peripheral nervous systems of p73 knockout mice. In parallel, primary cortical neurons from p73 knockout mice showed a reduction in neurite outgrowth and in nerve growth factor-mediated neuronal differentiation, together with reduced miniature excitatory postsynaptic current frequencies and behavioral defects. p73 null mice also have impairments in the peripheral nervous system with reduced thermal sensitivity, axon number, and myelin thickness. At least some of these morphological and functional impairments in p73 null cells can be rescued by p75(NTR) re-expression. Together, these data demonstrate that loss of p75(NTR) contributes to the neurological phenotype of p73 knockout mice.
Related JoVE Video
ITCH deficiency protects from diet-induced obesity.
Diabetes
PUBLISHED: 10-29-2013
Show Abstract
Hide Abstract
Classically activated macrophages (M1) secrete pro-inflammatory cytokine and are predominant in obese adipose tissue. M2 macrophages, prevalent in lean adipose tissue, are induced by IL-13 and IL-4, mainly secreted by Th2 lymphocytes, and produce the anti-inflammatory cytokine IL-10. ITCH is a ubiquitously expressed E3 ubiquitin ligase involved in T cells differentiation and in a wide range of inflammatory pathways. ITCH down regulation in lymphocytes causes aberrant Th2 differentiation. To investigate the role of Th2 /M2 polarization in obesity-related inflammation and insulin resistance, we compared WT and Itch(-/-) mice in a context of diet-induced obesity (HFD). When subjected to HFD Itch(-/-) mice did not show increase in body weight and insulin resistance; calorimetric analysis suggested an accelerated metabolism. The molecular analysis of metabolically active tissue, revealed increased levels of M2 markers and genes involved in fatty acid oxidation. Histological examination of livers from Itch(-/-) mice suggest that ITCH deficiency protects mice from obesity related- NAFLD. We also found negative correlation between ITCH and M2 marker expression in human adipose tissues. Taken together, our data indicate that itch deficiency protects from the metabolic disorder caused by obesity.
Related JoVE Video
GLS2 is transcriptionally regulated by p73 and contributes to neuronal differentiation.
Cell Cycle
PUBLISHED: 10-10-2013
Show Abstract
Hide Abstract
The amino acid Glutamine is converted into Glutamate by a deamidation reaction catalyzed by the enzyme Glutaminase (GLS). Two isoforms of this enzyme have been described, and the GLS2 isoform is regulated by the tumor suppressor gene p53. Here, we show that the p53 family member TAp73 also drives the expression of GLS2. Specifically, we demonstrate that TAp73 regulates GLS2 during retinoic acid-induced terminal neuronal differentiation of neuroblastoma cells, and overexpression or inhibition of GLS2 modulates neuronal differentiation and intracellular levels of ATP. Moreover, inhibition of GLS activity, by removing Glutamine from the growth medium, impairs in vitro differentiation of cortical neurons. Finally, expression of GLS2 increases during mouse cerebellar development. Although, p73 is dispensable for the in vivo expression of GLS2, TAp73 loss affects GABA and Glutamate levels in cortical neurons. Together, these findings suggest a role for GLS2 acting, at least in part, downstream of p73 in neuronal differentiation and highlight a possible role of p73 in regulating neurotransmitter synthesis.
Related JoVE Video
Activation of miR200 by c-Myb depends on ZEB1 expression and miR200 promoter methylation.
Cell Cycle
PUBLISHED: 09-27-2013
Show Abstract
Hide Abstract
Tumor progression to metastasis is a complex, sequential process that requires proliferation, resistance to apoptosis, motility and invasion to colonize at distant sites. The acquisition of these features implies a phenotypic plasticity by tumor cells that must adapt to different conditions by modulating several signaling pathways (1) during the journey to the final site of metastasis. Several transcription factors and microRNA play a role in tumor progression, but less is known about the control of their expression during this process. Here, we demonstrate by ectopic expression and gene silencing that the proto-oncogene c-Myb activates the expression of the 5 members of miR200 family (miR200b, miR200a, miR429, miR200c and miR141) that are involved in the control of epithelial-mesenchymal transition (EMT) and metastasis in many types of cancers. Transcriptional activation of miR200 by c-Myb occurs through binding to myb binding sites located in the promoter regions of miR200 genes on human chromosomes 1 and 12. Furthermore, when c-Myb and the transcriptional repressor ZEB1 are co-expressed, as at the onset EMT, the repression by ZEB1 prevails over the activation by c-Myb, and the expression of miR200 is inhibited. We also demonstrate that during EMT induced by TGF-?, the promoters of miR200 genes are methylated, and their transcription is repressed regardless of the presence of repressors such as ZEB1 and activators such as c-Myb. Finally, we find a correlation between the expression of c-Myb and that of four out of 5 miR200 in a data set of 207 breast cancer patients.
Related JoVE Video
Molecular dynamics of the full-length p53 monomer.
Cell Cycle
PUBLISHED: 09-05-2013
Show Abstract
Hide Abstract
The p53 protein is frequently mutated in a very large proportion of human tumors, where it seems to acquire gain-of-function activity that facilitates tumor onset and progression. A possible mechanism is the ability of mutant p53 proteins to physically interact with other proteins, including members of the same family, namely p63 and p73, inactivating their function. Assuming that this interaction might occurs at the level of the monomer, to investigate the molecular basis for this interaction, here, we sample the structural flexibility of the wild-type p53 monomeric protein. The results show a strong stability up to 850 ns in the DNA binding domain, with major flexibility in the N-terminal transactivations domains (TAD1 and TAD2) as well as in the C-terminal region (tetramerization domain). Several stable hydrogen bonds have been detected between N-terminal or C-terminal and DNA binding domain, and also between N-terminal and C-terminal. Essential dynamics analysis highlights strongly correlated movements involving TAD1 and the proline-rich region in the N-terminal domain, the tetramerization region in the C-terminal domain; Lys120 in the DNA binding region. The herein presented model is a starting point for further investigation of the whole protein tetramer as well as of its mutants.
Related JoVE Video
Analysis of TAp73-dependent signaling via omics technologies.
J. Proteome Res.
PUBLISHED: 08-22-2013
Show Abstract
Hide Abstract
Transactivation-proficient (TA) p73 is a transcription factor belonging to the p53 family, which regulates a variety of biological processes, including neurogenesis, differentiation, apoptosis, and DNA damage checkpoint response. In the present study, we adopted multiple Omics approaches, based upon the simultaneous application of metabolomics, lipidomics, and proteomics, in order to dissect the intracellular pathways activated by p73. As cellular model, we utilized a clone of the human osteosarcoma SAOS-2 cell line that allows the expression of TAp73? in an inducible manner. We found that TAp73? promoted mitochondrial activity (accumulation of metabolic intermediates and up-regulation of proteins related to the Krebs cycle), boosted glutathione homeostasis, increased arginine-citrulline-NO metabolism, altered purine synthesis, and promoted the pentose phosphate pathway toward NADPH accumulation for reducing and biosynthetic purposes. Indeed, lipid metabolism was driven toward the accumulation and oxidation of long-chain fatty acids with pro-apoptotic potential. In parallel, the expression of TAp73? was accompanied by the dephosphorylation of key proteins of the mitotic spindle assembly checkpoint. In conclusion, the obtained results confirm existing evidence from transcriptomics analyses and suggest a role for TAp73? in the regulation of cellular metabolism, cell survival, and cell growth.
Related JoVE Video
Metabolic profiling of human CD4+ cells following treatment with methotrexate and anti-TNF-? infliximab.
Cell Cycle
PUBLISHED: 08-19-2013
Show Abstract
Hide Abstract
The autoimmune process in rheumatoid arthritis depends on activation of immune cells, which utilize intracellular kinases to respond to external stimuli such as cytokines, immune complexes, and antigens. CD4+ T cells comprise a large proportion of the inflammatory cells that invade the synovial tissue and may therefore be a cell type of pathogenic importance. Both methotrexate and infliximab are effective in the treatment of inflammatory arthritis; however, the biological effects triggered by these treatments and the biochemical mechanisms underlining the cell response are still not fully understood. Thus, in this study the global metabolic changes associated with methotrexate or infliximab treatment of isolated human CD4+ T cells were examined using gas chromatography/mass spectrometry or liquid chromatography/mass spectrometry. In total 148 metabolites involved in selective pathways were found to be significantly altered. Overall, the changes observed are likely to reflect the effort of CD4+ cells to increase the production of cellular reducing power to offset the cellular stress exerted by treatment. Importantly, analysis of the global metabolic changes associated with MTX or infliximab treatment of isolated human CD4+ T cells suggested that the toxicity associated with these agents is minimal when used at clinically relevant concentrations.
