JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Increasing gene discovery and coverage using RNA-seq of globin RNA reduced porcine blood samples.
BMC Genomics
PUBLISHED: 10-01-2014
Show Abstract
Hide Abstract
Transcriptome analysis of porcine whole blood has several applications, which include deciphering genetic mechanisms for host responses to viral infection and vaccination. The abundance of alpha- and beta-globin transcripts in blood, however, impedes the ability to cost-effectively detect transcripts of low abundance. Although protocols exist for reduction of globin transcripts from human and mouse/rat blood, preliminary work demonstrated these are not useful for porcine blood Globin Reduction (GR). Our objectives were to develop a porcine specific GR protocol and to evaluate the GR effects on gene discovery and sequence read coverage in RNA-sequencing (RNA-seq) experiments.
Related JoVE Video
Gene co-expression network analysis identifies porcine genes associated with variation in Salmonella shedding.
BMC Genomics
PUBLISHED: 02-13-2014
Show Abstract
Hide Abstract
Salmonella enterica serovar Typhimurium is a gram-negative bacterium that can colonise the gut of humans and several species of food producing farm animals to cause enteric or septicaemic salmonellosis. While many studies have looked into the host genetic response to Salmonella infection, relatively few have used correlation of shedding traits with gene expression patterns to identify genes whose variable expression among different individuals may be associated with differences in Salmonella clearance and resistance. Here, we aimed to identify porcine genes and gene co-expression networks that differentiate distinct responses to Salmonella challenge with respect to faecal Salmonella shedding.
Related JoVE Video
Single nucleotide polymorphisms for feed efficiency and performance in crossbred beef cattle.
BMC Genet.
PUBLISHED: 01-27-2014
Show Abstract
Hide Abstract
This study was conducted to: (1) identify new SNPs for residual feed intake (RFI) and performance traits within candidate genes identified in a genome wide association study (GWAS); (2) estimate the proportion of variation in RFI explained by the detected SNPs; (3) estimate the effects of detected SNPs on carcass traits to avoid undesirable correlated effects on these economically important traits when selecting for feed efficiency; and (4) map the genes to biological mechanisms and pathways. A total number of 339 SNPs corresponding to 180 genes were tested for association with phenotypes using a single locus regression (SLRM) and genotypic model on 726 and 990 crossbred animals for feed efficiency and carcass traits, respectively.
Related JoVE Video
Genetic and Phenotypic Correlations between Performance Traits with Meat Quality and Carcass Characteristics in Commercial Crossbred Pigs.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Genetic correlations between performance traits with meat quality and carcass traits were estimated on 6,408 commercial crossbred pigs with performance traits recorded in production systems with 2,100 of them having meat quality and carcass measurements. Significant fixed effects (company, sex and batch), covariates (birth weight, cold carcass weight, and age), random effects (additive, litter and maternal) were fitted in the statistical models. A series of pairwise bivariate analyses were implemented in ASREML to estimate heritability, phenotypic, and genetic correlations between performance traits (n?=?9) with meat quality (n?=?25) and carcass (n?=?19) traits. The animals had a pedigree compromised of 9,439 animals over 15 generations. Performance traits had low-to-moderate heritabilities (±SE), ranged from 0.07±0.13 to 0.45±0.07 for weaning weight, and ultrasound backfat depth, respectively. Genetic correlations between performance and carcass traits were moderate to high. The results indicate that: (a) selection for birth weight may increase drip loss, lightness of longissimus dorsi, and gluteus medius muscles but may reduce fat depth; (b) selection for nursery weight can be valuable for increasing both quantity and quality traits; (c) selection for increased daily gain may increase the carcass weight and most of the primal cuts. These findings suggest that deterioration of pork quality may have occurred over many generations through the selection for less backfat thickness, and feed efficiency, but selection for growth had no adverse effects on pork quality. Low-to-moderate heritabilities for performance traits indicate that they could be improved using traditional selection or genomic selection. The estimated genetic parameters for performance, carcass and meat quality traits may be incorporated into the breeding programs that emphasize product quality in these Canadian swine populations.
