JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Analysis of microRNA expression signatures in malignant pleural mesothelioma, pleural inflammation, and atypical mesothelial hyperplasia reveals common predictive tumorigenesis-related targets.
Exp. Mol. Pathol.
PUBLISHED: 08-25-2014
Show Abstract
Hide Abstract
Pleural chronic inflammation (PP) and mesothelial hyperplasia (HP) may be critical to the development of malignant pleural mesothelioma (MPM). Nonetheless, studies searching for mechanistic links involving microRNA (miRNA) regulation among these interrelated processes have not been reported. Using PCR-Array, we identified the miRNAs expressed in pleural tissues diagnosed with MPM (n=5), PP (n=4) and HP (n=5), as well as in non-cancerous/non-inflammatory tissue as the normal control (n=5). We performed bioinformatics and network analysis of differentially expressed miRNAs to identify tumorigenesis-related miRNAs and their biological networks. The targets of four down-regulated miRNAs in MPM (mir-181a-5p, miR-101-3p, miR-145-5p and miR-212-3p), one in PP (mir-101-3p) and one in HP (mir-494) were significantly enriched in "pathways in cancer". Interactome networks revealed that >50% of down-regulated miRNAs in MPM targeted the signaling-activation molecule MAPK1, the transcription factor ETS1 and the mesenchymal transition-associated molecule FZDA, which have been associated with oncogenic function. Comparative analysis revealed that FZD4 was an overlapping gene target of down-regulated miRNAs that were associated with "pathways in cancer" in MPM, PP and HP. Moreover, MAPK1, ETS1 and Cox-2, a pro-inflammatory enzyme associated with over-expression in cancers, were among the 25 overlapping target genes in MPM and PP. This network analysis revealed a potential combinatory effect of deregulated miRNAs in MPM pathogenesis and indicated potential molecular links between pleural inflammation and hyperplasia with tumorigenesis mechanisms in pleura.
Related JoVE Video
A web-based protein interaction network visualizer.
BMC Bioinformatics
PUBLISHED: 04-24-2014
Show Abstract
Hide Abstract
Interaction between proteins is one of the most important mechanisms in the execution of cellular functions. The study of these interactions has provided insight into the functioning of an organism's processes. As of October 2013, Homo sapiens had over 170000 Protein-Protein interactions (PPI) registered in the Interologous Interaction Database, which is only one of the many public resources where protein interactions can be accessed. These numbers exemplify the volume of data that research on the topic has generated. Visualization of large data sets is a well known strategy to make sense of information, and protein interaction data is no exception. There are several tools that allow the exploration of this data, providing different methods to visualize protein network interactions. However, there is still no native web tool that allows this data to be explored interactively online.
Related JoVE Video
BioJS: an open source standard for biological visualisation - its status in 2014.
F1000Res
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
BioJS is a community-based standard and repository of functional components to represent biological information on the web. The development of BioJS has been prompted by the growing need for bioinformatics visualisation tools to be easily shared, reused and discovered. Its modular architecture makes it easy for users to find a specific functionality without needing to know how it has been built, while components can be extended or created for implementing new functionality. The BioJS community of developers currently provides a range of functionality that is open access and freely available. A registry has been set up that categorises and provides installation instructions and testing facilities at http://www.ebi.ac.uk/tools/biojs/. The source code for all components is available for ready use at https://github.com/biojs/biojs.
Related JoVE Video
PPI layouts: BioJS components for the display of Protein-Protein Interactions.
F1000Res
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
We present two web-based components for the display of Protein-Protein Interaction networks using different self-organizing layout methods: force-directed and circular. These components conform to the BioJS standard and can be rendered in an HTML5-compliant browser without the need for third-party plugins. We provide examples of interaction networks and how the components can be used to visualize them, and refer to a more complex tool that uses these components.
Related JoVE Video
iAnn: an event sharing platform for the life sciences.
Bioinformatics
PUBLISHED: 06-05-2013
Show Abstract
Hide Abstract
We present iAnn, an open source community-driven platform for dissemination of life science events, such as courses, conferences and workshops. iAnn allows automatic visualisation and integration of customised event reports. A central repository lies at the core of the platform: curators add submitted events, and these are subsequently accessed via web services. Thus, once an iAnn widget is incorporated into a website, it permanently shows timely relevant information as if it were native to the remote site. At the same time, announcements submitted to the repository are automatically disseminated to all portals that query the system. To facilitate the visualization of announcements, iAnn provides powerful filtering options and views, integrated in Google Maps and Google Calendar. All iAnn widgets are freely available.