Related JoVE Video
DNA damage-induced ubiquitylation of proteasome controls its proteolytic activity.
Oncotarget
PUBLISHED: 08-03-2013
Show Abstract
Hide Abstract
Stability of proteins is largely controlled by post-translational covalent modifications. Among those, ubiquitylation plays a central role as it marks the proteins for proteasome-dependent degradation. Proteolytic activities of proteasomes are critical for execution of various cellular processes, including DNA damage signaling and repair. However, very little is known about the regulation of proteasomal activity in cells during genotoxic stress. Here we investigated post-translational modifications of the 20S proteasomal subunits upon DNA damage induced by doxorubicin. Using mass-spectrometry, we found novel sites of phosphorylation and ubiquitylation in multiple proteasome subunits upon doxorubicin treatment. Ectopic co-expression of proteasome subunits and tagged ubiquitin confirmed the presence of ubiquitylated forms of PSMA5, PSMA1, PSMA3 and PSMB5 in cells. Moreover, we demonstrated that ubiquitylation in vitro inhibited chymotrypsin-like and caspase-like activities of proteasomes. In vivo, doxorubicin increased the activity of proteasomes, paralleling with attenuation of the overall level of proteasome ubiquitylation. Collectively, our results suggest a novel mechanism whereby the proteolytic activities of proteasomes are dynamically regulated by ubiquitylation upon DNA damage.
Related JoVE Video
Rapamycin regulates biochemical metabolites.
Cell Cycle
PUBLISHED: 06-28-2013
Show Abstract
Hide Abstract
The mammalian target of rapamycin (mTOR) kinase is a master regulator of protein synthesis that couples nutrient sensing to cell growth, and deregulation of this pathway is associated with tumorigenesis. p53, and its less investigated family member p73, have been shown to interact closely with mTOR pathways through the transcriptional regulation of different target genes. To investigate the metabolic changes that occur upon inhibition of the mTOR pathway and the role of p73 in this response primary mouse embryonic fibroblast from control and TAp73(-/-) were treated with the macrocyclic lactone rapamycin. Extensive gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS/MS) analysis were used to obtain a rapamycin-dependent global metabolome profile from control or TAp73(-/-) cells. In total 289 metabolites involved in selective pathways were identified; 39 biochemical metabolites were found to be significantly altered, many of which are known to be associated with the cellular stress response.
Related JoVE Video
Mule/Huwe1/Arf-BP1 suppresses Ras-driven tumorigenesis by preventing c-Myc/Miz1-mediated down-regulation of p21 and p15.
Genes Dev.
PUBLISHED: 05-24-2013
Show Abstract
Hide Abstract
Tumorigenesis results from dysregulation of oncogenes and tumor suppressors that influence cellular proliferation, differentiation, apoptosis, and/or senescence. Many gene products involved in these processes are substrates of the E3 ubiquitin ligase Mule/Huwe1/Arf-BP1 (Mule), but whether Mule acts as an oncogene or tumor suppressor in vivo remains controversial. We generated K14Cre;Mule(flox/flox(y)) (Mule kKO) mice and subjected them to DMBA/PMA-induced skin carcinogenesis, which depends on oncogenic Ras signaling. Mule deficiency resulted in increased penetrance, number, and severity of skin tumors, which could be reversed by concomitant genetic knockout of c-Myc but not by knockout of p53 or p19Arf. Notably, in the absence of Mule, c-Myc/Miz1 transcriptional complexes accumulated, and levels of p21CDKN1A (p21) and p15INK4B (p15) were down-regulated. In vitro, Mule-deficient primary keratinocytes exhibited increased proliferation that could be reversed by Miz1 knockdown. Transfer of Mule-deficient transformed cells to nude mice resulted in enhanced tumor growth that again could be abrogated by Miz1 knockdown. Our data demonstrate in vivo that Mule suppresses Ras-mediated tumorigenesis by preventing an accumulation of c-Myc/Miz1 complexes that mediates p21 and p15 down-regulation.
Related JoVE Video
Role of p63 and the Notch pathway in cochlea development and sensorineural deafness.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 04-15-2013
Show Abstract
Hide Abstract
The ectodermal dysplasias are a group of inherited autosomal dominant syndromes associated with heterozygous mutations in the Tumor Protein p63 (TRP63) gene. Here we show that, in addition to their epidermal pathology, a proportion of these patients have distinct levels of deafness. Accordingly, p63 null mouse embryos show marked cochlea abnormalities, and the transactivating isoform of p63 (TAp63) protein is normally found in the organ of Corti. TAp63 transactivates hairy and enhancer of split 5 (Hes5) and atonal homolog 1 (Atoh1), components of the Notch pathway, known to be involved in cochlear neuroepithelial development. Strikingly, p63 null mice show morphological defects of the organ of Corti, with supernumerary hair cells, as also reported for Hes5 null mice. This phenotype is related to loss of a differentiation property of TAp63 and not to loss of its proapoptotic function, because cochleas in mice lacking the critical Bcl-2 homology domain (BH-3) inducers of p53- and p63-mediated apoptosis--Puma, Noxa, or both--are normal. Collectively, these data demonstrate that TAp63, acting via the Notch pathway, is crucial for the development of the organ of Corti, providing a molecular explanation for the sensorineural deafness in ectodermal dysplasia patients with TRP63 mutations.
Related JoVE Video
p63 regulates glutaminase 2 expression.
Cell Cycle
PUBLISHED: 04-10-2013
Show Abstract
Hide Abstract
The transcription factor p63 is critical for many biological processes, including development and maintenance of epidermal tissues and tumorigenesis. Here, we report that the TAp63 isoforms regulate cell metabolism through the induction of the mitochondrial glutaminase 2 (GLS2) gene both in primary cells and tumor cell lines. By ChIP analysis and luciferase assay, we confirmed that TAp63 binds directly to the p53/p63 consensus DNA binding sequence within the GLS2 promoter region. Given the critical role of p63 in epidermal differentiation, we have investigated the regulation of GLS2 expression during this process. GLS2 and TAp63 expression increases during the in vitro differentiation of primary human keratinocytes, and depletion of GLS2 inhibits skin differentiation both at molecular and cellular levels. We found that GLS2 and TAp63 expression are concomitantly induced in cancer cells exposed to oxidative stresses. siRNA-mediated depletion of GLS2 sensitizes cells to ROS-induced apoptosis, suggesting that the TAp63/GLS2 axis can be functionally important as a cellular antioxidant pathway in the absence of p53. Accordingly, we found that GLS2 is upregulated in colon adenocarcinoma. Altogether, our findings demonstrate that GLS2 is a bona fide TAp63 target gene, and that the TAp63-dependent regulation of GLS2 is important for both physiological and pathological processes.
Related JoVE Video
Actin-binding protein alpha-actinin 4 (ACTN4) is a transcriptional co-activator of RelA/p65 sub-unit of NF-kB.
Oncotarget
PUBLISHED: 03-14-2013
Show Abstract
Hide Abstract
ACTN4 is an actin-binding protein that participates in cytoskeleton organisation. It resides both in the cytoplasm and nucleus and physically associates with various transcription factors. Here, we describe an effect of ACTN4 expression on transcriptional activity of the RelA/p65 subunit of NF-kB. We demonstrate that ACTN4 enhances RelA/p65-dependant expression of c-fos, MMP-3 and MMP-1 genes, but it does not affect TNC, ICAM1 and FN1 expression. Importantly, actin-binding domains of ACTN4 are not critical for the nuclear translocation and co-activation of RelA/p65- dependent transcription. Collectively, our data suggest that in the nucleus, ACTN4 functions as a selective transcriptional co-activator of RelA/p65.
Related JoVE Video
microRNA-34a regulates neurite outgrowth, spinal morphology, and function.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 12-12-2011
Show Abstract
Hide Abstract
The p53 family member TAp73 is a transcription factor that plays a key role in many biological processes, including neuronal development. In particular, we have shown that p73 drives the expression of miR-34a, but not miR-34b and c, in mouse cortical neurons. miR-34a in turn modulates the expression of synaptic targets including synaptotagmin-1 and syntaxin-1A. Here we show that this axis is retained in mouse ES cells committed to differentiate toward a neurological phenotype. Moreover, overexpression of miR-34a alters hippocampal spinal morphology, and results in electrophysiological changes consistent with a reduction in spinal function. Therefore, the TAp73/miR-34a axis has functional relevance in primary neurons. These data reinforce a role for miR-34a in neuronal development.