Related JoVE Video
Birth weight, intrauterine growth retardation and fetal susceptibility to porcine reproductive and respiratory syndrome virus.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The severity of porcine reproductive and respiratory syndrome was compared in pregnant gilts originating from high and low birth weight litters. One-hundred and eleven pregnant gilts experimentally infected with porcine reproductive and respiratory syndrome virus on gestation day 85 (±1) were necropsied along with their fetuses 21 days later. Ovulation rates and litter size did not differ between groups, but fetuses from low birth weight gilts were shorter, lighter and demonstrated evidence of asymmetric growth with large brain:organ weight ratios (i.e. brain sparing). The number of intrauterine growth retarded fetuses, defined by brain:organ weight ratios greater than 1 standard deviation from the mean, was significantly greater in low, compared to high, birth weight gilts. Although ?? T cells significantly decreased over time in high compared to low birth weight gilts, viral load in serum and tissues, gilt serum cytokine levels, and litter outcome, including the percent dead fetuses per litter, did not differ by birth weight group. Thus, this study provided no substantive evidence that the severity of porcine reproductive and respiratory syndrome is affected by dam birth weight. However, intrauterine growth retarded fetuses had lower viral loads in both fetal thymus and in endometrium adjacent to the umbilical stump. Crown rump length did not significantly differ between fetuses that survived and those that died at least one week prior to termination. Taken together, this study clearly demonstrates that birth weight is a transgenerational trait in pigs, and provides evidence that larger fetuses are more susceptible to transplacental PRRSv infection.
Related JoVE Video
Sequence, structural and expression divergence of duplicate genes in the bovine genome.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Gene duplication is a widespread phenomenon in genome evolution, and it has been proposed to serve as an engine of evolutionary innovation. In the present study, we performed the first comprehensive analysis of duplicate genes in the bovine genome. A total of 3131 putative duplicated gene pairs were identified, including 712 cattle-specific duplicate gene pairs unevenly distributed across the genome, which are significantly enriched for specific biological functions including immunity, growth, digestion, reproduction, embryonic development, inflammatory response, and defense response to bacterium. Around 97.1% (87.8%) of (cattle-specific) duplicate gene pairs were found to have distinct exon-intron structures. Analysis of gene expression by RNA-Seq and sequence divergence (synonymous or non-synonymous) revealed that expression divergence is correlated with sequence divergence, as has been previously observed in other species. This analysis also led to the identification of a subset of cattle-specific duplicate gene pairs exhibiting very high expression divergence. Interestingly, further investigation revealed a significant relationship between structural and expression divergence while controlling for the effect of synonymous sequence divergence. Together these results provide further insight into duplicate gene sequence and expression divergence in cattle, and their potential contributions to phenotypic divergence.
Related JoVE Video
Variation in fetal outcome, viral load and ORF5 sequence mutations in a large scale study of phenotypic responses to late gestation exposure to type 2 porcine reproductive and respiratory syndrome virus.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
In spite of extensive research, the mechanisms of reproductive disease associated with Porcine Reproductive and Respiratory Syndrome virus (PRRSv) are still poorly understood. The objectives of this large scale study were to evaluate associations between viral load and fetal preservation, determine the impact of type 2 PRRSv on fetal weights, and investigate changes in ORF5 PRRSv genome in dams and fetuses during a 21-day period following challenge. At gestation day 85 (±1), 114 gilts were experimentally infected with type 2 PRRSv, while 19 gilts served as reference controls. At necropsy, fetuses were categorized according to their preservation status and tissue samples were collected. PRRSv RNA concentrations were measured in gilt serum collected on days 0, 2, 6, and 21 post-infection, as well as in gilt and fetal tissues collected at termination. Fetal mortality was 41±22.8% in PRRS infected litters. Dead fetuses appeared to cluster in some litters but appeared solitary or random in others. Nine percent of surviving piglets were meconium-stained. PRRSv RNA concentration in fetal thymus, fetal serum and endometrium differed significantly across preservation category and was greatest in tissues of meconium-stained fetuses. This, together with the virtual absence of meconium staining in non-infected litters indicates it is an early pathological condition of reproductive PRRS. Viral load in fetal thymus and in fetal serum was positively associated with viral load in endometrium, suggesting the virus exploits dynamic linkages between individual maternal-fetal compartments. Point mutations in ORF5 sequences from gilts and fetuses were randomly located in 20 positions in ORF5, but neither nucleotide nor amino acid substitutions were associated with fetal preservation. PRRSv infection decreased the weights of viable fetuses by approximately 17%. The considerable variation in gilt and fetal outcomes provides tremendous opportunity for more detailed investigations of potential mechanisms and single nucleotide polymorphisms associated with fetal death.