Related JoVE Video
BioJS: an open source JavaScript framework for biological data visualization.
Bioinformatics
PUBLISHED: 02-23-2013
Show Abstract
Hide Abstract
BioJS is an open-source project whose main objective is the visualization of biological data in JavaScript. BioJS provides an easy-to-use consistent framework for bioinformatics application programmers. It follows a community-driven standard specification that includes a collection of components purposely designed to require a very simple configuration and installation. In addition to the programming framework, BioJS provides a centralized repository of components available for reutilization by the bioinformatics community. Availability and implementation: http://code.google.com/p/biojs/.
Related JoVE Video
Dasty3, a WEB framework for DAS.
Bioinformatics
PUBLISHED: 07-28-2011
Show Abstract
Hide Abstract
Dasty3 is a highly interactive and extensible Web-based framework. It provides a rich Application Programming Interface upon which it is possible to develop specialized clients capable of retrieving information from DAS sources as well as from data providers not using the DAS protocol. Dasty3 provides significant improvements on previous Web-based frameworks and is implemented using the 1.6 DAS specification.
Related JoVE Video
myKaryoView: a light-weight client for visualization of genomic data.
PLoS ONE
PUBLISHED: 06-01-2011
Show Abstract
Hide Abstract
The Distributed Annotation System (DAS) is a protocol for easy sharing and integration of biological annotations. In order to visualize feature annotations in a genomic context a client is required. Here we present myKaryoView, a simple light-weight DAS tool for visualization of genomic annotation. myKaryoView has been specifically configured to help analyse data derived from personal genomics, although it can also be used as a generic genome browser visualization. Several well-known data sources are provided to facilitate comparison of known genes and normal variation regions. The navigation experience is enhanced by simultaneous rendering of different levels of detail across chromosomes. A simple interface is provided to allow searches for any SNP, gene or chromosomal region. User-defined DAS data sources may also be added when querying the system. We demonstrate myKaryoView capabilities for adding user-defined sources with a set of genetic profiles of family-related individuals downloaded directly from 23andMe. myKaryoView is a web tool for visualization of genomic data specifically designed for direct-to-consumer genomic data that uses publicly available data distributed throughout the Internet. It does not require data to be held locally and it is capable of rendering any feature as long as it conforms to DAS specifications. Configuration and addition of sources to myKaryoView can be done through the interface. Here we show a proof of principle of myKaryoViews ability to display personal genomics data with 23andMe genome data sources. The tool is available at: http://mykaryoview.com.
Related JoVE Video
DAS writeback: a collaborative annotation system.
BMC Bioinformatics
PUBLISHED: 05-10-2011
Show Abstract
Hide Abstract
Centralised resources such as GenBank and UniProt are perfect examples of the major international efforts that have been made to integrate and share biological information. However, additional data that adds value to these resources needs a simple and rapid route to public access. The Distributed Annotation System (DAS) provides an adequate environment to integrate genomic and proteomic information from multiple sources, making this information accessible to the community. DAS offers a way to distribute and access information but it does not provide domain experts with the mechanisms to participate in the curation process of the available biological entities and their annotations.
Related JoVE Video
MyDas, an extensible Java DAS server.
PLoS ONE
Show Abstract
Hide Abstract
A large number of diverse, complex, and distributed data resources are currently available in the Bioinformatics domain. The pace of discovery and the diversity of information means that centralised reference databases like UniProt and Ensembl cannot integrate all potentially relevant information sources. From a user perspective however, centralised access to all relevant information concerning a specific query is essential. The Distributed Annotation System (DAS) defines a communication protocol to exchange annotations on genomic and protein sequences; this standardisation enables clients to retrieve data from a myriad of sources, thus offering centralised access to end-users.We introduce MyDas, a web server that facilitates the publishing of biological annotations according to the DAS specification. It deals with the common functionality requirements of making data available, while also providing an extension mechanism in order to implement the specifics of data store interaction. MyDas allows the user to define where the required information is located along with its structure, and is then responsible for the communication protocol details.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.