Related JoVE Video
Neuronal differentiation by TAp73 is mediated by microRNA-34a regulation of synaptic protein targets.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 12-12-2011
Show Abstract
Hide Abstract
The p53-family member TAp73 is a transcription factor that plays a key role in many biological processes. Here, we show that p73 drives the expression of microRNA (miR)-34a, but not miR-34b and -c, by acting on specific binding sites on the miR-34a promoter. Expression of miR-34a is modulated in parallel with that of TAp73 during in vitro differentiation of neuroblastoma cells and cortical neurons. Retinoid-driven neuroblastoma differentiation is inhibited by knockdown of either p73 or miR-34a. Transcript expression of miR-34a is significantly reduced in vivo both in the cortex and hippocampus of p73(-/-) mice; miR-34a and TAp73 expression also increase during postnatal development of the brain and cerebellum when synaptogenesis occurs. Accordingly, overexpression or silencing of miR-34a inversely modulates expression of synaptic targets, including synaptotagmin-1 and syntaxin-1A. Notably, the axis TAp73/miR-34a/synaptotagmin-1 is conserved in brains from Alzheimers patients. These data reinforce a role for TAp73 in neuronal development.
Related JoVE Video
Salivary miRNAome profiling uncovers epithelial and proliferative miRNAs with differential expression across dentition stages.
Cell Cycle
PUBLISHED: 10-01-2011
Show Abstract
Hide Abstract
Salivas ability to mirror the internal physiological environment of an organism coupled with its facile accessibility makes it an attractive diagnostic medium. The finding of microRNAs (miRNAs) in saliva has expanded the field of biomarker discovery since these tiny non-coding RNAs affect various physiological processes and diseases. Few reports have linked miRNAs to tooth development and eruption, with none having studied this in humans. As a first initiative to describe miRNAs in saliva whose modulations may reflect developing and erupting teeth, we quantified the levels of 730 miRNAs in the saliva of children of varying dentition stages: edentulous (newborns), deciduous and permanent by megaplex stemloop reverse-transcription quantitative PCR. The three groups expressed 193, 181 and 192 miRNAs, respectively, where 125 miRNAs had consistent expression. The remaining miRNAs had inter-group variations from 5 to hundreds of fold, where most had either an increasing or decreasing trend in going from edentulous to deciduous to permanent. A literature survey of epithelial miRNAs found most were present in saliva. Moreover, many miRNAs with expression differences between groups had previously documented functions in proliferation, cell cycle, apoptosis and other cellular behaviours key to the dynamics of tooth morphogenesis. Lastly, miRNAs of the same family, such as the let-7 and miR-200 families, or transcribed from the same hairpin, had similar expression patterns. The results presented here should serve as a salivary miRNA dictionary for future studies in tooth development as well as in childhood diseases associated with modulations in saliva composition.
Related JoVE Video
Inhibitor of apoptosis-stimulating protein of p53 (iASPP) prevents senescence and is required for epithelial stratification.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 09-19-2011
Show Abstract
Hide Abstract
Inhibitor of apoptosis-stimulating protein of p53 (iASPP) is the most ancient member of the ASPP family of proteins and an evolutionarily conserved inhibitor of p53. iASPP is also a binding partner and negative regulator of p65RelA. Because p65RelA and the p53 family members often have opposite effects in controlling cell fate, it is important to understand the cellular context in which iASPP can regulate their activities. To address this question and to study the biological importance of iASPP in vivo, we generated a transgenic mouse in which iASPP expression is controlled by the Cre/loxP recombination system. We observed that iASPP is able to prevent premature cellular senescence in mouse embryonic fibroblasts. iASPP loss resulted in increased differentiation of primary keratinocytes both in vitro and in vivo. In stratified epithelia, nuclear iASPP often colocalized with p63 in the nuclei of basal keratinocytes. Consistent with this, iASPP bound p63 and inhibited the transcriptional activity of both TAp63? and ?Np63? in vitro and influenced the expression level of p63-regulated genes such as loricrin and involucrin in vivo. In contrast, under the same conditions, p65RelA was frequently expressed as a cytoplasmic protein in the suprabasal layers of stratified epithelia and rarely colocalized with nuclear iASPP. Thus, iASPP is likely to control epithelial stratification by regulating p63s transcriptional activity, rather than p65RelAs. This study identifies iASPP as an inhibitor of senescence and a key player in controlling epithelial stratification.
Related JoVE Video
Oxidative stress activation of miR-125b is part of the molecular switch for Hailey-Hailey disease manifestation.
Exp. Dermatol.
PUBLISHED: 09-14-2011
Show Abstract
Hide Abstract
Hailey-Hailey disease (HHD) is an autosomal dominant disorder characterized by suprabasal cutaneous cell separation (acantholysis) leading to the development of erosive and oozing skin lesion. Micro RNAs (miRNAs) are endogenous post-transcriptional modulators of gene expression with critical functions in health and disease. Here, we evaluated whether the expression of specific miRNAs may play a role in the pathogenesis of HHD. Here, we report that miRNAs are expressed in a non-random manner in Hailey-Hailey patients. miR-125b appeared a promising candidate for playing a role in HHD manifestation. Both Notch1 and p63 are part of a regulatory signalling whose function is essential for the control of keratinocyte proliferation and differentiation and of note, the expression of both Notch1 and p63 is downregulated in HHD-derived keratinocytes. We found that both Notch1 and p63 expression is strongly suppressed by miR-125b expression. Additionally, we found that miR-125b expression is increased by an oxidative stress-dependent mechanism. Our data suggest that oxidative stress-mediated induction of miR-125b plays a specific role in the pathogenesis of HHD by regulating the expression of factors playing an important role in keratinocyte proliferation and differentiation.
Related JoVE Video
Cell death pathology: the war against cancer.
Biochem. Biophys. Res. Commun.
PUBLISHED: 09-09-2011
Show Abstract
Hide Abstract
Programmed cell death was a fundamental discovery, awarded with the Nobel price in 2002 to Sulston, Brenner and Horvitz. Since then it has been clear that alteration of apoptotic pathways is a common feature of tumors, enabling cancer cells to survive chemotherapeutic interventions. Thus, apoptosis is an attractive target in cancer therapy, with the aim to revert the cancer-related alterations of the cell death machinery. Here, we overview the fundamental apoptotic pathways and summarize the attempts to target apoptosis to restore cell death in cancer cells with a special focus on the p53-family and autophagy.
Related JoVE Video
Cell death pathology: perspective for human diseases.
Biochem. Biophys. Res. Commun.
PUBLISHED: 09-09-2011
Show Abstract
Hide Abstract
Apoptosis, a genetically regulated form of cell death with distinct biochemical and morphological features, plays a relevant physiological and pathological role in the organism, being pivotal in the maintenance of tissue development and homeostasis in the adult as well as in the regulation of immune responses. Deregulation of this process causes several human disorders including cancer, autoimmune and neurodegenerative diseases. Thus, modulation of the apoptotic process and of cell death in general, is a potential therapeutic approach for the treatment of several human pathologies.
Related JoVE Video
Cell death pathology: cross-talk with autophagy and its clinical implications.
Biochem. Biophys. Res. Commun.
PUBLISHED: 09-09-2011
Show Abstract
Hide Abstract
Autophagy is a self-digesting mechanism that cells adopt to respond to stressful stimuli. Morphologically, cells dying by autophagy show multiple cytoplasmic double-membraned vacuoles, and, if prolonged, autophagy can lead to cell death, "autophagic cell death". Thus, autophagy can act both as a temporary protective mechanism during a brief stressful episode and be a mode of cell death in its own right. In this mini-review we focus on recent knowledge concerning the connection between autophagy and programmed cell death, evaluating their possible implications for therapy in pathologies like cancer and neurodegeneration.
Related JoVE Video
TAp63 is important for cardiac differentiation of embryonic stem cells and heart development.
Stem Cells
PUBLISHED: 09-08-2011
Show Abstract
Hide Abstract
p63, a member of the p53 family, is essential for skin morphogenesis and epithelial stem cell maintenance. Here, we report an unexpected role of TAp63 in cardiogenesis. p63 null mice exhibit severe defects in embryonic cardiac development, including dilation of both ventricles, a defect in trabeculation and abnormal septation. This was accompanied by myofibrillar disarray, mitochondrial disorganization, and reduction in spontaneous calcium spikes. By the use of embryonic stem cells (ESCs), we show that TAp63 deficiency prevents expression of pivotal cardiac genes and production of cardiomyocytes. TAp63 is expressed by endodermal cells. Coculture of p63-knockdown ESCs with wild-type ESCs, supplementation with Activin A, or overexpression of GATA-6 rescue cardiogenesis. Therefore, TAp63 acts in a non-cell-autonomous manner by modulating expression of endodermal factors. Our findings uncover a critical role for p63 in cardiogenesis that could be related to human heart disease.