Related JoVE Video
MicroRNA buffering and altered variance of gene expression in response to Salmonella infection.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
One potential role of miRNAs is to buffer variation in gene expression, although conflicting results have been reported. To investigate the buffering role of miRNAs in response to Salmonella infection in pigs, we sequenced miRNA and mRNA in whole blood from 15 pig samples before and after Salmonella challenge. By analyzing inter-individual variation in gene expression patterns, we found that for moderately and lowly expressed genes, putative miRNA targets showed significantly lower expression variance compared with non-miRNA-targets. Expression variance between highly expressed miRNA targets and non-miRNA-targets was not significantly different. Further, miRNA targets demonstrated significantly reduced variance after challenge whereas non-miRNA-targets did not. RNA binding proteins (RBPs) are significantly enriched among the miRNA targets with dramatically reduced variance of expression after Salmonella challenge. Moreover, we found evidence that targets of young (less-conserved) miRNAs showed lower expression variance compared with targets of old (evolutionarily conserved) miRNAs. These findings point to the importance of a buffering effect of miRNAs for relatively lowly expressed genes, and suggest that the reduced expression variation of RBPs may play an important role in response to Salmonella infection.
Related JoVE Video
Association analysis for feed efficiency traits in beef cattle using preserved haplotypes.
Genome
PUBLISHED: 09-05-2013
Show Abstract
Hide Abstract
This study reports a genome wide scan for chromosome regions and their haplotypes that significantly associated with average daily gain (ADG), dry matter intake (DMI), and residual feed intake (RFI) in beef cattle. The study used data from 597 Angus, 450 Charolais, and 616 crossbred beef cattle, and the Illumina Bovine SNP50 beadchip. Extended haplotype homozygosity was used to identify chromosome regions that had been recently selected for in the three groups of animals. Such regions in the crossbreds were tested for association with ADG, DMI, and RFI. At false discovery rates of 5% and 10%, there were six and eight chromosome regions showing significant associations with the traits, respectively. At nominal significance levels (at least P < 0.05), 23 regions with a total number of 31 haplotypes were found significantly associated with at least one of the three traits. The proportion of phenotypic variance explained by these 23 regions varied depending on the trait; the highest proportion for ADG, DMI, and RFI was 13.50%, 9.92%, and 2.64%, respectively. Most of the haplotypes affected single traits, except for GAA (BTA4), GCG (BTA7), and TAGT (BTA12) that affected multiple traits. Thirty-six quantitative trait loci for 16 production traits, from the current literature, covered fully or in part the 23 chromosome regions. The findings from this study might be an important contribution to the current knowledge of the beef cattle genome and to the effective identification of causative genes associated with important traits in cattle.
Related JoVE Video
Whole genome sequencing of Gir cattle for identifying polymorphisms and loci under selection.
Genome
PUBLISHED: 08-02-2013
Show Abstract
Hide Abstract
Genetic variation in Gir cattle (Bos indicus) has so far not been well characterized. In this study, we used whole genome sequencing of three Gir bulls and a pooled sample from another 11 bulls to identify polymorphisms and loci under selection. A total of 9?990?733 single nucleotide polymorphisms (SNPs) and 604?308 insertion/deletions (indels) were discovered in Gir samples, of which 62.34% and 83.62%, respectively, are previously unknown. Moreover, we detected 79 putative selective sweeps using the sequence data of the pooled sample. One of the most striking sweeps harbours several genes belonging to the cathelicidin gene family, such as CAMP, CATHL1, CATHL2, and CATHL3, which are related to pathogen- and parasite-resistance. Another interesting region harbours genes encoding mitogen-activated protein kinases, which are involved in directing cellular responses to a variety of stimuli, such as osmotic stress and heat shock. These findings are particularly interesting because Gir is resistant to hot temperatures and tropical diseases. This initial selective sweep analysis of Gir cattle has revealed a number of loci that could be important for their adaptation to tropical climates.