Related JoVE Video
p73 in Cancer.
Genes Cancer
PUBLISHED: 07-23-2011
Show Abstract
Hide Abstract
p73 is a tumor suppressor belonging to the p53 family of transcription factors. Distinct isoforms are transcribed from the p73 locus. The use of 2 promoters at the N-terminus allows the expression of an isoform containing (TAp73) or not containing (?Np73) a complete N-terminal transactivation domain, with the latter isoform capable of a dominant negative effect over the former. In addition, both N-terminal variants are alternatively spliced at the C-terminus. TAp73 is a bona fide tumor suppressor, being able to induce cell death and cell cycle arrest; conversely, ?Np73 shows oncogenic properties, inhibiting TAp73 and p53 functions. Here, we discuss the latest findings linking p73 to cancer. The generation of isoform specific null mice has helped in dissecting the contribution of TA versus ?Np73 isoforms to tumorigenesis. The activity of both isoforms is regulated transcriptionally and by posttranslational modification. p73 dysfunction, particularly of TAp73, has been associated with mitotic abnormalities, which may lead to polyploidy and aneuploidy and thus contribute to tumorigenesis. Although p73 is only rarely mutated in cancer, the tumor suppressor actions of TAp73 are inhibited by mutant p53, a finding that has important implications for cancer therapy. Finally, we discuss the expression and role of p73 isoforms in human cancer, with a particular emphasis on the neuroblastoma cancer model. Broadly, the data support the hypothesis that the ratio between TAp73 and ?Np73 is crucial for tumor progression and therapeutic response.
Related JoVE Video
Functional characterization of a novel TP63 mutation in a family with overlapping features of Rapp-Hodgkin/AEC/ADULT syndromes.
Am. J. Med. Genet. A
PUBLISHED: 07-21-2011
Show Abstract
Hide Abstract
Heterozygous mutations in TP63 cause a wide spectrum of autosomal dominant developmental disorders variably affecting skin, limbs, and face. TP63 encodes p63, a protein expressed in two main isoforms (Tap63 and ?Np63) with critical roles in both cell differentiation and development. Some analyses suggest a relationship of the mutation site to the observed clinical picture, although this link is inconsistent. This suggests an appreciable phenotypic continuity within the TP63-related disorders. We report a 3-month-old boy ascertained for congenital scalp erosion and mild features of ectodermal dysplasia. His mother showed full-blown characteristics of Rapp-Hodgkin syndrome plus intense abdominal and popliteal freckling. Molecular investigation identified the novel TP63 mutation c.1697delG. We used a luciferase reporter assay to compare the effects on the p63 transactivation (TA) activity of c.1697delG with that of the p.Arg280Cys and p.Gln634X mutations, associated with ectrodactyly-ectodermal dysplasia-cleft lip/palate syndrome and isolated split hand/foot malformation, respectively. These results demonstrated complex behavior of c.1697delG in the TA of genes involved in epidermal differentiation and development and shed further light in the physiopathology of TP63-related disorders.
Related JoVE Video
Epithelial transglutaminase 2 is needed for T cell interleukin-17 production and subsequent pulmonary inflammation and fibrosis in bleomycin-treated mice.
J. Exp. Med.
PUBLISHED: 07-11-2011
Show Abstract
Hide Abstract
Pulmonary fibrosis is a potentially life-threatening disease that may be caused by overt or asymptomatic inflammatory responses. However, the precise mechanisms by which tissue injury is translated into inflammation and consequent fibrosis remain to be established. Here, we show that in a lung injury model, bleomycin induced the secretion of IL-6 by epithelial cells in a transglutaminase 2 (TG2)-dependent manner. This response represents a key step in the differentiation of IL-17-producing T cells and subsequent inflammatory amplification in the lung. The essential role of epithelial cells, but not inflammatory cells, TG2 was confirmed in bone marrow chimeras; chimeras made in TG2-deficient recipients showed reduced inflammation and fibrosis, compared with those in wild-type mice, regardless of the bone marrow cell phenotype. Epithelial TG2 thus appears to be a critical inducer of inflammation after noninfectious pulmonary injury. We further demonstrated that fibroblast-derived TG2, acting downstream of transforming growth factor-?, is also important in the effector phase of fibrogenesis. Therefore, TG2 represents an interesting potential target for therapeutic intervention.
Related JoVE Video
Scientists contemplate unexplained death in Austrian Alps.
EMBO Mol Med
PUBLISHED: 06-14-2011
Show Abstract
Hide Abstract
The recent EMBO Molecular Medicine Workshop on Cell Death and Disease was held this past March in the picturesque Alpen ski-town of Obergurgl, Austria. Scientists working on diverse mechanisms and pathways of cell death convened to present and discuss their current research. Topics included not only cell death signalling pathways, their etiology in human disease, and potential avenues for therapeutic intervention, but also new approaches and perspectives for understanding the subtle mechanisms regulating cell fate.
Related JoVE Video
Differential altered stability and transcriptional activity of ?Np63 mutants in distinct ectodermal dysplasias.
J. Cell. Sci.
PUBLISHED: 06-07-2011
Show Abstract
Hide Abstract
Heterozygous mutations of p63, a key transcription factor in epithelial development, are causative in a variety of human ectodermal dysplasia disorders. Although the mutation spectrum of these disorders displays a striking genotype-phenotype association, the molecular basis for this association is only superficially known. Here, we characterize the transcriptional activity and protein stability of ?Np63 mutants (that is, mutants of a p63 isoform that lacks the N-terminal transactivation domain) that are found in ectrodactyly-ectodermal dysplasia-cleft syndrome (EEC), ankyloblepharon-ectodermal dysplasia-clefting syndrome (AEC) and nonsyndromic split-hand/split-foot malformation (SHFM). DNA-binding and sterile alpha motif (SAM) domain mutants accumulate in the skin of EEC and AEC syndrome patients, respectively, and show extended half lives in vitro. By contrast, C-terminal mutations found in SHFM patients have half-lives similar to that of the wild-type protein. The increased half-life of EEC and AEC mutant proteins was reverted by overexpression of wild-type ?Np63. Interestingly, the mutant proteins exhibit normal binding to and degradation by the E3 ubiquitin ligase Itch. Finally, EEC and AEC mutant proteins have reduced transcriptional activity on several skin-specific gene promoters, whereas SHFM mutant proteins are transcriptionally active. Our results, therefore, provide evidence for a regulatory feedback mechanism for p63 that links transcriptional activity to regulation of protein homeostasis by an unknown mechanism. Disruption of this regulatory mechanism might contribute to the pathology of p63-related developmental disorders.
Related JoVE Video
The sterile alpha-motif (SAM) domain of p63 binds in vitro monoasialoganglioside (GM1) micelles.
Biochem. Pharmacol.
PUBLISHED: 05-31-2011
Show Abstract
Hide Abstract
The transcription factor p63 plays pivotal roles in epidermal barrier formation and in embryonic development. The protein structures of TAp63 and ?Np63? isoforms include a C-terminal steril alpha-motif (SAM) involved in protein-protein interaction. Identification of p63 SAM domain interactors could lead to the explanation of novel mechanisms of regulation of p63 activity, possibly relevant in the physiological role of p63 and in genetic disorders associated with mutations of the p63 gene. In this work, we have performed a biochemical analysis of p63 SAM domain preferences in lipid binding. We have identified the ganglioside GM1 as a high affinity interactor, capable of modulating p63 transcriptional ability exclusively on epidermal target genes. In agreement with these data we report a consistent expression profile and localization analysis of p63 and GM1 in primary keratinocytes and in human epidermal biopsies. Therefore, we propose a potential biological role of p63-GM1 interaction in regulation of p63 during epidermal differentiation.
Related JoVE Video
p63 in tooth development.
Biochem. Pharmacol.
PUBLISHED: 05-25-2011
Show Abstract
Hide Abstract
Recent findings have shown that the development of teeth involves a complex sequence of molecular events in which the p53 family member p63 is involved. Indeed, mice lacking p63 do not have teeth and humans bearing mutations in p63 suffer developmental syndromes that affect tooth morphology and number. Several isoforms of p63 have been described: the use of two different promoters produces longer TAp63 isoforms, or shorter, 5 truncated isoforms known as ?Np63. The 3 end of primary transcripts is then subject to alternative splicing resulting in three additional isoforms: alpha (?), beta (?) and gamma (?). Tooth development relies mainly on the activity of the N-terminally truncated ?Np63 isoforms. Here we review the experimental evidence for the involvement of ?Np63 in tooth development through its ability to sustain the molecular signalling that orchestrates epithelial-mesenchymal interaction.
Related JoVE Video
p63, a story of mice and men.
J. Invest. Dermatol.
PUBLISHED: 04-07-2011
Show Abstract
Hide Abstract
The transcription factor p63 is essential for the formation of the epidermis and other stratifying epithelia. This is clearly demonstrated by the severe abnormality of p63-deficient mice and by the development of certain types of ectodermal dysplasias in humans as a result of p63 mutations. Investigation of the in vivo functions of p63 is complicated by the occurrence of 10 different splicing isoforms and by its interaction with the other family members, p53 and p73. In vitro and in vivo models have been used to unravel the functions of p63 and its different isoforms, but the results or their interpretation are often contradictory. This review focuses on what mammalian in vivo models and patient studies have taught us in the last 10 years.
Related JoVE Video
MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines.
Cell Cycle
PUBLISHED: 04-01-2011
Show Abstract
Hide Abstract
Prostate cancers show a slow progression from a local lesion (primary tumor) to a metastatic and hormone-resistant phenotype. After an initial step of hyperplasia, in a high percentage of cases a neoplastic transformation event occurs that, less frequently, is followed by epithelial to mesenchymal transition and invasion of healthy tissues (usually bones). MicroRNA-203 (miR-203) is a tumor suppressor microRNA often silenced in different malignancies. Here, we show that miR-203 is downregulated in clinical primary prostatic tumors compared to normal prostate tissue, and in metastatic prostate cancer cell lines compared to normal epithelial prostatic cells. Overexpression of miR-203 in brain or bone metastatic prostate cell lines (DU145 and PC3) is sufficient to induce a mesenchymal to epithelial transition with inhibition of cell proliferation, migration and invasiveness. We have identified CKAP2, LASP1, BIRC5, WASF1, ASAP1 and RUNX2 as new miR-203 direct target mRNAs involved in these events. Therefore, miR-203 could be a potentially new prognostic marker and therapeutic target in metastatic prostate cancer.
Related JoVE Video
The p53 family: guardians of maternal reproduction.
Nat. Rev. Mol. Cell Biol.
PUBLISHED: 03-24-2011
Show Abstract
Hide Abstract
The p53 family of proteins consists of p53, p63 and p73, which are transcription factors that affect both cancer and development. It is now emerging that these proteins also regulate maternal reproduction. Whereas p63 is important for maturation of the egg, p73 ensures normal mitosis in the developing blastocyst. p53 subsequently regulates implantation of the embryo through transcriptional control of leukaemia inhibitory factor. Elucidating the cell biological basis of how these factors regulate female fertility may lead to new approaches to the control of human maternal reproduction.
Related JoVE Video
Respiratory distress and perinatal lethality in Nedd4-2-deficient mice.
Nat Commun
PUBLISHED: 02-17-2011
Show Abstract
Hide Abstract
The epithelial sodium channel (ENaC) is essential for sodium homoeostasis in many epithelia. ENaC activity is required for lung fluid clearance in newborn animals and for maintenance of blood volume and blood pressure in adults. In vitro studies show that the ubiquitin ligase Nedd4-2 ubiquitinates ENaC to regulate its cell surface expression. Here we show that knockout of Nedd4-2 in mice leads to increased ENaC expression and activity in embryonic lung. This increased ENaC activity is the likely reason for premature fetal lung fluid clearance in Nedd4-2(-/-) animals, resulting in a failure to inflate lungs and perinatal lethality. A small percentage of Nedd4-2(-/-) animals survive up to 22 days, and these animals also show increased ENaC expression and develop lethal sterile inflammation of the lung. Thus, we provide critical in vivo evidence that Nedd4-2 is essential for correct regulation of ENaC expression, fetal and postnatal lung function and animal survival.
Related JoVE Video
miR-146a is modulated in human endothelial cell with aging.
Atherosclerosis
PUBLISHED: 02-11-2011
Show Abstract
Hide Abstract
Increasing evidence has demonstrated that the senescence of vascular endothelial cells has critical roles in the pathogenesis of vascular dysfunction such as atherosclerosis and thrombosis. MicroRNA (miR) are small non-coding RNAs that inhibit gene expression by binding to complementary sequences in the 3UTR of their target mRNAs. MiRs modulate a variety of biological functions such as cell development, cell differentiation, and apoptosis. Moreover, several miRs involved in endothelial cell function have been identified.
Related JoVE Video
p73: a multifunctional protein in neurobiology.
Mol. Neurobiol.
PUBLISHED: 02-04-2011
Show Abstract
Hide Abstract
p73, a transcription factor of the p53 family, plays a key role in many biological processes including neuronal development. Indeed, mice deficient for both TAp73 and ?Np73 isoforms display neuronal pathologies, including hydrocephalus and hippocampal dysgenesis, with defects in the CA1-CA3 pyramidal cell layers and the dentate gyrus. TAp73 expression increases in parallel with neuronal differentiation and its ectopic expression induces neurite outgrowth and expression of neuronal markers in neuroblastoma cell lines and neural stem cells, suggesting that it has a pro-differentiation role. In contrast, ?Np73 shows a survival function in mature cortical neurons as selective ?Np73 null mice have reduced cortical thickness. Recent evidence has also suggested that p73 isoforms are deregulated in neurodegenerative pathologies such as Alzheimers disease, with abnormal tau phosphorylation. Thus, in addition to its increasingly accepted contribution to tumorigenesis, the p73 subfamily also plays a role in neuronal development and neurodegeneration.
Related JoVE Video
Transglutaminase 2 null macrophages respond to lipopolysaccharide stimulation by elevated proinflammatory cytokine production due to an enhanced ?v?3 integrin-induced Src tyrosine kinase signaling.
Immunol. Lett.
PUBLISHED: 01-25-2011
Show Abstract
Hide Abstract
Transglutaminase 2 (TG2) is a protein crosslinking enzyme with several additional biochemical functions. Loss of TG2 in vivo results in impaired phagocytosis of apoptotic cells and altered proinflammatory cytokine production by macrophages engulfing apoptotic cells leading to autoimmunity. It has been proposed that TG2 acts as an integrin ?(3) coreceptor in the engulfment process, while altered proinflammatory cytokine production is related to the lack of latent TGF? activation by TG2 null macrophages. Here we report that TG2 null macrophages respond to lipopolysaccharide treatment by elevated IL-6 and TNF? production. Though TGF? has been proposed to act as a feed back regulator of proinflammatory cytokine production in LPS-stimulated macrophages, this phenomenon is not related to the lack of active TGF? production. Instead, in the absence of TG2 integrin ?(3) maintains an elevated basal Src family kinase activity in macrophages, which leads to enhanced phosphorylation and degradation of the I?B?. Low basal levels of I?B? explain the enhanced sensitivity of TG2 null macrophages to signals that regulate NF-?B. Our data suggest that TG2 null macrophages bear a proinflammatory phenotype, which might contribute to the enhanced susceptibility of these mice to develop autoimmunity and atherosclerosis.
Related JoVE Video
Ageing, neuronal connectivity and brain disorders: an unsolved ripple effect.
Mol. Neurobiol.
PUBLISHED: 01-15-2011
Show Abstract
Hide Abstract
Cognitive decline associated with ageing and age-related disorders emerges as one of the greatest health challenges in the next decades. To date, the molecular mechanisms underlying the onset of neuronal physiological changes in the central nervous system remain unclear. Functional MRI and PET studies have indicated the decline in working memory performance in older adults. Similarly, age-related disorders, such as Alzheimers disease, are associated with changes in the prefontral cortex and related neural circuitry, which underlines the decline of integrative function between different brain regions. This is mainly attributed to the loss of synaptic connectivity, which is a feature commonly observed in neurodegenerative disorders. In humans, the morphological and functional changes in neurons, such as reduction of spine numbers and synaptic dysfunction, precede the first signs of cognitive decline and likely contribute to pathology progression. Thus, a new scenario emerges in which apparently unrelated diseases present common features, such as the remodelling of neuronal circuitries promoted by ageing. For many years, ageing was considered a process of slow deterioration triggered by accidental environmental factors. Conversely, it is now evident that ageing is a biological process tightly controlled by evolutionary highly conserved signalling pathways. Importantly, genetic mutations that enhance longevity significantly delay the loss of synaptic connectivity and, therefore, the onset of age-related brain disorders. Accordingly, tweaking ageing might be an attractive approach to prevent cognitive decline caused by age-related synaptic dysfunction.