Related JoVE Video
Livestock and the promise of genomics.
Genome
PUBLISHED: 07-20-2013
Show Abstract
Hide Abstract
The emergence of the middle class in countries such as Brazil, Russia, India, and China is resulting in increasing global demand for animal-based food products. This increase represents a unique opportunity for Canadian livestock producers to export their products to new markets and expand Canadas reputation as a global provider of safe and highest quality food items. This article has two major themes. First, current Canadian contributions to livestock genomics in the cattle and swine industries are outlined. Second, important future opportunities are discussed, including the high throughput collection of phenotypic data, development of environmentally friendly livestock, emergence of decision support software, and the use of Web 2.0. Through the use of genomic technologies, livestock producers can not only ensure that the nutritional demands of Canada are secured, but also play a pivotal role in ensuring the rest of the world is fed as well. Furthermore, investment through initiatives led by Genome Canada has ensured that Canada is favorably positioned to contribute cutting-edge solutions to meet this global challenge. Ultimately, genomic-based innovations will enable producers to increase efficiency, lower production costs, decrease the use of prophylactics, and limit the expenditure of resources.
Related JoVE Video
Genome-wide association analyses for carcass quality in crossbred beef cattle.
BMC Genet.
PUBLISHED: 05-16-2013
Show Abstract
Hide Abstract
Genetic improvement of beef quality will benefit both producers and consumers, and can be achieved by selecting animals that carry desired quantitative trait nucleotides (QTN), which result from intensive searches using genetic markers. This paper presents a genome-wide association approach utilizing single nucleotide polymorphisms (SNP) in the Illumina BovineSNP50 BeadChip to seek genomic regions that potentially harbor genes or QTN underlying variation in carcass quality of beef cattle.This study used 747 genotyped animals, mainly crossbred, with phenotypes on twelve carcass quality traits, including hot carcass weight (HCW), back fat thickness (BF), Longissimus dorsi muscle area or ribeye area (REA), marbling scores (MRB), lean yield grade by Beef Improvement Federation formulae (BIFYLD), steak tenderness by Warner-Bratzler shear force 7-day post-mortem (LM7D) as well as body composition as determined by partial rib (IMPS 103) dissection presented as a percentage of total rib weight including body cavity fat (BDFR), lean (LNR), bone (BNR), intermuscular fat (INFR), subcutaneous fat (SQFR), and total fat (TLFR).
Related JoVE Video
Expansion of ruminant-specific microRNAs shapes target gene expression divergence between ruminant and non-ruminant species.
BMC Genomics
PUBLISHED: 03-19-2013
Show Abstract
Hide Abstract
Understanding how species-specific microRNAs (miRNAs) contribute to species-specific phenotypes is a central topic in biology. This study aimed to elucidate the role of ruminant-specific miRNAs in shaping mRNA expression divergence between ruminant and non-ruminant species.
Related JoVE Video
Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars.
Nat. Genet.
PUBLISHED: 02-22-2013
Show Abstract
Hide Abstract
We report the sequencing at 131× coverage, de novo assembly and analyses of the genome of a female Tibetan wild boar. We also resequenced the whole genomes of 30 Tibetan wild boars from six major distributed locations and 18 geographically related pigs in China. We characterized genetic diversity, population structure and patterns of evolution. We searched for genomic regions under selection, which includes genes that are involved in hypoxia, olfaction, energy metabolism and drug response. Comparing the genome of Tibetan wild boar with those of neighboring Chinese domestic pigs further showed the impact of thousands of years of artificial selection and different signatures of selection in wild boar and domestic pig. We also report genetic adaptations in Tibetan wild boar that are associated with high altitudes and characterize the genetic basis of increased salivation in domestic pig.
Related JoVE Video
Analysis of biological networks and biological pathways associated with residual feed intake in beef cattle.
Anim. Sci. J.