Related JoVE Video
Tissue transglutaminase does not affect fibrotic matrix stability or regression of liver fibrosis in mice.
Gastroenterology
PUBLISHED: 01-13-2011
Show Abstract
Hide Abstract
The ubiquitous cross-linking enzyme tissue transglutaminase (TG2) has been implicated in irreversible collagen stabilization in liver fibrosis, although functional evidence is lacking. We studied the contribution of TG2 to hepatic fibrotic matrix stability, as well as liver fibrosis progression and regression in TG2-deficient mice.
Related JoVE Video
Negative regulation of the Hippo pathway by E3 ubiquitin ligase ITCH is sufficient to promote tumorigenicity.
Cancer Res.
PUBLISHED: 01-06-2011
Show Abstract
Hide Abstract
The Hippo tumor suppressor pathway, originally defined in fruit flies, regulates cellular proliferation and survival and exerts profound effects on normal mammalian cell fate and tumorigenesis. The present understanding of Hippo pathway components and mechanisms remains incomplete in cancer. WW domain-containing proteins regulate diverse biological processes through interaction with proline-tyrosine (PPxY)-containing targets. In this study, we report that the E3 ubiquitin ligase ITCH regulates stability of LATS1, a serine/threonine kinase in the Hippo pathway, through protein-protein interaction of the PPxY motifs of LATS1 with the WW domains of ITCH. Ubiquitination of LATS1 catalyzed by ITCH stimulated the proteasomal degradation of LATS1. Furthermore, ITCH-mediated degradation of LATS1 was associated with enhanced cell growth, induction of epithelial-mesenchymal transition, and increased tumorigenicity. Conversely, ITCH depletion increased LATS1 levels, enhancing FAS-induced apoptosis and reducing proliferation, survival, and migration. These phenotypes were rescued when both ITCH and LATS1 were depleted. Together, our results reveal a novel functional link between ITCH and the Hippo pathway, deepening their critical roles in tumorigenesis.
Related JoVE Video
The mammary gland and the homeobox gene Otx1.
Breast J
PUBLISHED: 11-06-2010
Show Abstract
Hide Abstract
The mammary gland, the unique organ that primarily form at puberty, is an ideal model to study the functions of homeobox (HB) genes in both development and tumorigenesis. HB genes comprise a large family of developmental regulators that have a critical role in cell growth and differentiation. In the normal mammary gland, homeobox genes are involved in ductal formation, epithelial branching, and lobulo-alveolar development by regulating epithelial proliferation and differentiation. The HB genes are controlled in a spatial and temporal manner in both stromal and epithelial cells. They are coordinately regulated by hormones and extracellular matrix, suggesting that many signaling pathways are involved in homeobox gene functions. When homeobox genes are misexpressed in animal models, different defects are displayed in mammary gland development. Aberrant expression of homeobox genes, overexpressed or downregulated, is found in primary carcinomas and in breast cancer. The Otx1 HB gene is a classic regulatory of nervous system development during embryogenesis. Postnatally Otx1 is transcribed in the anterior pituitary gland, where activates transcription of the pituitary hormones, and plays a role in hematopoiesis, enhancing pluripotent cells, and erythroid differentiation. Otx1 can still be detected in mature cells of the erythroid and megacaryocytic lineage. During cyclical development of mammary gland, the Otx1 gene is overexpressed in lactation, confirming a role of this transcription factor in cell differentiation. Recent studies report that Otx1 is overexpressed in breast cancer. Otx1 is expressed during embryogenesis, and it is expressed again during carcinogenesis, implying its possible function in differentiation of neoplastic cells.
Related JoVE Video
NF-kappaB inhibits T-cell activation-induced, p73-dependent cell death by induction of MDM2.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-04-2010
Show Abstract
Hide Abstract
NF-?B is a key transcription factor involved in the regulation of T-cell activation and proliferation upon engagement of the T-cell receptor (TCR). T cells that lack the I?B kinase (IKK?) are unable to activate NF-?B, and rapidly undergo apoptosis upon activation. NF-?B activation following T-cell receptor engagement induces the expression of Mdm2 through interaction with NF-?B sites in its P1 promoter, and enforced expression of Mdm2 protected T cells deficient for NF-?B activation from activation-induced cell death. In T cells with intact NF-?B signaling, ablation or pharmacologic inhibition of Mdm2 resulted in activation-induced apoptosis. Mdm2 coprecipitates with p73 in activated T cells, and apoptosis induced by inhibition of Mdm2 was p73-dependent. Further, Bim was identified as a p73 target gene required for cell death induced by Mdm2 inhibition, and a p73-responsive element in intron 1 of Bim was characterized. Our results demonstrate a pathway for survival of activated T cells through NF-?B-induced Mdm2, which blocks Bim-dependent apoptosis through binding and inhibition of p73.
Related JoVE Video
The E3 ubiquitin ligase WWP1 regulates ?Np63-dependent transcription through Lys63 linkages.
Biochem. Biophys. Res. Commun.
PUBLISHED: 09-25-2010
Show Abstract
Hide Abstract
The transcription factor p63, a member of the p53 family, plays a crucial role in epithelial development and tumorigenesis through the regulation of epithelial progenitor cell proliferation, differentiation and apoptosis. Similarly to p53, p63 activity is regulated by post-translational modifications, including ubiquitylation. Here, we report that the WWP1 E3 ubiquitin ligase binds specifically to ?Np63 isoform but it does not trigger ?Np63 proteasome-dependent degradation. Accordingly, we found that WWP1-dependent ubiquitylation of ?Np63 occurs through the formation of Lys63-linked poly-ubiquitin chains. Importantly, we found that WWP1 is able to increase ?Np63-dependent transcription and depletion of WWP1 in human primary keratinocytes induces cell cycle arrest. All together these results indicate that WWP1 regulates ?Np63 transcriptional activity, acting thus as a potential regulator of the proliferation and survival of epithelial-derived cells.
Related JoVE Video
p73 regulates maintenance of neural stem cell.
Biochem. Biophys. Res. Commun.
PUBLISHED: 09-24-2010
Show Abstract
Hide Abstract
p73, a member of the p53 family, is a transcription factor that plays a key role in many biological processes. In the present study, we show that TAp73 is expressed in neural stem cells (NSC) and its expression increases following their differentiation. NSC from p73 null mice have a reduced proliferative potential, together with reduced expression of members of the Sox-2 and Notch gene families known to be important for NSC proliferation. In parallel with this in vitro data, the width of the neurogenic areas was reduced in the brains of embryonic and adult p73-/- mice. These data suggest that p73, and in particular TAp73, is important for maintenance of the NSC pool.
Related JoVE Video
Skn-1a/Oct-11 and ?Np63? exert antagonizing effects on human keratin expression.
Biochem. Biophys. Res. Commun.
PUBLISHED: 09-24-2010
Show Abstract
Hide Abstract
The formation of a stratified epidermis requires a carefully controlled balance between keratinocyte proliferation and differentiation. Here, we report the reciprocal effect on keratin expression of ?Np63, pivotal in normal epidermal morphogenesis and maintenance, and Skn-1a/Oct-11, a POU transcription factor that triggers and regulates the differentiation of keratinocytes. The expression of Skn-1a markedly downregulated ?Np63-driven K14 expression in luciferase reporter assays. The extent of downregulation was comparable to the inhibition of Skn-1a-mediated K10 expression upon expression of ?Np63. ?Np63, mutated in the protein-protein interaction domain (SAM domain; mutated in human ectodermal dysplasia syndrome), was significantly less effecting in downregulating K10, raising the possibility of a direct interaction among Skn-1a and ?Np63. Immunolocalization in human skin biopsies revealed that the expression of the two transcription factors is partially overlapping. Co-immunoprecipitation experiments did not, however, demonstrate a direct interaction between ?Np63 and Skn-1a, suggesting that the antagonistic effects of Skn-1a and p63 on keratin promoter transactivation is probably through competition for overlapping binding sites on target gene promoter or through an indirect interaction.