PUBLISHED: 02-19-2013
Show Abstract
Hide Abstract
In this study, biological networks were reconstructed from genes and metabolites significantly associated with residual feed intake (RFI) in beef cattle. The networks were then used to identify biological pathways associated with RFI. RFI is a measure of feed efficiency, which is independent of body size and growth; therefore selection for RFI is expected to result in cattle that consume less feed without adverse effects on growth rate and mature size. Although several studies have identified genes associated with RFI, the mechanisms of the biological processes are not well understood. In this study, we utilised the results obtained from two association studies, one using 24 genes and one using plasma metabolites to reconstruct biological networks associated with RFI using IPA software (Igenuity Systems). The results pointed to biological processes such as lipid and steroid biosynthesis, protein and carbohydrate metabolism and regulation of gene expression through DNA transcription, protein stability and degradation. The major canonical pathways included signaling of growth hormone, Oncostatin M, insulin-like growth factor and AMP activated protein kinase, and cholesterol biosynthesis. This study provides information on potential biological mechanisms, and genes and metabolites involved in feed efficiency in beef cattle.
Related JoVE Video
Genomic Diversity in Pig (Sus scrofa) and its Comparison with Human and other Livestock.
Curr. Genomics
PUBLISHED: 01-21-2011
Show Abstract
Hide Abstract
We have reviewed the current pig (Sus scrofa) genomic diversity within and between sites and compared them with human and other livestock. The current Porcine 60K single nucleotide polymorphism (SNP) panel has an average SNP distance in a range of 30 - 40 kb. Most of genetic variation was distributed within populations, and only a small proportion of them existed between populations. The average heterozygosity was lower in pig than in human and other livestock. Genetic inbreeding coefficient (F(IS)), population differentiation (F(ST)), and Neis genetic distance between populations were much larger in pig than in human and other livestock. Higher average genetic distance existed between European and Asian populations than between European or between Asian populations. Asian breeds harboured much larger variability and higher average heterozygosity than European breeds. The samples of wild boar that have been analyzed displayed more extensive genetic variation than domestic breeds. The average linkage disequilibrium (LD) in improved pig breeds extended to 1 - 3 cM, much larger than that in human (~ 30 kb) and cattle (~ 100 kb), but smaller than that in sheep (~ 10 cM). European breeds showed greater LD that decayed more slowly than Asian breeds. We briefly discuss some processes for maintaining genomic diversity in pig, including migration, introgression, selection, and drift. We conclude that, due to the long time of domestication, the pig possesses lower heterozygosity, higher F(IS), and larger LD compared with human and cattle. This implies that a smaller effective population size and less informative markers are needed in pig for genome wide association studies.
Related JoVE Video
Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds.
Science
PUBLISHED: 04-25-2009
Show Abstract
Hide Abstract
The imprints of domestication and breed development on the genomes of livestock likely differ from those of companion animals. A deep draft sequence assembly of shotgun reads from a single Hereford female and comparative sequences sampled from six additional breeds were used to develop probes to interrogate 37,470 single-nucleotide polymorphisms (SNPs) in 497 cattle from 19 geographically and biologically diverse breeds. These data show that cattle have undergone a rapid recent decrease in effective population size from a very large ancestral population, possibly due to bottlenecks associated with domestication, selection, and breed formation. Domestication and artificial selection appear to have left detectable signatures of selection within the cattle genome, yet the current levels of diversity within breeds are at least as great as exists within humans.
Related JoVE Video
Effect of temperature and pH on postmortem color development of porcine M. longissimus dorsi and M. semimembranosus.
J. Sci. Food Agric.
Show Abstract
Hide Abstract
Purchasing pork that is boned within 1 h postmortem and not aged is customary in China, and final pork color would not be fully realized. The relationship between early postmortem, pre-rigor meat color and 24 h postmortem, post-rigor pork color was investigated and related to the rate of pH and temperature decline within the longissimus dorsi (LD) and the semimembranosus (SM) muscles of pork carcasses. Muscle color, pH and temperature were measured at 45 min and at 3, 9, 15 and 24 h postmortem in carcasses of F? White Duroc and Chinese Erhualian pigs.
Related JoVE Video
Linkage disequilibrium in Angus, Charolais, and Crossbred beef cattle.