Related JoVE Video
Differential control of TAp73 and DeltaNp73 protein stability by the ring finger ubiquitin ligase PIR2.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 07-06-2010
Show Abstract
Hide Abstract
p73 is a p53-related transcription factor with fundamental roles in development and tumor suppression. Transcription from two different promoters on the p73 gene results in generation of transcriptionally active TAp73 isoforms and dominant negative DeltaNp73 isoforms with opposing pro- and anti-apoptotic functions. Therefore, the relative ratio of each isoform is an important determinant of the cell fate. Proteasomal degradation of p73 is mediated by polyubiquitination-dependent and -independent processes both of which appear, thus far, to lack selectivity for the TAp73 and DeltaNp73 isoforms. Here, we describe the characterization of another transcriptional target of TAp73; a ring finger domain ubiquitin ligase p73 Induced RING 2 protein (PIR2). Although PIR2 was initially identified a p53-induced gene (p53RFP), low abundance of PIR2 transcript in mouse embryonic fibroblasts of TAp73 KO mice compared with WT mice and comparison of PIR2 mRNA and protein levels following TAp73 or p53 overexpression substantiate TAp73 isoforms as strong inducers of PIR2. Although PIR2 expression was induced by DNA damage, its expression did not alter apoptotic response or cell cycle profile per se. However, coexpression of PIR2 with TAp73 or DeltaNp73 resulted in an increase of the TA/DeltaNp73 ratio, due to preferential degradation of DeltaNp73. Finally, PIR2 was able to relieve the inhibitory effect of DeltaNp73 on TAp73 induced apoptosis following DNA damage. These results suggest that PIR2, by being induced by TAp73 and degrading DeltaNp73, differentially regulates TAp73/DeltaNp73 stability, and, hence, it may offer a therapeutic approach to enhance the chemosensitivity of tumor cells.
Related JoVE Video
?Np73? is oncogenic in hepatocellular carcinoma by blocking apoptosis signaling via death receptors and mitochondria.
Cell Cycle
PUBLISHED: 06-29-2010
Show Abstract
Hide Abstract
p73 belongs to the p53 family of transcription factors known to regulate cell cycle and apoptosis. The Trp73 gene has two promoters that drive the expression of two major p73 isoform subfamilies: TA and ?N. In general, TAp73 isoforms show proapoptotic activities, whereas members of the N-terminally truncated (?N) p73 subfamily that lack the transactivation domain show antiapoptotic functions. We found that upregulation of ?Np73 in hepatocellular carcinoma (HCC) correlated with reduced survival. Here, we investigated the molecular mechanisms accounting for the oncogenic role of ?Np73 in HCC.
Related JoVE Video
Dominant negative (DeltaN) p63alpha induces drug resistance in hepatocellular carcinoma by interference with apoptosis signaling pathways.
Biochem. Biophys. Res. Commun.
PUBLISHED: 04-12-2010
Show Abstract
Hide Abstract
p63 belongs to the family of p53-related transcription factors expressing a variety of isoforms. The Trp63 gene has two promoters that drive the expression of two major p63 isoform subfamilies. Isoforms of the TAp63 subfamily show pro-apoptotic activities, whereas members of the N-terminally truncated (DeltaN) p63 subfamily have anti-apoptotic functions. We have previously shown an important role for TAp63alpha in the induction of apoptosis and chemosensitivity of hepatocellular carcinoma (HCC). Here, we investigated the molecular mechanisms accounting for the oncogenic role of DeltaNp63alpha in HCC. DeltaNp63alpha can directly interfere with the transcriptional activation function of the TA (containing the transactivation domain) isoforms of the p53 family and consequently inhibit transactivation of pro-apoptotic target genes. DeltaNp63alpha negatively regulates the genes encoding for the death receptor CD95 and the pro-apoptotic Bcl-2 family member BAX. Thus, DeltaNp63alpha expression in HCC interferes with both the death receptor and the mitochondrial apoptosis activity of the TA isoforms. In addition and of clinical relevance, DeltaNp63alpha inhibits activation of p53 family target genes and apoptosis induced by chemotherapeutic drugs. Chemotherapeutic treatment induces expression of Bax, Bim, Noxa, Puma and Perp; this is antagonized by DeltaNp63alpha. Our data suggest that the DeltaNp63alpha isoform represses apoptosis-related genes of the extrinsic and intrinsic apoptosis signaling pathways, thereby contributing to chemoresistance of HCC.
Related JoVE Video
p73 and p63 regulate the expression of fibroblast growth factor receptor 3.
Biochem. Biophys. Res. Commun.
PUBLISHED: 03-11-2010
Show Abstract
Hide Abstract
p53, p63 and p73 make a family of transcription factors that play a vital role in development and cancer. All p53 family members have more than one promoter producing Transactivating (TA) and Dominant Negative (DeltaN) isoforms and their mRNAs are subjected to extensive splicing at 3 end to produce multiple protein products. p53 is usually inactivated by point mutations during tumorigenesis, whereas the expression levels and p63 and p73 are modulated to give tumor cells a selective advantage. In this study, aiming to find novel targets of the p53 family members, we identified FGFR3 as a gene transcriptionally controlled by p63 and p73. FGFR3 has been implicated in development and tumor biology as activating mutations of this gene was described in skeletal disorders, non-invasive skin conditions and superficial bladder cancers. We found that TAp73, TAp63 and DeltaNp63 was capable of inducing FGFR3. siRNA mediated downregulation of DeltaNp63 decreased endogenous FGFR3 protein levels. Our findings of this new link between p53 family proteins and FGFR3 may help understanding the transition of superficial bladder cancers to an invasive phenotype.
Related JoVE Video
Connexin 26 (GJB2) mutations as a cause of the KID syndrome with hearing loss.
Biochem. Biophys. Res. Commun.
PUBLISHED: 03-10-2010
Show Abstract
Hide Abstract
KID syndrome (MIM 148210) is an ectodermal dysplasia characterized by the occurrence of localized erythematous scaly skin lesions, keratitis and severe bilateral sensorineural deafness. KID syndrome is inherited as an autosomic dominant disease, due to mutations in the gene encoding gap junction protein GJB2 (connexin 26, Cx26). Cx26 is a component of gap junction channels in the epidermis and in the stria vascularis of the cochlea. These channels play a role in the coordinated exchange of molecules and ions occurring in a wide spectrum of cellular activities. In this paper we describe two patients with Cx26 mutations cause cell death by the alteration of protein trafficking, membrane localization and probably interfering with intracellular ion concentrations. We discuss the pathogenesis of both the hearing and skin phenotypes.
Related JoVE Video
Interference with the p53 family network contributes to the gain of oncogenic function of mutant p53 in hepatocellular carcinoma.
Biochem. Biophys. Res. Commun.
PUBLISHED: 03-10-2010
Show Abstract
Hide Abstract
Whereas the hallmark of wild-type p53 is its tumor suppressor activity, tumor-associated mutant p53 proteins can exert novel anti-apoptotic gain-of-function activities, which confer a selective advantage upon tumor cells harboring such mutations. We investigated the molecular mechanisms of mutant p53 gain-of-function in hepatocellular carcinoma with special emphasis on the interaction of mutant p53 gain-of-function proteins with the p53 family members p63 and p73. Mutant forms of p53, namely the hot-spot mutants p53R143A, p53R175D, p53R175H, p53R248W, and p53R273H, acquire anti-apoptotic gain-of-function in hepatocellular carcinoma by repressing the activity of genes regulating both, the extrinsic apoptosis pathway initiated by ligation of death receptors and the intrinsic/mitochondrial apoptosis pathway. In the presence of mutated p53, the CD95L-CD95 apoptotic pathway is markedly attenuated. This is due to repression of CD95 gene transcription by mutant p53. In addition, these mutants repress the expression of the Bax gene and attenuate mitochondria-mediated apoptosis signaling. Furthermore, and of clinical relevance, these gain-of-function mutants are anti-apoptotic due to their inhibitory interaction with the pro-apoptotic p53 family members TAp63 and TAp73. p53 gain-of-function mutants significantly decrease activation of pro-apoptotic target genes by wild-type p53, TAp63, and TAp73. This contributes to the ability of cancer cells to withstand DNA damage-induced apoptosis. Interference with the interaction of p53 gain-of-function mutants with TAp63 or TAp73 may thus sensitize hepatocellular carcinoma to elimination by therapy.
Related JoVE Video
Connexin 26 (GJB2) mutations, causing KID Syndrome, are associated with cell death due to calcium gating deregulation.
Biochem. Biophys. Res. Commun.
PUBLISHED: 03-10-2010
Show Abstract
Hide Abstract
The autosomic dominant KID Syndrome (MIM 148210), due to mutations in GJB2 (connexin 26, Cx26), is an ectodermal dysplasia with erythematous scaly skin lesions, keratitis and severe bilateral sensorineural deafness. The Cx26 protein is a component of gap junction channels in epithelia, including the cochlea, which coordinates the exchange of molecules and ions. Here, we demonstrate that different Cx26 mutants (Cx26D50N and Cx26G11E) cause cell death in vitro by the alteration of intra-cellular calcium concentrations. These results help to explain the pathogenesis of both the hearing and skin phenotypes, since calcium is also a potent regulator of the epidermal differentiation process.
Related JoVE Video
miR-7 and miR-214 are specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem cells differentiation, and control neurite outgrowth in vitro.
Biochem. Biophys. Res. Commun.
PUBLISHED: 03-09-2010
Show Abstract
Hide Abstract
The mammalian nervous system exerts essential control on many physiological processes in the organism and is itself controlled extensively by a variety of genetic regulatory mechanisms. microRNA (miR), an abundant class of small non-coding RNA, are emerging as important post-transcriptional regulators of gene expression in the brain. Increasing evidence indicates that miR regulate both the development and function of the nervous system. Moreover, deficiency in miR function has also been implicated in a number of neurological disorders. Expression profile analysis of miR is necessary to understand their complex role in the regulation of gene expression during the development and differentiation of cells. Here we present a comparative study of miR expression profiles in neuroblastoma, in cortical development, and in neuronal differentiation of embryonic stem (ES) cells. By microarray profiling in combination with real time PCR we show that miR-7 and miR-214 are modulated in neuronal differentiation (as compared to miR-1, -16 and -133a), and control neurite outgrowth in vitro. These findings provide an important step toward further elucidation of miR function and miR-related gene regulatory networks in the mammalian central nervous system.
Related JoVE Video
Isoform-specific p73 knockout mice reveal a novel role for delta Np73 in the DNA damage response pathway.
Genes Dev.
PUBLISHED: 03-01-2010
Show Abstract
Hide Abstract
Mice with a complete deficiency of p73 have severe neurological and immunological defects due to the absence of all TAp73 and DeltaNp73 isoforms. As part of our ongoing program to distinguish the biological functions of these isoforms, we generated mice that are selectively deficient for the DeltaNp73 isoform. Mice lacking DeltaNp73 (DeltaNp73(-/-) mice) are viable and fertile but display signs of neurodegeneration. Cells from DeltaNp73(-/-) mice are sensitized to DNA-damaging agents and show an increase in p53-dependent apoptosis. When analyzing the DNA damage response (DDR) in DeltaNp73(-/-) cells, we discovered a completely new role for DeltaNp73 in inhibiting the molecular signal emanating from a DNA break to the DDR pathway. We found that DeltaNp73 localizes directly to the site of DNA damage, can interact with the DNA damage sensor protein 53BP1, and inhibits ATM activation and subsequent p53 phosphorylation. This novel finding may explain why human tumors with high levels of DeltaNp73 expression show enhanced resistance to chemotherapy.
Related JoVE Video
The antiapoptotic DeltaNp73 is degraded in a c-Jun-dependent manner upon genotoxic stress through the antizyme-mediated pathway.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-25-2010
Show Abstract
Hide Abstract
p73, the structural and functional homologue of p53, exists as two major forms: the transactivation-proficient, proapoptotic TAp73 or the transactivation-deficient, antiapoptotic DNp73. Expectedly, expression of both these major forms has to be coordinated precisely to achieve the desired cellular outcome. Genotoxic insults resulting in cell death lead to the stabilization of TAp73, mainly through posttranslational modifications, and the concomitant degradation of DNp73, through poorly understood mechanisms. We have therefore investigated the possible mechanisms of stress-induced DNp73 degradation and show here that c-Jun, the AP-1 family member activated by stress signals and involved in stabilizing TAp73, promotes DNp73 degradation. Genotoxic stress-mediated DNp73 degradation was found to occur in a c-Jun-dependent manner through a ubiquitin-independent but proteasome-dependent mechanism. Absence or down-regulation of c-Jun expression abrogated the reduction of DNp73 levels upon stress insults, whereas overexpression of c-Jun led to its degradation. c-Jun controlled DNp73 degradation through the nonclassical, polyamine-induced antizyme (Az) pathway by regulating the latters processing during stress response. Consistently, expression of c-Jun or Az, or addition of polyamines, promoted DNp73 degradation, whereas silencing Az expression or inhibiting Az activity in cells exposed to stress reduced c-Jun-dependent DNp73 degradation. Moreover, Az was able to bind to DNp73. These data together demonstrate the existence of a c-Jun-dependent mechanism regulating the abundance of the antiapoptotic DNp73 in response to genotoxic stress.
Related JoVE Video
Induction of TAp63 by histone deacetylase inhibitors.
Biochem. Biophys. Res. Commun.
PUBLISHED: 12-21-2009
Show Abstract
Hide Abstract
TAp63 belongs to the p53-tumour suppressor family and is capable of transactivating a set of target genes to induce cell cycle arrest and apoptosis. We showed that treatment of cancer cells with chemo-therapeutic drugs or the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA) results in induction of TAp63 expression, which is in turn related with chemosensitivity. Indeed, induction of TAp63 by TSA affects sensitivity to chemo-therapeutic drugs via the cleavage of the trans-inhibitory domain of TAp63 by active caspases, resulting in generation of a transcriptionally hyper-active TAp63 fragment. Therefore therapeutic approaches that enhance TAp63 expression may offer an improvement in the management of chemoresistant tumours. In this study we tested the abilities of different HDAC inhibitors to induce TAp63 expression. We discovered that two HDAC inhibitors belonging to the hydroxamate group, namely TSA and LBH589, are the most efficient inducers of TAp63 expression. Finally, we found that induction of TAp63 expression in HCT116 cells depends on p53, as p53-negative HCT116 cells failed to induce significant TAp63 expression following treatment with different HDAC inhibitors.
Related JoVE Video
MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1.
Circulation
PUBLISHED: 09-28-2009
Show Abstract
Hide Abstract
Aging is a major risk factor for the development of atherosclerosis and coronary artery disease. Through a microarray approach, we have identified a microRNA (miR-217) that is progressively expressed in endothelial cells with aging. miR-217 regulates the expression of silent information regulator 1 (SirT1), a major regulator of longevity and metabolic disorders that is progressively reduced in multiple tissues during aging.
Related JoVE Video
MEKK1 binds HECT E3 ligase Itch by its amino-terminal RING motif to regulate Th2 cytokine gene expression.
J. Immunol.
PUBLISHED: 08-26-2009
Show Abstract
Hide Abstract
MEKK1-dependent signaling regulates HECT E3 ligase Itch, resulting in elevated catalytic activity. After TCR costimulation, MEKK1 predominantly induces JNK1 activation, whereas the related kinase MEKK2 regulates ERK5 activation. MEKK1 becomes phosphorylated on multiple sites and polyubiquitinated following TCR costimulation. E3 ligase Itch is recruited to activated MEKK1, but not MEKK2, and this novel scaffolding interaction is dependent on MEKK1 Thr(1381) phosphorylation within the kinase domain and an intact MEKK1 RING finger motif. MEKK1 phosphorylation on Thr(1381) is observed during Th2 differentiation, but not under Th1 differentiation. Both Itch and the MEKK1 kinase domain are important for Il4 and Il6 cytokine gene expression under Th2 conditions.
Related JoVE Video
Desmethylclomipramine induces the accumulation of autophagy markers by blocking autophagic flux.
J. Cell. Sci.
PUBLISHED: 08-25-2009
Show Abstract
Hide Abstract
Alterations in the autophagic pathway are associated with the onset and progression of various diseases. However, despite the therapeutic potential for pharmacological modulators of autophagic flux, few such compounds have been characterised. Here we show that clomipramine, an FDA-approved drug long used for the treatment of psychiatric disorders, and its active metabolite desmethylclomipramine (DCMI) interfere with autophagic flux. Treating cells with DCMI caused a significant and specific increase in autophagosomal markers and a concomitant blockage of the degradation of autophagic cargo. This observation might be relevant in therapy in which malignant cells exploit autophagy to survive stress conditions, rendering them more susceptible to the action of cytotoxic agents. In accordance, DCMI-mediated obstruction of autophagic flux increased the cytotoxic effect of chemotherapeutic agents. Collectively, our studies describe a new function of DCMI that can be exploited for the treatment of pathological conditions in which manipulation of autophagic flux is thought to be beneficial.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.