Front Genet
Show Abstract
Hide Abstract
Linkage disequilibrium (LD) and the persistence of its phase across populations are important for genomic selection as well as fine scale mapping of quantitative trait loci (QTL). However, knowledge of LD in beef cattle, as well as the persistence of LD phase between crossbreds (C) and purebreds, is limited. The objective of this study was to understand the patterns of LD in Angus (AN), Charolais (CH), and C beef cattle based on 31,073, 32,088, and 33,286 SNP in each population, respectively. Amount of LD decreased rapidly from 0.29 to 0.23 to 0.19 in AN, 0.22 to 0.16 to 0.12 in CH, 0.21 to 0.15 to 0.11 in C, when the distance range between markers changed from 0-30 kb to 30-70 kb and then to 70-100 kb, respectively. Breeds and chromosomes had significant effects (P < 0.001) on LD decay. There was significant interaction between breeds and chromosomes (P < 0.001). Correlations of LD phase were high between C and AN (0.84), C and CH (0.81), as well as between AN and CH (0.77) for distances less than or equal to 70 kb. These dropped when the distance increased. Estimated effective population sizes for AN and CH were 207 and 285, respectively, for 10 generations ago. Given a useful LD of at least 0.3 between pairs of SNPs, the LD phase between any pair of the three breed groups was highly persistent. The current SNP density would allow the capture of approximately 49% of useful LD between SNP and marker QTL in AN, and 38% in CH. A higher density SNP panel or redesign of the current panel is needed to achieve more of useful LD for the purpose of genomic selection beef cattle.
Related JoVE Video
An atlas of DNA methylomes in porcine adipose and muscle tissues.
Nat Commun
Show Abstract
Hide Abstract
It is evident that epigenetic factors, especially DNA methylation, have essential roles in obesity development. Here, using pig as a model, we investigate the systematic association between DNA methylation and obesity. We sample eight variant adipose and two distinct skeletal muscle tissues from three pig breeds living within comparable environments but displaying distinct fat level. We generate 1,381 Gb of sequence data from 180 methylated DNA immunoprecipitation libraries, and provide a genome-wide DNA methylation map as well as a gene expression map for adipose and muscle studies. The analysis shows global similarity and difference among breeds, sexes and anatomic locations, and identifies the differentially methylated regions. The differentially methylated regions in promoters are highly associated with obesity development via expression repression of both known obesity-related genes and novel genes. This comprehensive map provides a solid basis for exploring epigenetic mechanisms of adipose deposition and muscle growth.
Related JoVE Video
Estimating animal abundance in ground beef batches assayed with molecular markers.
PLoS ONE
Show Abstract
Hide Abstract
Estimating animal abundance in industrial scale batches of ground meat is important for mapping meat products through the manufacturing process and for effectively tracing the finished product during a food safety recall. The processing of ground beef involves a potentially large number of animals from diverse sources in a single product batch, which produces a high heterogeneity in capture probability. In order to estimate animal abundance through DNA profiling of ground beef constituents, two parameter-based statistical models were developed for incidence data. Simulations were applied to evaluate the maximum likelihood estimate (MLE) of a joint likelihood function from multiple surveys, showing superiority in the presence of high capture heterogeneity with small sample sizes, or comparable estimation in the presence of low capture heterogeneity with a large sample size when compared to other existing models. Our model employs the full information on the pattern of the capture-recapture frequencies from multiple samples. We applied the proposed models to estimate animal abundance in six manufacturing beef batches, genotyped using 30 single nucleotide polymorphism (SNP) markers, from a large scale beef grinding facility. Results show that between 411?1367 animals were present in six manufacturing beef batches. These estimates are informative as a reference for improving recall processes and tracing finished meat products back to source.
Related JoVE Video
Genome sequence and assembly of Bos indicus.
J. Hered.
Show Abstract
Hide Abstract
Cattle are divided into 2 groups referred to as taurine and indicine, both of which have been under strong artificial selection due to their importance for human nutrition. A side effect of this domestication includes a loss of genetic diversity within each specialized breed. Recently, the first taurine genome was sequenced and assembled, allowing for a better understanding of this ruminant species. However, genetic information from indicine breeds has been limited. Here, we present the first genome sequence of an indicine breed (Nellore) generated with 52X coverage by SOLiD sequencing platform. As expected, both genomes share high similarity at the nucleotide level for all autosomes and the X chromosome. Regarding the Y chromosome, the homology was considerably lower, most likely due to uncompleted assembly of the taurine Y chromosome. We were also able to cover 97% of the annotated taurine protein-coding genes.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.